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Abstract

Background: The oral cavity comprises a rich and diverse microbiome, which plays important roles in health and
disease. Previous studies have mostly focused on adult populations or in very young children, whereas the adolescent
oral microbiome remains poorly studied. Here, we used a citizen science approach and 16S profiling to assess the oral
microbiome of 1500 adolescents around Spain and its relationships with lifestyle, diet, hygiene, and socioeconomic
and environmental parameters.

Results: Our results provide a detailed snapshot of the adolescent oral microbiome and how it varies with lifestyle and
other factors. In addition to hygiene and dietary habits, we found that the composition of tap water was related
to important changes in the abundance of several bacterial genera. This points to an important role of drinking
water in shaping the oral microbiota, which has been so far poorly explored. Overall, the microbiome samples of
our study can be clustered into two broad compositional patterns (stomatotypes), driven mostly by Neisseria and
Prevotella, respectively. These patterns show striking similarities with those found in unrelated populations.

Conclusions: We hypothesize that these stomatotypes represent two possible global optimal equilibria in the
oral microbiome that reflect underlying constraints of the human oral niche. As such, they should be found
across a variety of geographical regions, lifestyles, and ages.
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Background

The oral cavity is among the most heavily colonized
areas of the human body and harbors the second most
diverse human microbiome [1]. Previous studies of the
oral microbiome have estimated the presence of around
10® microbial cells per milliliter of saliva, and the pres-
ence of up to 700 distinct prokaryotic taxa, of which
approximately one third cannot be cultured [2—4]. The
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mouth is also the site where the most prevalent human
diseases occur, including caries, gingivitis, and periodon-
titis [1, 5, 6]. In addition, given the close connections of
the oral cavity with the vascular system and the digestive
and respiratory tracks, alterations of the mouth micro-
biota have been related with diseases that affect other
body parts, such as diabetes or cardiovascular disease [1,
4]. Understanding the composition of the oral micro-
biome across individuals, and how it relates with lifestyle
habits such as diet or hygiene, is important to achieve a
proactive management of oral health. The analysis of the
microbiome through the next-generation sequencing of
16S amplicons (ie, 16S metabarcoding) offers a
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cost-effective approach to assess the overall composition
of an individual’s microbiome [7, 8]. Previous studies
have assessed the oral microbiome in relation with
factors such as biogeography, environment, age, or eth-
nicity [7, 9, 10], or have focused on the effect of smoking
[11, 12], diet [13-16], or hygiene habits [17-19]. On the
more clinical side, some studies have uncovered alter-
ations of the oral microbiota in prevalent diseases of the
oral cavity including periodontal disease [20] and caries
[3, 21]. In addition, previous studies suggest that intrin-
sic physiological parameters of the host such as enzym-
atic content of saliva relate to variations in the
microbiome [22]. Although the mouth comprises several
distinct niches, previous large-scale studies have mostly
probed microbial composition of saliva. This fluid can
gather bacteria and metabolites that originate from other
oral niches, and appear to be representative of the over-
all oral microbiome [23]. Furthermore, considering that
saliva tests offer an ideal non-invasive source for diagno-
sis, relationships of its microbial composition with the
presence of several diseases such as cancer have been
investigated [24—26]. Most previous studies have focused
on adults, or very young infants, with studies on adoles-
cents lagging behind. The largest dataset on adolescents
so far corresponds to a longitudinal study of 107 individ-
uals, including 27 monozygotic and 18 di-zygotic twin
pairs [27]. This study suggested that environment is the
main determinant of the oral microbiome with differ-
ences between mono- or di-zygotic twins not being sig-
nificant. Here, we used a citizen science approach and
16S metabarcoding to assess the composition of the
microbiome of the oral cavity among teenagers in Spain.
We studied its variation with more than 50 parameters
including geographical location, gender, and urban envir-
onment, as well as several dietary and hygiene habits.
Our study showcases the use of a citizen science
approach to generate hypotheses that can be further val-
idated in subsequent studies.

Results

Data collection and analysis

One thousand five hundred fifty-five samples were
collected from students (ages 13-15) and their
teachers in 40 schools around Spain during Spring
2015 [see Additional file 1]. Sample collection was
coupled to science communication activities aiming to
raise awareness about the role of the microbiome in
health and disease, the potential of sequencing and
bioinformatics technologies, and the scientific career
(see http://www.sacalalengua.org). Donors were asked
to answer a questionnaire, including 54 questions [see
Additional file 2], some of which proposed by citizens,
about their health, and their dietary and hygiene
habits. The pH of the donor’s saliva was measured
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prior to sample collection. Samples were obtained
using oral rinse, from which cells were collected and
frozen (see “Online methods”). DNA extracted from
the samples were subjected to 16S profiling of the V3-V4
regions, using Illumina MiSeq technology, and processed
bioinformatically (see Materials and methods). Data from
1319 samples that passed all the quality filters were ex-
plored in terms of the relationships of the microbiome
composition, the questionnaire results, and other meta-
data (see Materials and methods).

