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Abstract

environmental, and artificial in silico generated samples.

Background: Clostridiales and Bacteroidales are uniquely adapted to the gut environment and have co-evolved
with their hosts resulting in convergent microbiome patterns within mammalian species. As a result, members of
Clostridiales and Bacteroidales are particularly suitable for identifying sources of fecal contamination in environmental
samples. However, a comprehensive evaluation of their predictive power and development of computational
approaches is lacking. Given the global public health concemn for waterborne disease, accurate identification of fecal
pollution sources is essential for effective risk assessment and management. Here, we use random forest algorithm
and 16S rRNA gene amplicon sequences assigned to Clostridiales and Bacteroidales to identify common fecal pollution
sources. We benchmarked the accuracy, consistency, and sensitivity of our classification approach using fecal,

Results: Clostridiales and Bacteroidales classifiers were composed mainly of sequences that displayed differential
distributions (host-preferred) among sewage, cow, deer, pig, cat, and dog sources. Each classifier correctly identified
human and individual animal sources in approximately 90% of the fecal and environmental samples tested.

Misclassifications resulted mostly from false-positive identification of cat and dog fecal signatures in host animals not
used to build the classifiers, suggesting characterization of additional animals would improve accuracy. Random forest
predictions were highly reproducible, reflecting the consistency of the bacterial signatures within each of the animal
and sewage sources. Using in silico generated samples, we could detect fecal bacterial signatures when the source
dataset accounted for as little as ~ 0.5% of the assemblage, with ~ 0.04% of the sequences matching the classifiers.
Finally, we developed a proxy to estimate proportions among sources, which allowed us to determine which sources
contribute the most to observed fecal pollution.

Conclusion: Random forest classification with 165 rRNA gene amplicons offers a rapid, sensitive, and accurate solution
for identifying host microbial signatures to detect human and animal fecal contamination in environmental samples.

Keywords: Microbial source tracking, 16S rRNA gene, High-throughput sequencing, Clostridiales, Bacteroidales, Random

forest classification

Background

In urban areas downstream from mixed-land use water-
sheds, fecal contamination originates from multiple
sources including sewage released from pipe-infrastruc-
ture, upstream agricultural animals, domestic pets, and/or
wildlife. Identifying the contamination source is critical for
managing public health risk, but sorting out pollutant con-
tributors is difficult. The specific architecture of the gut
microbiome in humans and animals could be useful for
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this purpose. As a result of the co-evolution between hosts
and their gut microbiota driven by shared dietary regimes
or host physiology [1-4], hosts have non-random and dis-
tinct gut microbial community structures [5-7]. These
differences can serve as signatures for fecal sources in
environmental samples with complex microbial commu-
nity mixtures [8].

Monitoring for traditional fecal indicator bacteria such
as Escherichia coli and enterococci does not provide
information about contamination sources as these indi-
cators are found indiscriminately in warm-blooded ani-
mals [9]. Yet, source information is essential for risk
mitigation since gastrointestinal illnesses associated with
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exposure to contaminated waters can vary according to
the host source and the pathogens they harbor. For
example, the risks associated with human or cattle feces
appear to be higher than with pig or avian feces [10, 11].

Multiple studies have used high-throughput sequen-
cing of microbial community composition and advanced
computational approaches to identify contamination
sources in different environments, including indoor hab-
itats [12—15] and surface waters [6, 7, 16—20]. Source-
Tracker [12], a state-of-the-art Bayesian classifier, is the
primary platform that has been used to determine mi-
crobial source contamination in mixed-assemblage or
“sink” environmental samples [6, 7, 16—20]. Although
SourceTracker could be used for fecal source identifica-
tion, each new investigation requires all source and sink
samples of interest to be re-analyzed de novo. This setup
requires investigators to either generate microbial source
(e.g., human and animal fecal samples) sequence data or
mine databases for appropriate information to pair with
their environmental samples, decreasing its feasibility to
be used widely. We propose an alternative approach to
classify fecal sources using random forest. Random for-
est is one of the most accurate learning algorithms for
handling large and noisy datasets [21]. Unlike Source-
Tracker, the classifiers generated by random forest can
be used later to rapidly classify new data rather than
re-analyzing the entire dataset. Random forest is also a
model that can handle unbalanced sample distributions
and is less prone to overfitting, which produces unbiased
classifiers [22]. This machine learning approach has been
used to classify body site, subject, and diagnoses using
human microbiome datasets [23], but performance has not
been evaluated for fecal source identification purposes.

The majority of source identification studies examine
the entire bacterial community structure [6, 7, 16-20].
However, focusing on specific taxa may be sufficient for
predictions [24, 25]. The two bacterial groups Clostridiales
and Bacteroidales are ideal targets since they are highly
abundant in the gastrointestinal tract of animals and
humans [4], and contain members that show distinct host
distribution patterns [8]. In this study, we developed a
random forest-based classification approach to perform
fecal source identification using microbial community
data. We first built reference sequence databases for eight
source categories using amplicon sequences generated
from the V6 and V4V5 regions of the 16S rRNA gene:
human (sewage), cat, cow, dog, deer, pig, pet (cat and dog),
and ruminant (cow and deer). Using these fecal source
samples, environmental water samples, and in silico
artificial assemblages, we then evaluated the performance
of Bacteroidales and Clostridiales classifiers to identify fecal
contamination sources. Our benchmarks included assess-
ment of prediction accuracy, repeatability, and sensitivity
of each classifier for each animal group.
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Methods

Random forest application to source tracking

Theory

Random forest, developed by Breiman [26], is an ensem-
ble learning method, i.e., a strategy that aggregates many
predictions to reduce the variance and improve robust-
ness and precision of outputs [27]. Particularly well
adapted to perform classification analysis [28], this
powerful statistical approach has been used successfully
in a wide range of applications, including source identifi-
cation using PCR markers for fecal pollution and anti-
biotic resistance profiles [29, 30]. This approach appears
to be suitable for source identification using sequence
data because it can (i) relatively quickly analyze large
datasets, e.g., sequencing datasets, (ii) provide very high
classification accuracy of source, and (iii) estimate the
importance for each predictor, ie., representative
sequence.

