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Background: Pediatric asthma is the most common chronic childhood disease in the USA, currently affecting ~ 7
million children. This heterogeneous syndrome is thought to encompass various disease phenotypes of clinically
observable characteristics, which can be statistically identified by applying clustering approaches to patient clinical
information. Extensive evidence has shown that the airway microbiome impacts both clinical heterogeneity and
pathogenesis in pediatric asthma. Yet, so far, airway microbiotas have been consistently neglected in the study of
asthma phenotypes. Here, we couple extensive clinical information with 16S rRNA high-throughput sequencing
to characterize the microbiota of the nasal cavity in 163 children and adolescents clustered into different

Results: Our clustering analyses identified three statistically distinct phenotypes of pediatric asthma. Four core
OTUs of the pathogenic genera Moraxella, Staphylococcus, Streptococcus, and Haemophilus were present in at
least 95% of the studied nasal microbiotas. Phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) and genera
(Moraxella, Corynebacterium, Dolosigranulum, and Prevotella) abundances, community composition, and structure
varied significantly (0.05 < P <0.0001) across asthma phenotypes and one of the clinical variables (preterm birth).
Similarly, microbial networks of co-occurrence of bacterial genera revealed different bacterial associations across

Conclusions: This study shows that children and adolescents with different clinical characteristics of asthma also
show different nasal bacterial profiles, which is indicative of different phenotypes of the disease. Our work also
shows how clinical and microbial information could be integrated to validate and refine asthma classification
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Background

Pediatric asthma is the most common chronic childhood
disease and a major public health problem in the USA,
currently affecting 9.3% of the children (~7.0 million),
and prevalence continues to rise [1-3]. Prevalence is
particularly high (13.9%) in Washington, DC, mainly
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among African Americans [2], who nonetheless still rep-
resent one of the least studied ethnicities with regards to
asthma [4]. Childhood asthma is the third leading cause
of hospitalization (137,000 cases) among US children,
accounting annually for 640,000 emergency department
visits [5, 6]. It is also a major cause of school absentee-
ism (~ 14.4 million lost school days/year) [7], and treat-
ment cost is estimated at $3.2 billion/year [8, 9].
Pediatric asthma is recognized as a complex condition
with differences in severity, natural history, comorbidi-
ties, and treatment response [10—13]. A longstanding de-
bate is whether pediatric asthma (and asthma in general)
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is a single disease with a variable presentation or several
diseases that have variable airflow obstruction as a com-
mon feature. Wenzel [14] proposed that the different
phenotypes expressed by patients with asthma are partly
dependent on different disease processes in each individ-
ual. Thus, the diagnostic label “asthma” likely encom-
passes many different disease variants with different
etiologies and pathophysiologies [10, 11, 15]. Typically, a
child’s asthma is described in terms of disease pheno-
types, which summarizes observable characteristics (clin-
ical, physiological, morphologic, and biochemical), as
well as the response to different treatments; thus, they
are clinically relevant in terms of presentation, triggers,
and treatment response. Asthma phenotypes have long
been described by clinicians from their own practice ex-
perience, but now are better characterized by applying
clustering approaches to patient clinical information col-
lected from cohorts of asthmatic patients (i.e., asthma
phenotypic clusters) [16—19]. Using hierarchical clustering,
for example, our group has distinguished in a previous
study three phenotypic clusters of pediatric asthma in a co-
hort of children and adolescents from the Washington, DC
area (The AsthMaP Project) [18].

The application of novel culture-independent tech-
niques of Next-Generation Sequencing (NGS) has already
demonstrated that bacterial communities living in the re-
spiratory airways play a significant role in the onset, devel-
opment, and severity of asthma [20-29]. Moreover,
microbiome research has also shown that the nose is a
major reservoir for opportunistic pathogens [30, 31],
which can from there spread to other sections of the
respiratory tract and potentially cause asthma, but also
otitis media or pneumonia, or invade the bloodstream to
cause sepsis and meningitis [27, 28, 32-36].

The relationship between airway microbiota and asthma
phenotypes is still poorly understood [37-39]. A few stud-
ies have explored the interaction in adults [37, 38] and have
shown significant variation in microbial diversity and the
abundance of pathogenic taxa across asthma phenotypes.
Whether differences in the composition of microbial popu-
lations (pathogenic and commensal) could contribute to
asthma in children and adolescents remains to be deter-
mined. Defining the relationships between pediatric
asthma phenotypes and nasal airway microbiota could ul-
timately inform our understanding of asthma pathophysi-
ology and could help identify prognostic markers [18, 37].