Oral microbiome diversity is structured into two major
stomatotypes

Our analyses provide a snapshot of the microbial diver-
sity in oral samples in young adolescents across Spain,
and do so with unprecedented scale and resolution
(Fig. 1). Overall, we identified 332 operational taxonomic
units (OTUs) at the genus level in our dataset. Thirty-
two genera were common, appearing in 75% or more of
the sampled individuals. This “core” set comprised
typical oral bacteria. The top ten most abundant genera
represented collectively 84.64% of the analyzed sequences
and were present in 99.6% of the samples. Streptococcus
was the most abundant genus in most (68%) samples and
showed an average relative abundance of 22.3%, followed
by Prevotella (11.9%), Haemophilus (11.4%), Neisseria
(10.1%), and Veillonella (9%). This core community com-
position and distribution is consistent with previous stud-
ies of oral healthy microbiomes [2, 9, 22, 28-30]. For
instance, 20 of our 32 common genera are also common
in a recent study of the oral microbiome of 2343 adults in
Hisayama (Japan) [9]. Similar to previous oral microbiome
surveys [7, 29], we found high alpha (within sample) diver-
sity (mean Shannon diversity 2.5, see Additional file 3)
and low beta (between samples) diversity (mean weighted
UniFrac distance 0.118). Overall correlations among taxa
across all samples revealed several clusters of co-occurring
genera that hint to underlying ecological interactions
(Fig. 2, Additional file 4). For instance, strong co-occur-
rence links Leptotrichia, Actinomyces, and Prevotella, and
this latter one with Veillonella, suggesting they may be
ecologically related. Genera in this cluster tend to
anti-correlate with Haemophilus, Porphyromonas, and
Gemella. Previous studies have shown that individual
microbiomes from certain niches can be clustered into
different types, such as the enterotypes of the gut
microbiome [31]. Using this approach on our data (see
Materials and methods) results in two major clusters,
which we here refer to as “stomatotypes” in analogy to the
enterotypes of the gut microbiome. The two defined sto-
matotypes differ in their microbial composition and abun-
dance covariations, and for which Neisseria (stomatotype
1) and Prevotella (stomatotype 2) are the genera driving
most differences (Fig. 3). Other differences include higher
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Fig. 1 Microbiome composition. a Box plots of the relative abundances of the ten most common genera. b Stacked bars of relative abundances

of the ten most common genera for all samples, showing the relative proportion of all samples made up of these ten genera. Stacked white bars
are meaningless and appear due to lack of image resolution. ¢ Donut chart showing the five most common phyla (inner ring) and the most common
genera (outer ring) within each phylum with the average relative abundance per sample

proportions of Haemophilus in stomatotype 1 and higher
proportions of Veillonella and Streptococcus in stomato-
type 2. Importantly, although the studies are performed
with different methodologies and have largely different
target populations, we noted a strong parallelism between
our two stomatotypes and the defined “coinhabiting
groups” in the abovementioned Hisayama study [9]. Of
note, other studies of the oral microbiome have found a
different number of clusters. An analysis of the oral
microbiome in 268 healthy young adults (18—32) classified
the samples into five discrete clusters [22], whereas an-
other study of 161 healthy adults found three different
clusters [16]. Yet, many parallels can also be found

between our stomatotypes, and those in these studies. In
terms of the driving species, our stomatotypes 1 and 2 are
similar, respectively, to MIC1.3 and MIC2 of the 268
adults study and to clusters 1 and 2 of the 161 adults
study. These striking similarities between disparate studies
suggest that these two major stomatotypes may be ubiqui-
tous and define global equilibria in the human mouth
microbiome. As we discuss below, these stomatotypes are
not discrete, well separated entities, but rather represent
two poles of a gradient of microbial compositions. The
stomatotypes are driven mostly by certain abundant gen-
era, but do not explain the variability found in many other
genera. This is apparent when plotting the abundance of
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Fig. 2 Correlations among genera (all samples). a Heatmap of correlations between relative abundances of genera. Color indicates Pearson correlation
coefficient and “+" indicates a statistically significant correlation. While 332 different genera in total were detected, for the sake of visual representation,
this figure shows only the 67 genera which were present in at least 1/3 of all samples (436). Correlation coefficient values for significant correlations
can be found in Additional file 4. The indexes of genera within Additional file 4 are marked at every fifth position in the figure here so that names can
be matched to the figure if so desired. b Co-occurrence network of the 20 most common genera. Edges indicate significant positive (red) or negative
(blue) correlations between indicated genera. Edge width is proportional to Pearson correlation coefficient. Only displaying edges for coefficients of
0.25 or greater and — 0.25 or lower. The largest and smallest edge widths are shown with the corresponding absolute value of the correlation coefficient
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different genera onto the principal coordinate analyses
(see Fig. 4).

Studying co-occurrence patterns for each stomatotype
separately reveals underlying bacterial communities that
are shared or specific (Fig. 5). In both stomatotypes,
Streptococcus is positively correlated with Gemella and
negatively with Prevotella and Fusobacterium (Fig. 3c).
This observation fits with recent studies describing oral
plaque formation and evolution in disbiotic processes
that have led to the formulation of the “ecological plaque
hypothesis” [1, 32-34]. In this model, Streptococcus,
Gemella, and Neisseria are among the pioneer colonizers
that contribute to initial plaque formation. These genera
are replaced in further evolution of the plaque by anaer-
obic species of several genera, including Prevotella,
Porphyromonas, Fusobacterum, and Veillonella. Thus,
the abundance covariations observed in both stomato-
types may partly reflect the underlying diversity of bio-
film succession stages comprised in our samples and
would support the main axis of previously observed core
community changes in dental plaque. Positive correla-
tions between Porphyromonas and Fusobacterium and
negative correlations between Veillonella and Gemella
further support this model, while positive correlations

between Porphyromonas and Gemella and negative cor-
relations between Porphyromonas and Veillonella would
not be explained by the current plaque succession
model. Of note, several of the correlations mentioned in
our study coincide with those found in previous studies
[16, 22]. Microbial compositions in oral rinse samples
can only be considered a proxy for plaque communities,
as the procedure collects cells from different oral niches.
However, earlier studies using similar collection proto-
cols and including information on plaque status or den-
tal health have found correlations between microbial
composition of saliva, the amount of plaque and diseases
such as periodontitis, or caries [5, 9, 35, 36].

Although many of the covariations between the two
stomatotypes are similar, their strengths can be markedly
different. In addition, some covariations appear specific
for each stomatotype. For instance, in the case of stoma-
totype 1, we detected positive covariation of Fusobacter-
ium and Capnocytophaga, both anaerobic bacteria
implicated in dental plaque progression [33], while in
stomatotype 2, we specifically detect antagonism
between Streptococcus and Actinomyces, which are
known to compete in the initial phases of dental plaque
formation [32, 37]. Thus, the two stomatotypes may
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Fig. 3 Stomatotypes. a Principal Coordinates Analysis (PCoA) of samples using a Jensen-Shannon Divergence (JSD). Shows that the samples
cluster into 2 groups (stomatotypes). b Boxplots of relative abundances of the five most common genera in samples with stomatotype 1 (red)
and stomatotype 2 (blue). Bonferroni-adjusted p values from Wilcoxon tests between samples of stomatotypes 1 and 2 for streptococcus is 1.1e—7, while
the values for the other 4 genera here were all less than 2e—16. ¢ Co-occurence networks of 20 most common genera within samples of Stomatotypes 1
and 2 separately. Edges indicate significant positive (red) or negative (blue) correlations between indicated genera. Edge width is proportional to Pearson
correlation coefficient. Only displaying edges for coefficients of 0.25 or greater. The largest and smallest edge widths are shown with the corresponding

point to differences in the relative impact of underlying
processes and microbial communities that differentially
affect individuals in our study.