Random forest classification algorithm is based on the
construction of multiple decision trees according to the
bagging approach: each tree is constructed independ-
ently from a bootstrap sample of the entire dataset. In
addition, to avoid overfitting of the model, each decision
point, so-called node, is split using the best abundance
threshold among a subset of predictors randomly se-
lected rather than using the best among all representa-
tive sequences. The best split is based on the Gini
criterion, which for each node decreases impurity as
much as trees grow. To classify an unknown sample,
new data are mapped along the trees built to train the
model. Each tree gives a classification, so-called the vot-
ing tree. The majority votes among all the tree outcomes
are taken to assess the prediction.

To evaluate the accuracy of classifications, an error rate
of the global prediction, so-called “out-of-bag error rate”,
is estimated. For that, during tree growth, the bootstrap
sample repetition omits about one-third of the training
samples, constituting the out-of-bag samples. Considered
as new unknown samples, out-of-bag samples are classi-
fied among the different sources using the majority vote.
For each model, a misclassification rate, i.e., out-of-bag
error rate, is assessed by aggregating the cross-validation
results between the predictions and the true sources.

The mean decrease in Gini value identifies the most
reliable and relevant predictors to perform classifications.
One value is associated with each individual representative
sequence, reflecting the reliability to split the nodes. It is
calculated by summarizing all the decreases in impurity
scores associated with a given representative sequence,
which is then normalized by the number of trees.

Source identification application
In this study, the random forest classification algorithm
was used through two distinct steps. First, a classifier
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was built for each fecal source (Fig. 1). A classifier is
composed of the representative sequences that are the
most reliable to discriminate one source from another.
These representative sequences are selected by running
random forest classifications to compare samples from
a given source to samples from all the other sources, ie.,
the samples are divided into two classes: samples that -
belong to source X and samples that do not belong to
source X. Second, for each source, the random forest
algorithm is trained with the respective representative
sequences selected in the first step. To classify an
unknown sample, only the sequences matching the
representative sequences used in a classifier are selected
and their relative abundance is calculated. For each
classifier, two outputs are possible. An unknown sample
can be classified as “contaminated by source X” or “not
contaminated by source X”. The prediction is assessed
using the majority vote described previously. Roughly, it
corresponds to the comparison of the sequence relative
abundances between the classifier and the new samples
(Fig. 2).
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Data collection

A total of 82 animal fecal samples, including 10 cats, 17
cows, 19 dogs, 11 deer, 16 pigs, 2 geese, 3 rabbits, and 4
raccoons, were collected between 2008 and 2016 in the
USA, which included 2 cats from Australia. Samples were
transported in sterile tubes and stored at — 80 °C until DNA
extraction. To characterize human fecal contamination, we
used 17 sewage influent samples from seven cities in differ-
ent states in the USA collected in a former survey between
2012 and 2013 [31], and three sewage influent samples
from Reus in Spain [32] and Salvador in Brazil [33].
Finally, DNA extracted from 25 freshwater samples
collected in stormwater discharges, rivers, and Lake
Michigan were used in classifier analyses [34, 35]. More
details of sampling collection methods are reported in
Additional file 1.

Fecal indicator bacteria enumeration

Densities of fecal indicator bacteria were evaluated in
freshwater samples using the USEPA standard methods
1603 and 1600 for Escherichia coli (E. coli) and
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Fig. 2 Schematic flow chart to characterize source-specific fecal contamination within an unknown environmental sample. (a) Determination of
the bacterial profile of an environmental sample. (b) Selection of sequences in common with the classifier. (¢) Comparison of the relative
abundance of the selected sequences with the classifier. An unknown sample is considered contaminated by a source if the relative abundance
for the majority of the selected sequences is similar to the one of the classifier

enterococci, respectively [36, 37]. For each sample,
between 1 and 100 mL of water were filtered through
a 0.45-pm pore size nitrocellulose filter (Millipore,
Billerica, MA). Filters were incubated for 24 h on
modified membrane-thermotolerant E. coli or mem-
brane Enterococcus indoxyl-D-glucoside agar plates
(Becton Dickson, USA).

Sample processing and DNA extraction

For fecal samples, bacterial DNA was extracted from ap-
proximately 0.2 g of material using QIAmp DNA stool
mini kit according to the manufacturer’s instructions
(Qiagen, USA). A total of 25 mL for sewage influent and
200 or 400 mL for freshwater samples were filtered onto
0.22-pum mixed cellulose ester filters with a 47 mm diam-
eter (Millipore, USA). DNA from filters was then extracted
using the FastDNA spin kit for soil (MP Biomedicals, USA)
according to the manufacturer’s instructions. One

modification of this protocol was applied: Cells were mech-
anically lysed using a MiniBeadBeater-8 cell disruptor
(BioSpec Products, USA) for 1 min and 2 min at room
temperature for sewage and freshwater samples, respect-
ively. DNA was stored at —20 °C until it was analyzed.
DNA concentration was determined using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, USA).