Here, we first applied cluster analysis to clinical, physio-
logical, and biochemical information collected from 163
children and adolescents from Washington, DC belonging
to a new cohort (AsthMaP-2) to define phenotypes of
pediatric asthma. Then we generated 16S rRNA microbial
profiles for those same patients (i) to assess if phenotypic
clusters of asthma were associated with nasal bacterial
diversity, (i) to identify bacterial taxa that discriminate
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among asthma phenotypes, and (iii) to determine the
contribution of clinical characteristics to variation in the
composition and structure of the nasal microbiome.

Methods

Cohort

AsthMaP-2 is an ongoing study of urban children and ad-
olescents, mainly African Americans (81% of the subjects
in this study with Whites and undetermined accounted for
2% and 17%, respectively), designed to find associations
among airway microbes, environmental exposures, allergic
sensitivities, genetics, and asthma. AsthMaP-2 represents a
unique sample of otherwise healthy children recruited
from the metropolitan Washington, DC area with
physician-diagnosed asthma present for at least 1 year.
Subjects were enrolled from all the sites in our citywide
pediatric and adolescent health system. They were
evaluated in our Clinical Research Center via parental in-
terviews, aeroallergen skin testing, nasal sampling, and
blood collection. Participants were enrolled between 2013
and 2015 at one study visit at least 4 weeks after comple-
tion of their most recent oral steroid dose (baseline) and
then followed for 1 year. Individuals who reported a
medical history of chronic or complex cardiorespiratory
disease were ineligible.

Sample collection

A total of 205 nasal washes were collected from 163
children and adolescents (ages 6 to 18 years) enrolled in
the AsthMaP-2 study at Children’s National Medical
Center (Washington, DC). Forty-two of those patients
came back for an additional visit (5.5 to 6.5 months apart)
and one additional sample (E3) was taken (Additional file 1:
Table S1). Washes were procured by instilling 5 ml of
isotonic sterile saline buffer into each nare, holding it for
10 s and then blowing into a specimen collection con-
tainer. Washes were kept in ice while being collected and
then stored at — 80 °C until needed.

High-throughput sequencing

Total DNA was extracted using the QIAGEN QIAamp
DNA Kit (Catalog # 51304). Before adding the ATL bulffer,
samples were pre-incubated in 100 uL of lysozyme-TE
buffer pH = 8.0 for 30 min at 37 °C. All extractions yield-
ing >2 ng/u of total DNA, as indicated by NanoDrop
2000 UV-Vis Spectrophotometer measuring. DNA extrac-
tions were prepared for sequencing using the Schloss’
MiSeq_WetLab_SOP protocol (09.2015) in Kozich et al.
[40]. Each DNA sample was amplified for the V4 region
(~ 250 bp) of the 16S rRNA gene and libraries were se-
quenced in a single run of the Illumina MiSeq sequencing
platform at the University of Michigan Medical School.
Negative controls processed as above showed no PCR
band on an agarose gel.



Pérez-Losada et al. Microbiome (2018) 6:179

Phenotype cluster analysis

A total of 163 children and adolescents from the
AsthMaP-2 cohort were included in the cluster ana-
lysis. We collected information for 29 clinical variables
(Additional file 1: Table S1) during their first visit—no
new clinical data were collected during the second
visit. Those 29 variables were (in alphabetical order)
ACT (Asthma Control Test) score, age (years), age of
onset of asthma symptoms (years), allergic rhinitis,
antihistamine use in the last 2 weeks, beta agonist use in
the last 2 weeks, blood eosinophils (%), BMI (body mass
index) percentile, cold in the last 4 weeks, eczema, FEF
(forced expiratory flow), FEV; (forced expiratory volume
in one second) change with bronchodilator, FEV;/FVC
(functional vital capacity), hospital visit for sample collec-
tion, inhaled steroid use in the last 2 weeks, ITG (Inte-
grated Therapeutics Group’s Child Asthma Short Form)
composite score (see Table 1), leukotriene modifier use
in the last 2 weeks, meteorological season during sam-
ple collection, NAEPP (National Asthma Education and
Prevention Program) severity classification, pets, posi-
tive on skin allergen test, postFEV1, preFEV1, preterm
birth (<35 weeks of gestation), race, respiratory infec-
tion in the last 4 weeks, sex, total serum IgE (IU/ml),
and vitamin D use in the last 2 weeks. The ACT is a
patient-driven test developed to identify those with
poorly controlled or refractory asthma. Poor ACT
scores indicate the patient’s symptoms persist despite
the use of conventional treatments. The ITG indicates
the asthma-related quality of life and is a self-reported
functional health questionnaire. It is scaled between 0
and 100. All collected variables were standardized in