Lifestyle and social parameters

We next explored correlations between social parame-
ters, questionnaire answers, and microbial composition
[see Additional files 5, 6, 7, and 8]. We found that living
in rural or urban areas did not correlate with significant
changes in the microbiome. This suggests that diets and
lifestyles of students are similar in cities and rural areas
in Spain, as confirmed by our questionnaire, which only
revealed significant differences in terms of a higher like-
lihood of having dogs for students living in the country
side. Socioeconomic status did correlate significantly
with the abundance of some genera, positively with
Rhizobium and negatively with Bradyrhizobium, Acineto-
bacter, and Pseudomonas. Here, some differences in

dietary habits were found, with a lower socioeconomic
status being correlated with higher consumption of coke
and sweets among students. We found no large differ-
ences between oral microbiomes of males and females,
with only two genera (Actinomyces and Oribacterium)
showing significantly different abundances (both higher
in males). Boys and girls had some different habits.
While the former tended to drink more milk, coke, or
energetic drinks, the latter chewed gum and brushed
their teeth more often. Larger differences in the oral
microbiome were found between students and their
teachers. Teachers’ microbiomes were enriched in
Alloscardovia, Parascardovia, Filifactor, Bulleidia, Myco-
plasma, Phocaeicola, Hallella, Howardella, Anaeroglo-
bus, Dialister, Desulfobulbus, and Campylobacter, while
those of students were enriched in Actinomyces, Abiotro-
phia, Granulicatella, Rhizobium, Burkholderia, and Ral-
stonia, with the latter two genera being absent from any
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of the teacher’s samples. These large differences may be
related to age but also to their understandably different
lifestyle. The students were more often consuming sweets
and chewing gum, while teachers were consuming signifi-
cantly more coffee and alcohol, reported more dental
health problems, and used flossing more frequently. Al-
though not the focus of the study, some interesting corre-
lations did emerge among the items in the questionnaire.
For instance, smokers tend to consume more alcohol, and
students who reported having a kissing partner were more
likely to smoke, drink alcohol, or chew gum [see Add-
itional file 6]. Interestingly, students with kissing partners
had a higher number of taxa in their microbiomes, which
also showed a significantly higher presence of Treponema.
Importantly, the reported consumption of alcohol among
314 students was associated with a higher presence of
several bacterial genera including Mycoplasma, Filifactor,
Treponema, and Desulfobulbus, among others [see

Additional file 7]. Although 108 students declared smok-
ing occasionally, we did not detect significant differences
in their microbiomes. Gemella negatively correlated with
the consumption of yogurt and milk. In addition, the con-
sumption of milk was positively correlated with the of
Actinomyces and Atopobium.

Hygiene habits and saliva pH

Acidification plays an important role in oral health
problems such as caries or periodontitis [3, 38]. A pH
level of less than 5.5 can put a person at risk of tooth
enamel erosion, leading to the formation of cavities,
while higher pH can reduce this risk. Measured oral pH
in our samples had a median of 7.5 but showed a wide
range [see Additional file 9]. Higher oral pH was posi-
tively correlated with the abundance of Fusobacterium
and Porphyromonas, a bacterial genus known to grow
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optimally in alkaline environments, and able to increase
the pH of its medium [38]. Other genera such as Strepto-
coccus or Veillonella, among others, correlated negatively
with saliva pH [see Additional file 7]. Veillonella species
are known to increase their abundance in acidic environ-
ments derived from fermentation processes, such as those
occurring in mature dental plaque [3]. Importantly, no hy-
giene or dietary habit was shown to impact saliva pH in
our study [see Additional file 8]. Admittedly, measure-
ments of saliva pH using pH strips—a limitation imposed
in part by our citizen science approach—lack the precision
provided by a pH meter (see “Materials and methods” sec-
tion). However, all our detected correlations were robust
to stochastic variations within the precision range of the
measurement, as shown by 1000 randomization tests (see
“Materials and methods” section).

Our questionnaire included several questions on oral
hygiene and dental devices. Hygiene habits usually showed
high correlations among themselves, so that people who
brush their teeth more often tended to use fluoride sup-
plements and floss and were more likely to wash their
hands before eating and/or after using the bathroom.
Additionally, people using braces were more often brush-
ing their teeth, and those reporting past nerve extractions
drank more alcohol. According to our data, differences in
type and frequency of oral hygiene do have measurable ef-
fects in the oral microbiome. Frequency of brushing teeth

correlated negatively with the relative abundance of
Gemella, Streptobacillus, Granulicatella, and Porphyr-
omonas. It is known that caries is generally associated
with an increase of Streptococcus, but also of Granuli-
catella, and Gemella [21]—although in the latter case,
this varies with age [39]—supporting the effect of
brushing against primary dental plaque. In contrast,
flossing or using supplemental fluoride mouth wash
did not seem to significantly impact the oral micro-
biome. The presence of dental implants did not show
any correlation with oral microbiome changes, but
wearing orthodontic braces did correlate positively
with the abundance of many genera. These included
several anaerobic or facultatively anaerobic genera
such as Corynebacterium, Bifidobacterium, Parascar-
dovia, Olsenella, Capnocytophaga, Lactobacillus, Dial-
ister, Schwartzia, Selenomonas, and Cardiobacterium.
This suggests that such orthodontic devices and their
surfaces may promote the proliferation of specific bio-
film communities. Most of these genera comprise an-
aerobic Gram negative species or Gram positives
associated to acidic fermentations, which are generally
associated to mature biofilm acidification, as well as
caries and periodontal disease [3]. Selenomonas has
been described as one of the most abundant taxa dur-
ing orthodontic braces treatment and has been linked
to common oral diseases such as gingivitis [19].
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Tap water influences the oral microbiome