Real-time quantitative PCR analysis

Three human-associated bacterial qPCR assays were per-
formed on freshwater samples: sewage Lachnospiraceae,
i.e.,, Lachno2 [38] and Lachno3 [39] and human Bacter-
oides combining the HF183F forward primer [40] with
the reverse primer and probe from Kildare et al. [41].
Freshwater samples were quantified using a StepOne
Plus™ Real-Time PCR System Thermal Cycling Block
using Tagman hydrolysis probe chemistry with 2X Tagq-
man’® Gene Expression Master Mix (Applied Biosystems;
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Foster City, CA). For each run, triplicate standard curves
were generated using a linearized plasmid containing the
target sequence. The slope of the standard curves varied
between - 3.312 and - 3.404 for Lachno2, - 3.394 and -
3.457 for Lachno3, and -3.195 and - 3.369 for human
Bacteroides. A correlation coefficient higher than 0.995
was observed for each assay standard curve. Amplifica-
tion efficiencies ranged from 94.66 to 105.59%. Each
method had limit of quantification of 15 gene copies per
reaction.

16S rRNA gene sequencing and library construction
Amplicon libraries were constructed at the Josephine
Bay Paul Center at the Marine Biological Laboratory
(Woods Hole, MA, USA) using the MiSeq Illumina®
platform for the V4 to V5 hypervariable region and
HiSeq or NextSeq Illumina® platforms for the V6 hyper-
variable region. Details for amplicon library construction
and sequencing procedures for the V4 to V5 regions are
described in Morrison et al. [42], and for the V6 region
in Eren et al. [43]. Reads were trimmed using cutadapt
v1.14 [44], allowing for four mismatches in the primer
sequence. Forward and reverse reads were merged using
PEAR v0.9.10 [45] using the default parameters. Using
Mothur 1.39.5 [46], assembled reads were discarded if
they contained ambiguous bases, had more than eight
successive homopolymers, or had a length smaller/
higher than 5% of the V4V5 median (372 bp) and 10% of
the V6 median (60 bp). Sequences were taxonomically
assigned based on the best match in a Global Alignment
for Sequence Taxonomy (GAST) process [47] and the
2013 release Greengenes database [48, 49]. Only se-
quences assigned to Clostridiales and Bacteroidales were
selected for further analysis.

A minimum entropy decomposition (MED) analysis
was performed for each bacterial group assemblage
using the oligotyping pipeline version 2.1 [50]. MED
uses nucleotide entropy (nucleotide variant variability)
to distinguish along DNA sequence differences in nucle-
otides originated from true genetic variation among or-
ganisms from noise due to sequencing errors. MED
partitions DNA sequences into amplicon sequence vari-
ants (ASVs) according to the position in the DNA se-
quence with the highest entropy. This step iteratively
lasts until each final ASV satisfies the maximum entropy
criterion. ASVs that do not meet the minimum substan-
tive abundance (M) criterion were discarded. M was set
to N/10,000 for V4V5 and N/50,000 for V6, where N is
the total number of sequences in the dataset.

Random forest classifications

To create the classifiers, 100 random forests constituted
of 10,000 trees were computed using the default settings
of the “randomForest” function implemented in the
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randomForest R package [51]. Mean decrease Gini
values were averaged for each ASV among the 100 ran-
dom forest replicates. The ASVs with the first 200 high-
est mean decrease Gini values were plotted in a scree
plot. ASVs with mean decrease Gini values above the
breakpoint curve were chosen to be part of the classifier.
Breakpoints were estimated using the “breakpoints”
function included in the strucchange R package [52].
Then, the relative abundance of the selected ASVs was
re-calculated. To classify unknown samples, random for-
est algorithm was first trained using the re-calculated
relative abundance. For that, 100 random forest repli-
cates of 1000 trees each were performed using the de-
fault settings of the "randomForest" function. Replicates
were then pooled using the “combine” function. Classifi-
cation of unknown samples was assessed by extracting
the probability of the voting trees using the “predict”
function on trimmed and merged sequences matching
the classifiers’ ASVs. For the ASVs not detected in the
unknown sample, a relative abundance of zero was
settled.

For each unknown sample, a proxy estimating the con-
tribution of contamination of the different sources was
assessed by calculating the proportion of sequences
that belong to a given classifier among the total number
of sequences from all classifiers.

Classification of animal fecal and sewage samples
Seventy-six animal fecal and sewage samples were used
to build the V6 classifiers. The predictions were tested
on 23 test samples from varied animal fecal material and
sewage influent.

Classification of contamination in freshwater samples
Freshwater samples were classified using random forest
algorithm as described above. A total of 25 samples were
used for V6 classifier assessment.

Classification of artificial bacterial assemblages

The sensitivity of random forest classifications was eval-
uated using artificial bacterial assemblages generated in
silico. Defined sequence proportions from fecal and en-
vironmental samples that were not used to train the
model were combined to create a matrix of artificial bac-
terial community mixes (Additional file 2). Sequences
from each sample were selected by randomly subsamp-
ling (99 repeats), using the “rrarefy” function included in
the vegan R package [53], the entire bacterial community
to the desired total sequence count needed for the artifi-
cial community mixes. A freshwater sample, where the
fecal indicator bacteria were not detected, was used to
generate the artificial community. For example, to gener-
ate the artificial sample 1, we mixed 1% of fecal
sequences from cow and deer, 5% from sewage, and 93%
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from freshwater samples. Fecal source sequences in
these in silico generated mixes ranged from 0.01 to 20%
of the total sequence count.

V4V5-V6 classification comparison
Performance of the classifiers was also tested on V4V5
region of the 16S rRNA gene amplicons and compared
with the V6 classifier outputs. To make a direct com-
parison, classifiers for V4V5 and V6 were built inde-
pendently using 33 animal fecal and sewage samples
sequenced in both regions. Prediction accuracy was eval-
uated using an additional 12 test samples sequenced in
both regions (see Additional file 1 for more details).

All analyses were conducted using the statistical envir-
onment R version 3.3.2 [54].