Table 1 Varimax rotation of 11 asthma-relevant variables

Variable Component
1 2 3 4
ACT score® 0.798
[TGc—composite score? 0.984
[TGf—functional limitations score 0.864
[TGd—daytime symptoms score 0.848
[TGn—nighttime symptoms score 0.842
Post-bronchodilator FEV; (% predicted) 0.967
Post-bronchodilator FEV,/FVC 0.765
(% predicted)
FEV; change with bronchodilator 0.784
Age, years® —0.551
Blood eosinophil, %* 0.761
Total serum IgE, IU/mL 0.741

Extraction method: principal component analysis. Rotation method: varimax
with Kaiser normalization. Bartlett’s test of sphericity < 0.001. KMO measure of
sampling adequacy: 0.471. ACT asthma control test, /TG Integrated
Therapeutics Group’s Child Asthma Short Form, FEV forced expiratory volume,
FEF forced expiratory flow, IgE immunoglobulin E. *Variable used in

cluster analysis.
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binary fashion for categorical variables or using a z score
for continuous variables. As in previous asthma studies
[16, 18], relevant variables were chosen if they are mea-
sured in the clinical evaluation of asthma and describe
asthma phenotypes. Additionally, selection of multiple
variables representing the same aspect of asthma was
avoided. Principal components analysis (PCA) based on
Euclidean distances was then carried out on the eleven
selected variables in Table 1 to identify key clinical com-
ponents relevant to asthma diagnosis and assessment.
Nine of these 11 asthma-relevant clinical variables were
also used in our previous phenotype cluster analysis
[18] of the AsthMaP cohort—a different cohort from
that studied here.

Principal component factors were identified using a
varimax rotation of the eleven variables. As in Benton et
al. [18], cluster analysis was performed in two stages using
variables representative of the principal components. In
the first stage, hierarchical clustering of the variables using
between-groups linkage yielded the probable number of
clusters present in AsthMaP-2. A k-means cluster analysis
was then performed using this estimated number of clus-
ters. This stage was repeated while specifying one more or
one less cluster than the estimate to ensure that the most
representative model was obtained. Additionally, the
k-means cluster analysis was repeated several times
within random AsthMaP-2 subpopulations to ensure re-
producibility. Differences between clusters were derived
using one-way analysis of variance for normally distrib-
uted continuous variables, Kruskal-Wallis for nonpara-
metric continuous variables, and chi-square tests for
categorical variables. All statistical tests were performed
with SPSS Statistics 17.0 (SPSS, Chicago, IL).

Microbiome analyses

Raw FASTAQ files were processed in mothur v1.35.1 [41]
as indicated in the MiSeq SOP (www.mothur.org/wiki/
MiSeq_SOP). Default settings were used to minimize se-
quencing errors [42]. We removed any sequences with
ambiguous bases (maxambig=0). We sequenced both
negative controls and mock communities (reference
samples with a known composition) to detect contaminat-
ing microbial DNA within reagents and measure sequen-
cing error rate. We did not find evidence of contamination
and our sequencing error rate was as low as 0.0071%. Clean
paired-end sequences were joined into contigs of ~ 250 bp
and then aligned to the SILVA128-based bacterial reference
alignment at www.mothur.org. Contigs >275 bp were
removed. Chimeras were also removed using uchime [43],
and non-chimeric sequences were classified using a naive
Bayesian classifier [44]. Sequences were clustered into
Operational Taxonomic Units (OTUs) at the 0.03 similarity
threshold (species level). A consensus taxonomy was gener-
ated based on the classification of sequences clustered
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within an OTU. OTU sequence representatives and tax-
onomy were then converted to a BIOM file for subsequent
analyses and all OTU singletons (z=1) were eliminated.
We normalized our samples using the negative binomial
distribution as recommended by McMurdie and Holmes
[45] and implemented in the Bioconductor package
DESeq2 [46]. This approach simultaneously accounts for
library size differences and biological variability. Microbial
normalized counts generated this way are referred to as
taxon abundances throughout the text. Trees for phylogen-
etic diversity calculations were constructed using FastTree
and midpoint rooting [47]. Taxonomic alpha-diversity
was estimated using Shannon and ACE indices, while
phylogenetic alpha-diversity was calculated by the
Faith’s phylogenetic diversity index [48]. Beta-diversity
was estimated using phylogenetic UniFrac (unweighted
and weighted), Bray-Curtis, and Jaccard distances. The
dissimilarity between samples was explored using princi-
pal coordinates analysis (PCoA). We also carried out a
Mantel correlation test and a Procrustes [49] analysis
comparing clinical diversity (29 variables) across 163 pa-
tients with their microbiome 16S rRNA profiles on the
basis of Euclidean similarity metrics and using 10,000 per-
mutations for each test.