Unexpectedly, we found no significant differences between
lifestyle of students with the two oral stomatotypes, sug-
gesting our data have not sufficiently captured the key fac-
tors underlying these different microbial communities.
Notably, however, the two stomatotypes, and some genera,
were geographically widespread but showed distinct abun-
dance patterns, which suggest some environmental influ-
ence. The patterns were sometimes reminiscent of maps
of certain public water quality parameters, such as alkalin-
ity or water hardness, which differ significantly across
regions in Spain (Fig. 6). In addition, the mouth is
constantly exposed to tap water, which is consumed for
drinking, cooking, and hygiene. Hence, we decided to in-
vestigate this factor in more detail and linked our samples
to the chemical composition of tap water of the nearest
town, as reported in recent studies [40-42]. For this

Page 8 of 17

analysis, we removed individuals that declared drinking
bottled water. No strong correlation was found between
the two stomatotypes and any of the 17 water parameters
investigated. However, we found that most considered
water quality parameters are associated to alterations in
the composition of several genera (Fig. 7, Additional file 10).
Porphyromonas was positively associated with the presence
of fluoride (F) and sulfate (SO4) in tap water. A group of
genera including, among others, Veillonella, Ralstonia,
Rhizobium, Rhodococcus, and Pseudomonas negatively cor-
related with several of the following parameters: water
hardness, alkalinity, conductivity, and the presence of SO,,
magnesium (Mg), sodium (Na), calcium (Ca), chloride
(Cl), and the amount of dry matter after boiling. Other
genera correlated positively with several of these same
variables, including Porphyromonas and Flavobacterium.
Ralstonia abundance was also negatively affected by nearly
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all other water variables, and it was the genus whose abun-
dance changed the most with tap water quality, followed
by Rhizobium, Veillonella, and Pseudomonas. These results
suggest that tap water composition may be an important,
poorly studied factor shaping the oral microbiome.

Discussion

Our study provides a comprehensive survey of the oral
microbiome in Spanish adolescents, a target group that
remains poorly explored. The citizen science approach
has allowed us to address questions raised by citizens,
train them in the use and interpretation of the data, and
open a dialog with society on technologies and scientific
questions of growing relevance. Although a citizen-based
approach faces important limitations as compared to
clinical studies, such as the difficulty to comprehensively
evaluate clinical parameters by experts, it enables access
to a large number of samples and of a different kind of
those usually targeted by other studies. The high number
of samples, the narrow range of geographical areas and
ages under study, and the richness of collected metadata
provide us an unprecedented level of resolution to study
the adolescent oral microbiome. The insights gained

from our study have served to generate working hypoth-
eses regarding the composition and variability of the oral
microbiome of adolescents that can be tested in future,
more conventional studies. The core microbiome com-
prised typical oral bacteria that are commonly identified
as abundant in similar oral microbiome surveys [28]. All
genera discussed in the paper with the exception of
Rubellimicrobium and Undibacterium have been previ-
ously identified in oral samples. Although the issue of con-
tamination is a common theme in microbiome analyses,
20 amplification cycles and cell-rich starting materials such
as oral samples are predicted to be minimally affected [43].
In accordance with this, all of our negative controls pro-
vided no measurable results and a negligible number of
reads when forced into library preparation and sequencing
(see the “Materials and samples” section). However, we
cannot discard the possibility that some of the low abun-
dance genera identified are not stable components of the
oral cavity but result from sporadic colonization from the
close environment of the donor (i.e., food, air, or water).
Overall, we see that the oral microbiome of Spanish
adolescents is impacted by dietary, hygiene, and other
lifestyle habits. Differences observed point to a
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differential impact of habits on the oral microbiome of
adolescents. For instance, frequent teeth brushing was
shown to affect the relative proportion of oral genera
more than flossing, or the use of fluoride supplements.

Similarly, consumption of alcohol among adolescents
seemed to impact the oral microbiome more than smoking.
In contrast, we did not find many differences between gen-
ders or rural versus urban environment. Interestingly, some
variables such as body mass index, which is generally asso-
ciated to alterations in the gut microbiome, and it has been
associated to changes in the oral microbiome in adults [44],
seemed to have a minor impact on the mouth microbiome
of adolescents in our sample. Some of these differences
may relate to the fact that some habits, such as smoking or
some dietary habits, may have just been recently estab-
lished, or the habit is more sporadic in adolescents, and the
effects in the microbiome will only be apparent after a pro-
longed period of sustained habit. In addition, the oral
microbiome of adolescents may have specificities as a tran-
sition phase from childhood to adulthood. Adolescence is a
stage with major hormonal and habit changes, which likely
impact the oral microbial community. In fact, this period of
life is associated with a sharp increase in the incidence and
severity of gingivitis [45], which may be related to under-
lying oral microbiome changes. This highlights the import-
ance of increasing our knowledge of the adolescent oral
microbiome, as well as to undertake longitudinal studies
over adolescent to adulthood phases of life. Altogether, the
chemical composition of tap water was found to be the in-
vestigated factor with the highest impact on the compos-
ition of the oral microbiome. Although the presence of the
most abundant genera of the oral microbiome such as
Streptococcus, Prevotella, or Haemophilus (the top three in
our samples) were not significantly affected by tap water,
some genera among the ten most abundant were affected,
including Veillonella, Porphyromonas, and Gemella. Our
results thus raise the question of the role of drinking water
in shaping the oral microbiome, suggesting a potentially
important role. Previous studies have analyzed the relation-
ship between the presence of fluoride and the incidence of
caries [46], but the overall impact on the human oral
microbiota of this and other factors remain unexplored. In
this regard, experiments in mice have shown that the com-
position of tap water can be related with changes in the gut
microbiome [47] and have an incidence in the progression
of diseases such as diabetes [48]. Further research is needed
to follow up the potential role of tap water in shaping the
human oral microbiome.