Robustness of the predictions

Accuracy and robustness of the random forest classifica-
tions were estimated by repeating the training and the
prediction of the “unknown samples” steps 100 times
and computing the mean and the standard deviation of
voting tree probabilities.

Results

Development and attributes of the V6 classifiers

Six fecal sources were used to create the classifiers, in-
cluding samples from 9 cats, 15 cows, 9 deer, 15 dogs,
14 pigs, and 14 sewage samples to represent humans.
Overall, 48% of the V6 sequences were assigned to Clos-
tridiales and 35% to Bacteroidales in the animal fecal
samples. In sewage samples, Clostridiales and Bacteroi-
dales represented on average of 12% and 13% of the total
sequences, respectively. For both orders, the MED ana-
lysis retained 90% of the total sequences, i.e.,
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21,965,364  Clostridiales sequences and 15,900,401
Bacteroidales sequences. These sequences were clus-
tered into 2724 amplicon sequence variants (ASVs)
for Clostridiales and 1479 ASVs for Bacteroidales.
The bacterial assemblage for both bacterial groups
was more consistent in the sewage samples than in
the animal fecal samples (Bray—Curtis (BC) dissimilar-
ity index, Clostridiales: BC,nimal(intra sources) = 69 * 19%,
BCoewage = 29 = 7%; Bacteroidales: BCipimal(intra sources)
=74+ 23%, BCgeyage = 37 £ 15%, Additional file 3).

One classifier was built for each source by selecting
the sequences with the highest mean decrease in Gini
values. In addition to the six sources investigated, a “Pet”
and a “Ruminant” classifier were built by merging the
Cat/Dog, and Cow/Deer samples, respectively. These
two extra sources were created after preliminary investi-
gations, which revealed high out-of-bag error rate within
Cat, Dog, Cow and Deer samples, resulting from shared
ASVs between sources. About the same number of ASVs
were selected within the classifiers for both bacterial
groups, with an average of 69 and 55 ASVs for Clostri-
diales and Bacteroidales, respectively (Additional file 4).
Overall, ~ 17% of the total sequences within each bacter-
ial group comprised the classifiers (Fig. 3). However, for
the animal sources, the proportion of sequences belong-
ing to the different classifiers was higher for Bacteroi-
dales compared with Clostridiales (Fig. 3). In addition, a
relatively low proportion (30%) of the unique ASVs
comprising the classifiers were found exclusively in a
single fecal source, and these were at low abundance,
except for the Cat—Clostridiales/Bacteroidales and
Dog-Clostridiales classifiers, which had no exclusive
ASVs (Additional file 4). This result indicates that a
large proportion of ASVs selected in the classifiers
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were source-preferred (Fig. 4a), ie., ASVs were
common to multiple sources, but with distinct abun-
dance patterns for specific sources. Differences be-
tween sources in the assemblage of the ASVs selected
in the classifiers are visualized on Fig. 4b and
Additional file 5. Despite the intra-source variability,
distinctive inter-source patterns allowed for discrimin-
ation of sample sources.

Classifications of animal fecal and sewage samples

The specificity of predictions was evaluated on 14 ani-
mal and sewage samples collected from different loca-
tions, and not used to create the V6 classifiers
(Additional file 1). Overall, predictions obtained from
Clostridiales and Bacteroidales classifiers were compar-
able (Table 1). Both bacterial order classifiers correctly
identified the fecal signature in cow, deer, pet, pig,
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ruminant, and sewage. Misclassifications occurred for
the Bacteroidales classifiers on samples Cat_PU15 and
Dog_PU17, but when considered as the pet group, they
were correctly classified. The proportion of ASVs match-
ing with each source classifier within the test samples
was significantly higher for the Bacteroidales classifiers
than the Clostridiales classifiers (Mann—Whitney, W =
228.5, ncyo, =18, np,c =16, P=0.004), suggesting more
shared signature sequences in Bacteroidales.

The specificity of predictions was also tested on nine
animal fecal samples from hosts not used as classifier
sources, i.e, goose, rabbit, and raccoon. In general,
samples were not classified to the eight fecal sources
studied (Table 1). Five samples were misclassified as a
“Dog” and/or “Pet” by either Clostridiales and Bacteroi-
dales classifiers, but not by both bacterial group classi-
fiers at the same time.
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Table 1 Prediction of the fecal source contamination for animal
fecal and sewage samples

Unknown sample ID Clostridiales Bacteroidales
Cat_PU15 Cat® (88)-Pet? (100) Pet® (90)
Cow_PU75 Cow?® (68)-Ruminant® Cow?® (93)-

(12) Ruminant® (97)
Deer_PU11 Deer® (93)-Ruminant® Deer® (100)—

(16) Ruminant® (100)
Dog_PU12 Dog? (22)-Pet? (100)  Dog® (64)-Pet®

(100)

Dog_PU17 Dog® (86)-Pet® (100)  Cat® (7)-Pet® (99)
Pig_PU156 Pig® (48) Pig® (99)
Pig_PU159 Pig® (46) Pig® (99)

Cow_PU70&Deer_PU91 Cow? (38)-Deer®

(29)-Ruminant® (10)

Cow?® (88)-Deer?
(12)-Ruminant®

(100)
Sewage_Duncansville_161 Sewage® (83) Sewage® (93)
Sewage_Duncansville_52 Sewage® (86) Sewage® (97)
Sewage_Milwaukee_JI199 Sewage® (85) Sewage® (94)
Sewage_Milwaukee_55200 Sewage® (87) Sewage® (96)
Sewage_ReusSpain_224 Sewage® (88) Sewage” (99)
Sewage_ReusSpain_80 Sewage® (95) Sewage® (99)