We used linear mixed-effects (LME) models analysis, as
implemented in the Imer4 R package [50], to investigate as-
sociations between alpha-diversity indices and taxa (genera
and phyla) abundances (response) and asthma phenotypes
(predictor), while accounting for non-independence of sub-
jects (random effect). We have included random effects in
our LME models to account for the fact of that 42 patients
were sampled twice during the study. We also investigated
the potential contribution of other clinical characteristics
of the AsthMaP-2 cohort to variation in the composition
of the microbiome. Hence, 23 out of the 29 variables listed
above were included in the initial LME analyses. To avoid
redundancy, we did not include the six variables (ACT
score, age, BMI percentile, ITG composite score, percent-
age of blood eosinophils, and sex) used in the phenotype
cluster analysis (see the “Results” section below) to identify
asthma phenotypes (composite variable). We also tested
LME models with random intercepts and random slopes
and different orders of factors. Initial LME models
including the 23 variables listed above were com-
pared using the function lmerTest, which performs
automatic backward elimination of factors. ANOVA
type III tests with Satterthwaite approximation for
degrees of freedom were also carried out for hypoth-
esis testing. Model assumptions in final LME models
were validated using residual versus fit plots and a
normal probability plots.

Beta-diversity UniFrac indices were compared using
permutational multivariate analysis of variance (adonis) as
implemented in the vegan R package [51]. Adonis models
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were compared using the Akaike Index Criterion [52]. Sig-
nificance was determined through 10,000 permutations.

We believe that only statistically relevant factors in the
dataset under study should be included in the final LME
models to avoid subjectivity of choice and over-paramet-
rization. Our preliminary LME and adonis analyses showed
that random slopes did not have a significant impact on
any representation of microbial diversity or taxon abun-
dance. Three co-variables (vitamin D use, antihistamine
use, and leukotriene modifier use), however, were
significantly associated with one microbial diversity index
or one taxon abundance in our LME analyses, but none of
those tests were significant for the variable of interest
(asthma phenotype). Similarly, preterm birth was signifi-
cantly associated (P < 0.025) to several diversity indices and
taxon abundances. Hence, our final (most parsimonious)
LME and adonis models included one predictor (asthma
phenotype) and one co-variable (preterm birth). We found
no significant interactions between asthma phenotype and
preterm birth.

Differences in microbial abundances for phyla and
genera were also estimated using the Wald test with
Cook’s distance correction for outliers (DESeq2 package)
while accounting for preterm birth. We applied the
Benjamini-Hochberg method at alpha=0.05 to correct
for multiple hypotheses testing [53, 54]. All the analyses
above were performed in mothur, QIIME [55], R [56],
and RStudio [57].

Microbial organisms coexist in complex ecological net-
works with various symbiotic relationships. Thus, the
presence or abundance of certain individual bacteria
most likely affects the presence of others because of
those ecologic interactions [58]. We, therefore, estimated
networks of co-occurrence of bacterial genera to assess
similarities and differences among microbial communi-
ties in children and adolescents with different asthma
phenotypes. Networks were built in MEGAN [59] using
the following parameter settings: threshold =0.01%
(minimum count required for a taxon to be considered
present in a sample), minimum prevalence =10% and
maximum prevalence = 100% (minimum and maximum
percentage of samples in which a taxon can occur, re-
spectively), and probability =0.9 and 0.95 (minimum
probability that a co-occurrence between two taxa A
and B must attain so as to be represented by an edge in
the graph).

Results

The AsthMaP-2 cohort is comprised of phenotypic clusters
Principal component analysis

Eleven key clinical variables relevant to asthma diagnosis
and assessment in AsthMaP-2 were selected for PCA
(Table 1). Varimax rotation of those variables identified four
principal components representing symptoms/impairment,
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airway reactivity, mucosal evidence of allergy, and systemic
evidence of allergy (Table 1). The analysis converged in six
iterations. About 70% of the total variance was explained by
these four components, while each of them accounted for
284%, 194%, 12.4%, and 11.3% of the variance after
rotation sums of squared loadings. Four highly informative
variables were selected for cluster analysis: ACT, ITGc, age,
and blood eosinophil (* in Table 1). Two additional vari-
ables (sex and BMI percentile) known to be important fac-
tors in asthma phenotype were also included in the cluster
analysis. Additionally, the most informative of the 29 vari-
ables representing asthma status and asthma-related quality
of life were compared among clusters (Table 2). It should
be noted that P-values for ACT, ITGc, age, blood eosino-
phil, sex, and BMI percentile are not true tests of variance
since they were used to maximize distances between the
clusters.