We found that the oral microbiome of the studied
population can be broadly classified into two different
stomatotypes. Although the time since last tooth brush-
ing was not controlled in our study, we do not think this
would drive overall observed differences regarding
stomatotypes as all students in one class were sampled
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at the same time and we found that differences in sto-
matotypes were not driven by school class. Importantly,
our two defined stomatotypes show notable overlap with
the two “coinhabiting” groups of bacteria identified in
another large study [9]. Considering that the two studies
use different profiling approaches (V1V2 regions in ion
torrent vs V3V4 regions in MiSeq), and they target
broadly different populations with markedly different
genetic backgrounds and lifestyles (adults in Japan vs ad-
olescents in Spain), the similarities are striking. The two
studies coincide in defining higher proportions of Neis-
seria, Haemophilus, and Porphyromonas, in one of the
types (stomatotype 1, coinhabiting group 2), and those
of Prevotella, and Veillonella in the other (stomatotype
2, coinhabiting group 1). That the two disparate studies
agree in the two broadly defined groups strongly sug-
gests that these two stomatotypes define two possible
equilibria of oral microbial communities which are glo-
bally present. In addition, that the two stomatotypes are
similarly identified in adult and adolescent datasets sug-
gests that, despite important differences, oral micro-
biomes from these two age groups are similar at a broad
level. This reinforces the idea that the two stomatotypes
define global equilibria of microbial communities, des-
pite a possibly large underlying diversity. We propose
naming these stomatotypes Neisseria-Haemophilus (sto-
matotype 1) and Prevotella-Veillonella (stomatotype 2)
based on the four most abundant genera among those
driving their differences. Although other studies have de-
fined higher number of clusters in the oral microbiome
[16, 22], some of these clusters show clear similarities
with the two stomatotypes found in this study.

We hypothesize that these two main stomatotypes are
ubiquitous in human and that they can be found across
geographical regions, ethnic groups, and lifestyles, point-
ing to inherently deep relationships between the human
oral niches and the bacterial communities that colonize
them. Further support of this hypothesis with broader
studies in other populations and geographical regions is
needed. This finding also opens the question of the sta-
bility of these two stomatotypes and how lifestyle may
promote shifts between the two equilibria. It is unclear
whether differences in the number of clusters found
across studies are due to differences in the studied
populations or to variations in the applied methods. In
addition, some authors have warned about the necessity
to consider variations among samples as a gradient
rather than as discrete clusters [49]. We agree with this
view and consider that stomatotypes represent trends in
a continuous space of variation. As shown here, stoma-
totypes are appropriate to describe trends of change in
the underlying microbial communities, which hint to
shifts in the balance between driver genera. However,
the two stomatotypes do contain a significant amount of
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variability and a gradient of variation, sometimes unre-
lated to the stomatotypes, is observed for the most
abundant genera. In addition, that the described stoma-
totypes are common and globally distributed does not
preclude the possibility that further, clearly distinct, sto-
matotypes may be found in other populations. Particu-
larly, as the mentioned studies represent mostly healthy
populations, further stomatotypes may be present that
are associated to specific lifestyles or health conditions,
which may represent alternative equilibria, or disbiotic
alterations from the two described stomatotypes. Cer-
tainly, further studies including broader samples and
specific sampling from different niches within the oral
cavity will help us describe in more detail the oral mi-
crobial ecosystem and its interactions.

Conclusions

The core oral microbiome described in this study is
composed of genera commonly identified in other oral
microbiome studies. We have shown that a number of
diet and hygiene factors are associated with alterations
in the composition of the oral microbiome, though one
caveat is that, since the bulk of the sample set is from
adolescents, some habits may be too recently developed
to have already had a strong impact. The factor with the
highest impact was the chemical composition of tap
water from the hometowns of the donors. Indeed, most
of the 17 ionic measurements showed significant corre-
lations with a number of common genera such as Veillo-
nella and Porphyromonas. This points to an important
role of tap water in shaping the oral microbiome, which
has been overlooked in previous studies.

We show that the samples can be clustered into two dis-
tinct groups which we call stomatotypes. The structures of
these stomatotypes show notable similarities to the two
clusters presented in another oral microbiome study of
Japanese adults, despite differences in the technical ap-
proaches to the metagenomic analyses and highly distinct
populations. Here, we propose the hypothesis that these
two stomatotypes (the Neisseria-Haemophilus and Prevo-
tella-Veillonella stomatotypes) represent global equilibria
of oral microbial communities.

Material and methods

Sample collection

All participants, and at least one of their parents or legal
guardians for those under the age of 18, signed a
consent form to use their saliva samples for microbiome
research. This consent form and the purpose of this
project received approval by the ethics committee of the
Barcelona Biomedical Research Park (PRBB). The target
population was teenagers in the third course of Spanish
secondary compulsory education (ESO), ages 13—15 years
old. Additionally, we also collected samples from teachers
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of the participating schools. Schools were selected among
those which volunteered to cover a broad range of Spanish
provinces, a similar amount of schools in urban (towns or
cities with more than 50,000 inhabitants) or rural (towns
with less than 50,000 inhabitants and more than 50 km
away from a large town) environments. Samples were
collected during February to April in 2015. Participants
were asked not to eat for 1 h prior to the sample collec-
tion. We tried to minimize variability as much as possible.
To minimize sample collection variability, all donors
received clear instructions on the procedure in person and
sample collection was performed with the assistance of
one researcher involved in the project, after a clear dem-
onstration. All participants responded to a uniform ques-
tionnaire (see below). Before sample collection, saliva pH
was measured using pH test strips (MColorpHast, Merck,
range 5.0-10.0; 0.5 accuracy units). Although the use of
pH test strips have been validated extensively [50], we
validated our chosen strips. For this, we compared values
given by eight different researchers using these strips to a
scale of solutions with different pH to the values provided
by a PHmeter (SevenEasypH model, Mettler-Toledo
(GmbH). The correlation was high (R* = 0.96), with aver-
age absolute differences between the value of the pH
meter and that provided by the researcher being 0.33
which is within the range of the limit of detection of the
method (0.5). Saliva samples were collected using a mouth
wash and using a protocol that had been previously tested
and compared with other procedures during a pilot phase
of the project. Of note, this procedure is used in other oral
microbiome studies and have been shown to produce
consistent results with other sampling procedures [51].
The protocol used is as follows: Study participants rinsed
their mouth with 15-mL sterile phosphate-buffered saline
(PBS) for 1 min and subsequently returned the liquid into
a 50-mL centrifuge plastic tube. The collected samples were
centrifuged at 4500 g for 12 min at room temperature (r.t.)
in an Eppendorf 5430 centrifuge equipped with an Eppen-
dorf F-35-6-30 rotor. Pellets were resuspended with PBS,
transferred to 1.5-ml eppendorf tubes and centrifuged at
4500 g for 5 min at r.t. using an Eppendorf FA-45-24-11-
HS rotor. Supernatants were discarded, and pellets were
frozen and kept at — 20 °C until the time of analysis.