OtherSource_Goose_PU126 - -
OtherSource_Goose_PU97 Pet® (64) -
OtherSource_Rabbit_PU26 - -
OtherSource_Rabbit_PU27 - -
OtherSource_Rabbit_PU9 - -

OtherSource_Raccoon_PU100 Dog? (85)-Pet®

(72)
OtherSource_Raccoon_PU101  Pet® (98) -
OtherSource_Raccoon_PU102 Dog® (59)-Pet® (71) -
OtherSource_Raccoon_PU52 - Dog“ (91)

Values representing the proportion of sequences that belong to a given
classifier among the total number of sequences from all classifiers

Index representing the percentage of the vote by the trees higher than the
majority (50%)

PIndex representing the percentage of the vote by the trees between 45
and 50%

“Index representing the percentage of the vote by the trees between 40 and 45%

Classification of environmental samples

The accuracy of predictions of human fecal contamin-
ation using random forest classification was assessed
using 25 freshwater samples, 14 of which had evidence
of sewage contamination based on qPCR detection of
human-associated fecal indicators (Table 2). Among
these 14 contaminated freshwater samples, Clostridiales
and Bacteroidales classifiers identified a human bacterial
signature in 10 and 12 samples, respectively. Nine sam-
ples (64%) were classified correctly by both bacterial
group classifiers. No sample was classified with fecal pol-
lution from a non-human source.
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The samples classified as human-contaminated shared at
least 39 and 45% of their unique sequences with Clostridiales
and Bacteroidales sewage classifiers, respectively, while for
example, the unclassified sample FMRMNG60_100, with evi-
dence of human contamination by qPCR, shared only 31
and 40% of its unique sequences with the respective bacterial
groups. Other stormwater samples with high levels of E. coli
and enterococci, but low or inconclusive qPCR human
markers, likely contained primarily non-human fecal con-
tamination but were potentially mixed with low levels of
sewage. In these cases, classification using random forest was
also inconclusive. The majority of river and harbor samples
with medium and high levels of human qPCR markers were
correctly classified as having sewage contamination, with ex-
ceptions being cases where only one of the classifiers (Clos-
tridiales or Bacteroidales) indicated the presence of sewage.
Although Gap_53 had a low level of fecal contamination,
with no evidence of human contamination using qPCR
markers, the Bacteroidales classifier identified a sewage sig-
nature. All freshwater samples with no evidence of fecal pol-
lution were correctly determined to have none of the
examined fecal sources.

Classification of the artificial bacterial assemblage

To evaluate the sensitivity and accuracy of random forest
classifications, 37 in silico artificial bacterial assemblages
were generated (Fig. 5 and Additional file 2). These tests
indicate (set 1, Fig. 5) that both bacterial group classifiers
could detect the sewage signature in complex samples
with animal sources when at least 0.5% of the total bacter-
ial assemblage was composed of sewage sequences; in this
case, 0.05% of the total sequences match the sewage clas-
sifiers (Additional file 2). Further testing of contamination
levels, ie., 1, 0.5, 0.1, and 0.01% of sequences, from each of
the animal fecal sources, revealed similar sensitivity thresh-
olds, that is, sources were correctly classified when se-
quences from the fecal source comprised 0.5% of total
assemblage (set 2, Fig. 5) and approximately 0.001 to 0.06%
of sequences in the total assemblage matched the classifiers
(set 2 Additional file 2). The Cat_PU15, Dog PU12, and
Pig_159 samples did not follow this trend. In set 3 of the in
silico samples, we found the classifiers could identify many
contamination sources simultaneously when the sequences
from these sources were pooled (Fig. 5). Across all tests, the
“Cat”, “Dog”, and “Pet” signatures were the most difficult to
predict (lowest accuracy) and generally required higher
levels of contamination (i.e. >10% of source sequences
present in the artificial assemblages) for accurate contamin-
ation prediction.

For sets 1 to 4 (Fig. 5 and Additional file 2), the
expected proportion of source contaminations were cor-
related significantly with the relative proportion of
sequences matching the classifiers among sequences be-
longing to all classifiers. Therefore, these proportions could
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Table 2 Random forest classification of 25 freshwater samples with different level of fecal contamination

Random forest classifications'

Environmental Type of sample Major type of

Level of fecal

Level of gPCR Clostridiales Bacteroidales

sample ID contamination indicator bacteria® human marker*

FMRMN73_092 Stormwater HC High High Sewage® (98) Sewage® (99)
FMRMN73_29 Stormwater HC High High Sewage® (84) Sewage® (89)
FMRHC33_42 Stormwater HC High Medium - Sewage® (100)
FMRMN60_100 Stormwater HC High High - -
FMRMN29_108 Stormwater HC High High Sewage® (91) Sewage® (95)
MKE_162 River HC High Medium Sevvageb (85) Sewage® (98)
MNE_163 River HC Medium Medium Sevvageb (57) Sevvageb (86)
KK_160 River HC Medium High Sewage* (77) Sewage® (99)
MNE_159 River HC Medium Medium Sewage* (68) Sevvageb (98)
MKE_158 River HC Medium Medium - Sevvageb (98)
Gap_51 Harbor HC Medium High Sewage® (82) Sewage® (97)
Junction_54 Harbor HC Low Medium - Sevvageb (78)
Gap_55 Harbor HC Low Medium Sewage® (55) Sewage® (94)
Junction_52 Harbor HC Low Medium Sewage* (64) -
FMRMN53_26 Stormwater NHC High Inconclusive - -
SHC12A_10 Stormwater NHC High Inconclusive Sewage® (90) -
SMN17A_20 Stormwater NHC High Inconclusive - Sewage® (100)
FMRHC43_43 Stormwater NHC High Not detected - -
FMRHAC22_38 Stormwater NHC Medium Not detected - -