DNA extraction and sequencing

DNA from samples was extracted individually using the
ZR-96 Fungal/Bacterial DNA kit (Zymo research Ref
D6006) following manufacturer’s instructions. The
extraction tubes were agitated twice in a 96-well plate
using Tissue lyser II (Qiagen) at 30 Hz/s for 5 min at 4 °
C. As a control for downstream procedures, we also
used two DNA samples derived from bacterial mock
communities obtained from the BEI Resources of the
Human Microbiome Project: Each sample contained
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genomic DNA of ribosomal operons from 20 bacterial
species. The HM-782D community contained an even
number of ribosomal DNA per species (100,000 operons
per species). The HM-783D community contained a
variable number of operons, ranging from 1000 to
1000,000 per species.

DNA samples were diluted to 12.5 ng/pl and used
to amplify the V3-V4 regions of 16S ribosomal RNA
gene, using the following universal primers in a lim-
ited cycle PCR:

V3-V4-Forward

(5'-TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGCCTACGGGNGGCWGCAG-3')

V3-V4-Reverse

(5'-GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAGGACTACHVGGGTATCTAATCC-3")

The PCR was performed in 10-pl volume with 0.2-uM
primer concentration. Cycling conditions were initial de-
naturation of 3 min at 95 °C followed by 20 cycles of
95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, ending
with a final elongation step of 5 min at 72 °C. After this
first PCR step, water was added to a total volume of
50 ul and reactions were purified using AMPure XP
beads (Beckman Coulter) with a 0.9x ratio according to
manufacturer’s instructions. PCR products were eluted
from the magnetic beads with 32 pl of Buffer EB
(Qiagen) and 30 pl of the eluate were transferred to a
fresh 96-well plate.

The above described primers contain overhangs allow-
ing the addition of full-length Nextera adapters with
barcodes for multiplex sequencing in a second PCR step,
resulting in sequencing ready libraries with approxi-
mately 450 bp insert sizes. To do so, 5 pl of the first
amplification were used as template for the second PCR
with Nextera XT v2 adaptor primers in a final volume of
50 pl using the same PCR mix and thermal profile as for
the first PCR but only 8 cycles. After the second PCR,
25 pl of the final product was used for purification and
normalization with SequalPrep normalization kit (Invi-
trogen), according to manufacturer’s protocol. Libraries
were eluted in 20-pl volume and pooled for sequencing.
Final pools were quantified by qPCR using Kapa library
quantification kit for Illumina Platforms (Kapa Biosys-
tems) on an ABI 7900HT real-time cycler (Applied Bio-
systems). Sequencing was performed in eight runs on an
[llumina MiSeq with 2 x 300 bp reads using v3 chemistry
with a loading concentration of 10 pM. In all cases, 15%
of PhIX control libraries was spiked in to increase the
diversity of the sequenced sample. Negative controls of
the sample collection buffer, DNA extraction, and PCR
amplification steps were routinely performed in parallel,
using the same conditions and reagents. Our controls
systematically provided no visible band or quantifiable
DNA amounts by gel visualization or Bioanalyzer,

Page 12 of 17

whereas all of our samples provided clearly visible bands
after 20 cycles. Four such controls were subjected to
library preparation and sequenced. Expectedly, these
sequenced non-template controls systematically yielded
very few reads (a range of 30—-880 reads per sample), in
contrast to an average of 54,000 reads/library in
sample-derived libraries.

Pre-processing of 16S rRNA sequence reads and
operational taxonomic unit assignment

The specific pipeline and parameters were set using se-
quence reads from both 16S rRNA amplicon and whole
genome sequencing of the described mock communities.
In the final adopted pipeline, reads were checked for qual-
ity using FastQC [52]. 16S amplicons were analyzed by
Mothur v1.34.4 [53] following instructions described in
the author’s website (https://www.mothur.org/wiki/MiS-
eq_SOP). Overlapping pairs of sequence reads were as-
sembled, contigs with more than 4 ambiguities and
shorter than 439 bp or larger than 466 bp were discarded,
and the remaining contigs were aligned to the reference
alignment provided by the SILVA database [54] (version
119) with a k-mer size of 8. Artifacts from the alignment
and the contigs with more than 12 homo-polymers (the
maximum number found in the reference alignment) were
removed. The resulting alignment was simplified by
removing the columns containing only gaps and by dis-
carding duplicated sequences. The aligned sequences were
then grouped allowing up to 4 mismatches and clusters
with only one sequence were removed. Uchime (embed-
ded in the Mothur framework) was used to remove
chimeras, and the resulting sequences were classified
according to the taxonomy into the corresponding oper-
ational taxonomic units (OTUs). Undesired lineages such
as chloroplast, mitochondria, archaea, eukaryota, and “un-
known” were removed. Sequences were then grouped
again into OTUs by using the cluster.split command and
considering the genus level. Finally, OTUs mapping to the
same genus were grouped together.

Microbiome composition profiling

The 16S rRNA OTU counts from the 1532 samples in
this study for which we also had survey data were stored
and analyzed using the R package Phyloseq (version
1.16.2) [55], which also has functions for filtering oper-
ational taxonomic units (OTUs), normalizing values, and
various other calculations. One hundred eighty samples
from 5 of the schools had to be removed due to an
apparent batch effect during the sequencing procedure.
This batch effect was detected in the initial quality as-
sessment of the comparison of the data. In a diversity
analysis these samples behaved very distinctly from the
rest of the sample showing very low diversity values and
corresponded to samples that had been processed and
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sequenced as a batch on the same day. Additionally, 33
samples were removed from the analyses because of
errors with the sample identifiers, leaving a total of 1319
samples from 35 different schools from around Spain.
Three hundred thirty-two different genera were identi-
fied in these samples. The 16S counts were normalized
per sample, leaving the relative abundance of each genus
within that sample, with all values between 0 and 100.

Diversity measures

We estimated alpha diversity as measured by Shannon Di-
versity Index and Simpson Diversity Index [56] with the
estimate_richness function from the Phyloseq package
v1.16.2. We estimated beta diversity as the weighted and
unweighted Unifrac distance between samples with the
Unifrac function, as well as the Jensen-Shannon Divergence
(JSD) with the JSD function, both from the Phyloseq pack-
age. In addition, we calculated the Bray-Curtis dissimilarity
and Canberra index using the vegdist function in the vegan
package (version 2.4.6) [57]. Both unifrac calculations
require a phylogenetic tree which indicates phylogenetic
distances by branch lengths. We obtained the tree by
following the procedure described by Callahan et al. [58],
wherein sequences are aligned, then using the R package
phangorn (version 2.4.0), we construct a neighbor-joining
tree and then fit a maximum likelihood tree. The weighted
unifrac distance adds weights to the branch lengths based
on relative abundance, while the unweighted unifrac
distance considers only the presence or absence of OTUs.
For each of these alpha and beta diversity measures, we also
divided samples into quartiles in order to label each sample
as having low (1st quartile), average (2nd and 3rd quartiles),
or high diversity (4th quartile).

Sample clustering

To cluster the samples in terms of their taxonomic
composition (stomatotypes), we adapted the procedure
described previously [31] for the determination of
enterotypes, which we here refer to as stomatotypes.
For this, we employed each of five beta diversity mea-
sures—Jensen-Shannon Divergence (JSD), weighted and
unweighted UniFrac distance, Bray-Curtis dissimilarity,
and Canberra index—to produce distance matrices for
the genera of all samples and then Partitioning Around
Medoids (PAM) clustering to group samples with simi-
lar overall oral microbiomes. Next, we used the
Calinski-Harabasz (CH) index [59] to determine the
optimal number of clusters, and we further verified this
by calculating the average silhouette width of the sam-
ples, which is a measure of the separation of samples
within one cluster from those of another cluster, as well
as the prediction strength, another measure of the effi-
ciency of clustering. The functions for these calcula-
tions come from the R packages cluster v2.0.6 (https://
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cran.r-project.org/package=cluster), clusterSim v0.45-1
(https://cran.r-project.org/package=clusterSim), and fpc
v2.1-11.1 (https://CRAN.R-project. =org/package=fpc).
Clustering was validated using all five distance mea-
sures to ensure proper clustering, but analyses here are
performed using the clustering based on JSD. As
detailed in Bork’s group tutorial (http://enterotype.
embl.de/enterotypes.html), we used the R package ade4
v1.7-4  (https://cran.r-project.org/package=ade4) for
visualization. We first excluded those genera that are
potentially noisy, removing those for which the average
relative abundance across all samples was lower than
0.01%. We then used Between Class Analysis (BCA) to
determine the “drivers” for each stomatotype, which are
the genera accounting for the greatest separation be-
tween samples of a given stomatotype from the other
types. We used a Principal Coordinate Analysis (PCoA)
to visualize the clustering of the samples within their
respective  stomatotypes. Furthemore, the adonis
function in the vegan package was used to perform a
PERMANOVA test on each beta diversity measure to
ensure significant separation of stomatotypes.

Gradients of abundances

The gradients of abundances were displayed using the
same coordinates in the PCoA plots described above,
and points were colored based on abundances of the in-
dicated taxa binned into every 10th percentile of those
abundances. Shapes of points are determined by the sto-
matotype based on a given distance measure, typically
the JSD measure in figures here.

Co-occurrence networks

To produce co-occurrence networks of genera within a
given stomatotype, we use the R packages sna v2.4 (https://
cran.r-project.org/package=sna) and network v1.13.0 (https:
/[cran.r-project.org/package=network). We first calculated
Pearson correlations between pairs of genera within sam-
ples of a given stomatotype and used the Bonferroni correc-
tion to adjust the p values. Then, considering the 20 most
common genera within the samples of a given stomatotype,
we produce a network wherein edges are formed between
only those genera that have a correlation coefficient greater
than 0.25 or less than —0.25 and an adjusted p value less
than 0.05. Red edges indicate positive correlations, blue
edges indicate negative correlations and edge width is pro-
portional to the absolute value of the correlation coefficient.
Vertex color is based on the phylum to which the given
genus belongs.

Questionnaire and other metadata

Participants were asked to answer one questionnaire in-
quiring about aspects relevant to their hygiene and dietary
habits. These questions were adapted from questionnaires
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available at the PhenX toolkit (consensus measures for
Phenotypes and eXposures), which provides recom-
mended standard data collection protocols for conduct-
ing biomedical research [60] and which has been
recommended by the microbiome research community
[61]. In addition, some of the questions were selected
among those suggested by citizens themselves through
the project’s website. The final questionnaire is avail-
able at (Additional file 2). Data on average socioeco-
nomic status of each participant high school was
obtained as follows. We first assigned geographic coor-
dinates to all schools based on their postal address,
which were used to assign socioeconomic values from
their districts using the GIS (Geographic Information
System) software QGIS v.2.14 and based on the Census
Tracts of 2001, of the Urban Vulnerability Atlas
Database from the Spanish government (http://www.fo-
mento.gob.es/ MFOM/LANG_CASTELLANO/DIREC-
CIONES_GENERALES/ARQ_VIVIENDA/SUELO_Y _-
POLITICAS/OBSERVATORIO/Atlas_Vulnerabilidad_
Urbana/). Data on tap water hardness was obtained from
several national ionic composition studies [40—42].