Gap_53 Harbor NHC Low Not detected - Sewageb (99)
1_mile Lake NC Not detected Not tested - -

2_miles Lake NC Not detected Not tested - -

DocIn_155 Lake NC Not detected Not tested - -
DocMid_156 Lake NC Not detected Not tested - -
DocOut_157 Lake NC Not detected Not tested - -

HC human contamination (fecal indicator bacteria and human marker detected), NHC non-human contamination (fecal indicator detected and human markers not
detected or inconclusive reflecting potential for low levels of human contamination), NC not fecal contaminated (fecal indicator not detected)

*Values in parentheses represent the proportion of sequences that belong to a given classifier among the total number of sequences from all classifiers

*Density levels of the fecal indicator E. coli and enterococci: not detected, 0; low, > 0-250; medium, 250-1000; high, > 1000 CFU/100 mL

*Quantification levels of the markers human Bacteroides, Lachno2, and Lachno3 when tested: Not detected, 0; not quantifiable, > 0-15; low, > 15-100; medium,
100-10,000; high, > 10,000 gene copies/100 mL. In case of divergence between the human Bacteroides, Lachno2, and/or Lachno3 human markers, results were

considered to be inconclusive. See Additional file 1 for details

“Index representing the percentage of the vote by the trees higher than the majority (50%)

PIndex representing the percentage of the vote by the trees between 45 and 50%
‘Index representing the percentage of the vote by the trees between 40 and 45%

be used as a proxy for the relative magnitude of contamin-
ation from individual sources. This correlation was stronger
for Bacteroidales (Spearman’s rank correlation coefficient
Rs=0. 790, n=59, P<0.001) than Clostridiales (Rs=0.
546, n =54, P<0.001). The proxy we developed could not
estimate the proportion of fecal contamination from
sources that were not used to build the classifier (e.g., see
Fig. 5 tests 13 and 14).

Comparison of the V4V5-V6 classifications
Random forest classifiers were also built and tested
using the V4V5 hypervariable region of the 16S rRNA

gene. Predictions were compared with new V6 classi-
fiers created from a subset of the original sample set
and with the same samples used to generate the
V4V5 classifiers. Characteristics of the classifiers are
detailed in Additional file 4. Both V4V5 and V6
classifiers accurately identified most of the fecal sig-
natures (Table 3). However, as observed with the V6
classifier built with a more extensive sample set,
some misclassifications were detected for the “Cat”
and “Dog” sources. Rabbit_PU26, a source that was
not present in any classifier, was correctly not asso-
ciated with a fecal source except for the V4V5
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Fig. 5 Random forest classifications performed on 16 artificial bacterial assemblages generated in silico. Red dots show the proportion of
sequences within the total assemblage belonging to a source (1 dot=1%). The percentage listed in the freshwater column corresponds to the
proportion of sequences from the non-contaminated freshwater sample within the total assemblages (per sample, red dots + freshwater
percentages = 100%). Bold values associated with red dots indicate the proportion of contamination expected for the different sources.
Predictions of the Clostridiales and Bacteroidales classifications are indicated in the white rows. Green circles indicate the classifier detected the
source signature in the sample. Orange circles indicate the classifier did not detect the source signature when it was expected. Blue circles
indicate the classifier did not detect a signature when a source not included in the classifiers was included in the assemblage. The proportion of
sequences matching the source classifier is associated with the green circles. See Additional file 2 for more details

Clostridiales classifier, in which it was classified as a
Pet source. Both bacterial group classifiers estimated
comparable proportions of source contamination be-
tween the V4V5 and V6 regions (Mann—Whitney,
Clostridiales: W =120, n=27, P=0.159; Bacteroi-
dales: W =96, n=24, P=0.173).

Robustness of predictions

The robustness of the predictions, i.e., the probability
generated by random forest voting trees, was assessed by
repeating 100 times the random forest training and clas-
sifications of all animal, sewage, and freshwater samples
described above. For the V6 analysis, the results
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Table 3 V4V5 and V6 classifier predictions for animal fecal, sewage, and freshwater samples
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Unknown sample 1D V4V5 region V6 region
Clostridiales Bacteroidales Clostridiales Bacteroidales
Cat_PU15 Pet® (9) Cat® (86)-Pet® (84) Cat® (70)-Pet® (72) Pet® (1)
Cow_PU75 Cow® (29)-Ruminant® Cow? (88)-Ruminant® (97) Cow? (21)-Ruminant® (53) Cow? (76)-Ruminant®
(99) 97)
Deer_PU11 Deer® (59)-Ruminant® Deer?® (100)-Ruminant® (100) Deer® (36)-Ruminant® (52) Deer?® (93)-Ruminant®
92) (100)
Dog_PU17 Dog?® (65)-Pet?® (46) - Dog? (94)-Pet?® (91) Cat® (5)-Pet® (56)
Pig_PU159 Pig® (89) Pig® (97) Pig® (27) Pig® (96)
Cow_PU70&Deer_PU91 Ruminant® (99) Cow?® (77)-Deer® (20)-Ruminant®  Cow?® (10)-Deer® (5)-Ruminant®  Cow?® (67)-Ruminant®

(%6)
Sewage_Duncansville_52 Sewage® (90)
Sewage_Milwaukeell_199 Sewage® (76)
Sewage_MilwaukeeSS_200 Sewage® (94 Sewage® (81)
Sewage_ReusSpain_224 Sewageb (99)
Sewage_ReusSpain_80 Sewageb (99)

OtherSource_Rabbit_PU26 Pet® (75) -

(44) (100)

Sewage® (89 Sewage” (86)

Sewage” (88 Sewage® (68)
)
Sewage® (97)

)
)
Sewage® (87)
Sewage® (86)

)

(

(
Sewage® (80

(

(

Sewage® (95)

Values in parentheses represent the proportion of sequences that belong to a given classifier among the total number of sequences from all classifiers
Index representing the percentage of the vote by the trees higher than the majority (50%)

PIndex representing the percentage of the vote by the trees between 45 and 50%
‘Index representing the percentage of the vote by the trees between 40 and 45%

indicated good reproducibility of the predictions, with
an average standard deviation across the trials of 0.05%
and 0.04% for Clostridiales and Bacteroidales, respect-
ively, and a maximum of 0.18%. No significant difference
in prediction robustness was observed between the two
bacterial groups (Mann—Whitney, W =74,420, n="768,
P=0.821). Similar standard deviation values were
obtained for the V4V5-V6 comparison classifiers, with
an average of 0.06% for both V4V5 and V6 classifiers
(maximumygys = 0.17%, maximumyg = 0.16%). No sig-
nificant difference was observed between the two re-
gions (Mann—Whitney, W= 18,384, n = 385, P =0.965).

Discussion

Clostridiales and Bacteroidales community assemblages
provide a signature of sewage and animal fecal
contamination

Despite the incredible diversity within the microbial
world, evolutionary forces predominantly favored mem-
bers of the Clostridiales and Bacteroidales orders in the
gut of animals and humans (see reviews [2, 55]). Within
each of these fecal bacterial group assemblages, we
observed reliable patterns that discriminated host
sources. This signal was preserved despite variation
among individual animals. Further, host patterns were
observed across multiple taxonomic levels: While our re-
spective classifiers included sequences from either Clos-
tridiales or Bacteroidales, preliminary investigations
targeting Bacteroidaceae, Lachnospiraceae, Prevotella-

ceae, or Ruminococcaceae individual family level

classifiers showed relevant bacterial patterns between
hosts (Additional file 6). Similar observations were also
found when focusing solely on the genus Blautia [5].
Taken together, these results highlight the fractal nature
of gut microbial communities, i.e., similar patterns at in-
creasingly smaller scales of the gut microbiome. The
community differentiation among hosts stems from (i)
traits conserved across broad taxonomic groups and
(ii) selection within closely related microbial genera/
species for members that are specialized for a particu-
lar host niche [4, 56, 57].

In this work, we focused on Clostridiales and Bacteroi-
dales and ignored the remaining community data. This
taxonomically narrow focus on the two most common
gut-associated groups removes the influence of large
cross-phylum shifts in the bacterial community while
providing fecal source identification redundancy. Host
diet and/or transient bacteria can cause changes in gut
microbiota composition that are not typical of the host
species in general [58, 59]. For example, the ingestion of
Lactobacillus strains can increase temporarily their
recovery in fecal samples or lead to phylum-level domin-
ance shifts in the community (see review and references
therein [58]). The concept that population shifts in re-
sponse to environmental gradients are standardly
assessed within species has been reported previously, in-
cluding in macro ecology [60, 61].

Major shifts in bacterial assemblages may also occur
during sample processing or sequencing, where freezing,
duration of storage, choice of DNA extraction method,
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or choice of primers inflated the recovery of certain mi-
crobial phyla leading to an important shift in bacterial
phylum-level ratios, such as Firmicutes-to-Bacteroidetes
abundance [62—-66]. In general, it is believed that there is
more consistency in sample processing recovery among
more closely related bacterial groups due to their similar
cell membrane properties. Overall, classifiers with a
narrow taxonomic focus may be less influenced by extra-
neous factors.

Random forest classifiers are representative of host
groups

A relatively small number of unique ASVs, representing
a moderate proportion of the Clostridiales and Bacteroi-
dales assemblages, were selected by random forest as
the bacterial signature of the different fecal sources. The
classifiers contained a few unique ASVs that were exclu-
sive to a source; most ASVs were host-preferred (70%),
ie, shared with other sources but with differential
abundance patterns. This result supports our previous
findings, highlighting that bacterial lineage abundances
were more important than presence/absence patterns for
discriminating sources [5, 35].

Random forest was effective in retrieving differential
bacterial host signatures between the sources investi-
gated, suggesting (i) an adequate number of samples
were analyzed to provide a good coverage of the host
group in the classifiers, and (ii) there is consistency in
the bacterial signatures within each of the sources inves-
tigated. The effectiveness of random forest was reflected
in the low out-of-bag error rates, which indicated the
degree of coverage of the host groups. These low values
were observed even by training the classifiers using on
average as few as ten animal fecal/sewage samples. This
result suggests that random forest is sensitive enough to
identify, with a small number of samples, relevant host
bacterial group patterns. However, it would be pertinent
to assess the out-of-bag error rates and the accuracy of
the predictions using samples collected outside the USA,
since geographically related environmental factors have
been observed to affect host animal fecal microbiomes,
and thus source identifications [67]. Additionally, the
creation of classifiers with samples collected from dis-
tinct locations could also expand and provide more geo-
graphic and host group coverage. We also note in the
V4V5 and V6 classifier comparison, where less samples
were used to train the classifiers, the out-of-bag error
rates were higher and the number of accurate classifica-
tions was lower.