Statistical analyses

We obtained the Pearson correlation coefficient
between abundances of pairs of genera, between genera
and other continuous variables (ie., questionnaire
answers, pH), and between pairs of variables. We per-
formed the Kruskal-Wallis rank sum test between
categorical variables (i.e., questionnaire, stomatotype)
and abundances or other continuous variables. In those
cases where the Kruskal-Wallis test was statistically sig-
nificant, the differential groups and the direction of
their difference (greater or less than other groups) was
determined by ANOVA using the aov and TukeyHSD
functions from the base R package stats v3.4.1. We also
performed chi-squared tests between categorical values
as well as between those variables and the presence/ab-
sence of OTUs. In all cases, we applied the Bonferroni
correction to adjust the p values by the number of com-
parisons. Correlation heatmaps, boxplots, and volcano
plots were generated using ggplot2 v2.2.1 (https://cran
.r-project.org/package=ggplot2), and association plots
were generated using the assoc function from the R
package vcd v1.4-3 (https://cran.r-project.org/packa-
ge=vcd). In general, all of our statistical analyses con-
sidered all 1319 samples, except for the instances that
are specifically mentioned in the text (i.e., by referring
to a correlation affecting students), we did so with sub-
sets of the samples, including students only (1297 of
the 1319 samples) or those samples not drinking
primarily from bottled water (814 of the 1319 samples).
To assess the robustness of correlations with pH to sto-
chastic variations within the precision range of the
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measurements, we performed a computational test,
changing measured pH value of each saliva sample to a
random number within the precision range (+0.5). We
repeated this 1000 times and measured whether
reported significant correlations were still existing. For
all reported correlations, they remained in 100% of the
cases.

Distribution maps

We produced maps with distributions of various values
using shape files for Spain obtained from the GADM
database of Global Administrative Areas (http://gadm.org/
). We used the readShapeSpatial function from the R
package maptools v0.9-2 (https://cran.r-project.org/packa-
ge=maptools) which creates a Spatial DataFrame object
that can be used to plot values in different regions of a
map, and the boxed.labels function from the R package
plotrix v3.6-6 (https://cran.r-project.org/package=plotrix)
to include labels for regions on the figure.

Additional files

Additional file 1: Figure S1. Sample collection sites. Samples were
collected from 40 different schools in 30 cities across Spain. This figure
shows the locations of the cities from which the samples were collected
with the corresponding names listed on the left and the number of
samples next to it. Region names are shown in the map. (PDF 226 kb)

Additional file 2: Table S1. Questionnaire and metadata: Table of
question/variable IDs found in the other supplementary tables along with
descriptions of their values. Some questions have multiple columns as
we explored the question from multiple angles (i.e, yes/no, frequencies,
ranges of values in order to account for outliers, or grouping by
quartiles). (XLS 16 kb)

Additional file 3: Figure S2. Distributions of diversity values across all
samples. (@) Shannon alpha diversity. (b) Weighted UniFrac distances
(beta diversity). (PDF 74 kb)

Additional file 4: Table S2. Genus vs genus correlations: Table of
Pearson correlations between the relative abundances of genera among
all samples, includes only those genera present in at least 20 samples.
Values shown are Pearson correlation coefficients in those cases where
Bonferroni-adjusted p values were less than 0.05. Figures 2 and 4 show
only the 67 genera which were present in at least 1/3 of all samples
(436) for the sake of visual clarity, but this table contains values for all 141
genera that were present in at least 20 samples. The order of rows and
columns correspond to those presented in Fig. 2a and Fig. 5. (XLS 77 kb)

Additional file 5: Table S3. Kruskal-Wallis significant differences: Table
of Bonferroni-adjusted p values from Kruskal-Wallis rank sum tests
between relative abundances of genera, questionnaire responses and
other continuous metadata variables with all categorical questionnaire
responses and metadata variables. Values shown are the adjusted p
values that are less than 0.05, indicating that at least one group in
the categorical variable has a significantly different mean value than
other groups for the continuous variable. Only contains rows and
columns that have at least one such significant p value. In the case
of significant p values, groups and their directionality were then
determined by ANOVA. (XLS 38 kb)

Additional file 6: Table S4. Chi-squared tests: Table of Bonferonni-
adjusted p values from chi-squared between categorical questionnaire
responses, other continuous metadata variables, and the presence/
absence of the genera detected in this study. Values shown are the
adjusted p values that are less than 0.05, indicating that there is an
association between at least one group of each variable. This table
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only contains rows and columns that have at least one such significant p
value. In the case of significant p values, specific associations were
determined by producing association plots as described in the
"Materials and methods” section. (XLS 125 kb)

Additional file 7: Table S5. Genus vs question correlations: Table of
Pearson correlations between the relative abundances of genera and
questionnaire responses with continuous values and other metadata
variables, includes only those genera present in at least 20 samples.
Values shown are Pearson correlation coefficients in those cases where
Bonferroni-adjusted p values were less than 0.05. Only contains rows and
columns that have at least one such significant p value. (XLS 31 kb)

Additional file 8: Table S6. Question vs question correlations: Table of
Pearson correlations between all questionnaire responses with
continuous values and other metadata variables among all samples.
Values shown are Pearson correlation coefficients in those cases where
Bonferroni-adjusted p values were less than 0.05. Only contains rows and
columns that have at least one such significant p value. (XLS 25 kb)

Additional file 9: Figure S3. Distribution of oral pH. Histogram of the
pH of donors' saliva prior to sample collection. (PDF 46 kb)

Additional file 10: Table S7. Genus/question vs water value correlations:
Table of Pearson correlations between the relative abundances of genera,
questionnaire responses, and other metadata variables with measurements
of various components of tap water. Samples that primarily drank from
bottled water (505 out of 1319) at home were excluded here. Values shown
are Pearson correlation coefficients in those cases where Bonferroni-
adjusted p values were less than 0.05. Only contains rows and columns that
have at least one such significant p value. (XLS 9 kb)
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