The sewage pattern was highly consistent among cities
used to build the classifiers. We previously showed that
sewage is an aggregate signal from human populations,
and this signal does not vary much across the USA [31].
This observation appears to extend to regions outside
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the USA as the sewage signature was found in geograph-
ically distant samples collected in Spain. Moreover, the
classifiers properly detected the human signature in a
large number of environmental samples with evidence of
human fecal contamination as detected by PCR-based
markers. However, the sewage signal for some samples,
notably stormwater samples, was not detected when
sewage contamination was thought to be present based
on human fecal marker assays. In these samples, the
contamination may originate from a few individual
humans, which presents a highly variable fecal bacterial
signature compared to the integrative signature in sew-
age. This observation supports previous findings in
which human fecal indicators detected by qPCR in
stormwater samples were inconsistent [20]. The storm-
water samples may be mainly contaminated by urban
wildlife or other uncharacterized fecal sources. Inconclu-
sive qPCR and random forest classifications suggest
either the sources responsible for the fecal contamin-
ation share bacterial community members with humans
or very low levels of human fecal pollution are present,
but could not be verified. In either case, the sequence
data did not resolve the inconclusive qPCR results. No
other fecal animal sources were detected in the environ-
mental samples studied. New classifiers of urban animals
that contribute to runoff may be necessary to further de-
lineate sources of fecal pollution in stormwater.

Random forest classification: a powerful source
identification tool

This study highlighted the suitability of random forest
classification approach to perform fecal source identifi-
cation using 16S rRNA gene amplicons. Targeting the
V6 hypervariable region provided enough variability in
bacterial community composition between hosts to
properly classify the source of fecal contamination, with
only a few false-positive pet signatures detected. Besides
the high accuracy classification, random forest presents
the advantage that the addition of new samples in a clas-
sifier or the creation of new source classifiers is relatively
simple. Hence, random forest can be considered as a
scalable and extensible model. As highlighted by Statni-
kov et al. [23], the creation and training of classifiers are
not impacted by the presence of a few poorly sequenced
samples (data not shown). Moreover, once the classifiers
are created, the training of the classifiers with a subset
of the data and the classification of unknown samples
takes a few seconds and does not need important com-
puting resources.

Unlike the widely used microbial source tracking tool
SourceTracker [7, 16, 20], random forest classification
cannot estimate the proportion of uninvestigated
sources. However, the proxy we developed allowed us to
estimate the proportions of fecal contamination among
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the sources investigated. Since these proportions are not
quantitative, we suggest that they be used for hierarch-
ical classification to identify which source(s) contributed
the most to observed fecal pollution.

Our classifier approach will be applicable to sequence
data from other regions of the 16S rRNA gene or other
genes, as seen in the V4V5 and V6 comparison. Al-
though the V6 region is one of the shortest commonly
sequenced hypervariable regions, i.e., the least amount
of sequence information, this region is associated with
the highest degree of polymorphism [68]. Short read
lengths make the V6 target region suitable for deep
sequencing platforms such as the NextSeq Illumina
platform that can generate 400 million of reads per run
compared to 25 million for the MiSeq Illumina platform
[69]. This difference of sequencing depth may be key for
detecting low level of fecal contamination in environ-
mental samples.

Conclusion

We demonstrate the relevance of using random forest
classification as an efficient and effective tool for source
identification. The method is scalable and extensible for
systematically assessing complex sequence data to identify
fecal sources and provide the associated proportion of
contamination. Both Clostridiales and Bacteroidales bac-
terial groups appear to be relevant markers of animal and
sewage fecal contamination in the environment. Using
both classifiers offers independent verification of contam-
ination to increase confidence in results. Further, by allow-
ing a fast-screening of large sequence datasets, this
approach could also be useful in identifying new molecu-
lar markers for source microbiomes. High-throughput se-
quencing is emerging as a promising approach for water
quality assessments due to the falling costs of sequencing,
the exponential increase in information gained from these
methods, and the development of field adaptable plat-
forms such as MinlON based on Nanopore technology
[70]. The limitation in implementing such approaches
may not be sequencing technology, but the need for rapid
computational methods with low-resource demands. Since
random forest classification does not necessitate signifi-
cant computing resources, this approach represents a
valuable tool for assessment of contaminated water for
pathogen risk and for stakeholders to identify the main
sources of fecal pollution and implement appropriate
management actions.

Additional files

Additional file 1: Sample metadata. Sample metadata includes Sample
ID of the samples used to create or test the classifiers in the paper,
sample origin and collection date. The volume or the weight, as well as
the name of the DNA kits used to extract total bacterial DNA are also
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mentioned. The densities of fecal indicator bacteria and human markers
in the freshwater samples are indicated. Short Read Archive and the
individual SRR accession number are listed to be used to reference the
raw sequence file from NCBI. (XLSX 138 kb)

Additional file 2: Random forest classifications performed on 37
artificial bacterial assemblages. This file contains (a) the classifications of
37 artificial bacterial assemblages, and (b) the number of sequences
associated with the different classifiers. The file lists the sample IDs, the
proportions used to generate the in silico artificial bacterial assemblages,
the expected and observed fecal source contamination proportions, and
the total number of sequences per sample. (XLSX 52 kb)

Additional file 3: Bray—Curtis dissimilarity matrix. Bray—Curtis dissimilarity
matrix for Clostridiales and Bacteroidales bacterial composition among
samples used to build the classifiers. (XLSX 133 kb)

Additional file 4: Classifiers properties. This file indicates the number of
ASVs selected to compose the classifiers, the number of specific ASVs
and the out-of-bag error rate per source for the V6 study and the V4V5
to V6 comparison analysis. (XLSX 25 kb)

Additional file 5: Distribution of the ASVs selected among the
Bacteroidales classifiers. This file presents (a) the mean and distribution of
the number of ASVs belonging to the different classifiers for each source
of fecal samples, and (b) a heatmap representing the relative abundance
of the ASVs selected within the eight classifiers for the samples used to
build the classifiers. (DOCX 4000 kb)

Additional file 6: Random forest predictions for the fecal-animal, sewage
and freshwater samples using V6 classifiers built at the family level. This file
contains the classifications of 48 samples using Bacteroidaceae, Lachnospiraceae,
Prevotellaceae and Ruminococcaceae classifiers. (XLSX 29 kb)
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