Cluster analysis

The cluster of 163 children and adolescents from the
AsthMaP-2 cohort using six asthma-relevant clinical vari-
ables resulted in a four-cluster best-fit model with distinct
asthma phenotypes. One cluster, however, contained only
one single individual with mild asthma and was, therefore,
eliminated because its microbiome diversity and compos-
ition cannot be statistically compared to other larger clus-
ters. The three remaining clusters differed in their clinical
characteristics (Additional file 2: Figure S1 and Table 2).
Asthma phenotypic cluster 1 (APC1) was predominantly
female (69.5%) with a lower mean ACT score [mean (SE)]
[16.2 (0.5)] and ITGc score [mean (IQR)] [51.2 (41.7, 57.3)]
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(Table 2). APC1 also had the latest mean age of onset of
asthma of 4.9 (0.5) years and the highest BMI percentile
[81.3 (3.0)] but was not statistically different from APC3
and was within the standard error of APC2. One or more
positive allergen skin test (%) was significantly different be-
tween the three groups (P = 0.006).

Asthma phenotypic cluster 2 (APC2) had the highest
positive allergen tests at 46%, with APC1 and APC3 hav-
ing 35% and 25%, respectively (Table 2). APC2 also had
the highest blood eosinophil % [mean (IQR)] [8.9 (5.3,
11.7)] and highest serum IgE value [674.9 (139, 912)].
Serum IgE was also statistically significantly different be-
tween the three phenotypic clusters (P=0.013). APC2
had many of the hallmarks of allergic asthma. APC2 also
had the highest proportion of males (65.1% male), the
youngest age of onset of asthma [3.4 (0.3) years], and the
highest proportion of subjects currently using inhaled
steroids (ICS) (23.9%).

Asthma phenotypic cluster 3 (APC3) had the lowest
mean BMI percentile [53.7 (4.5)] and the best out-
comes for post-bronchodilator pulmonary function
tests [e.g., post-bronchodilator FEV;, mean (SE): 109.2
(18.6)] (Table 2). This corresponded to the highest
mean ACT score [23.1 (0.4)] and highest ITG compos-
ite score [84.2(72.9, 95.8)]. Furthermore, APC3 had
the lowest proportion of subjects with positive allergen
skin prick tests (25%). They also had the smallest propor-
tion of patients currently using inhaled corticosteroids.

In our post hoc between-group analyses, APC1 and
APC2 were similar to each other in terms of pulmonary
function tests, questionnaire results, and other typical

Table 2 Comparison of asthma characteristics in overall cohort and among asthma phenotypic clusters (APC)

Variable All APC1 APC2 APC3 P value
(n=163) (n=51) (n=63) (n=49)

Sex, % male® 526 29.5 65.1 63.2 <0.001
Age, years (SE)? 11.0 (0.3) 12.7 (0.5) 9.1 (03) 116 (0.5) <0.001
Age of onset of asthma symptoms, years (SE) 4102 49 (0.5) 34 (0.3) 43(0.5) 0.0046
BMI percentile (SE)* 72 (2.2) 813 (3.0) 81127 53.7 (45) <0.001
Pre-bronchodilator FEV;, % predicted (SE) 85.4 (14) 88 (2.0) 84.8 (2.6) 83.2 (2.6) 0401
FEV; change with bronchodilator (SE) 58 (04) 103 (1.6) 86 (1.6) 144 (44) 0.299
Post-bronchodilator FEV;, % predicted (SE) 99.2 (6.0) 96 (2.2) 936 (2.9) 109.2 (18.6) 0518
NAEPP Severity 3(24) 32,4 32,4 32,4 0.3
ACT score® 204 (0.3) 16.2 (0.5) 216 (0.3) 23.1 (04) <0.001
ITGc—composite score (IQR)? 68.9 (54.2, 86.5) 512 (417,573) 713 (64.1,79.2) 84.2 (729, 95.8) <0.001
Blood eosinophil, % (IQR)* 5.8 (2.25, 5.75) 45(1.8,63) 89(53,11.7) 32(1.2,47) <0.001
Total serum IgE (IQR) 545 (99, 710) 579 (97, 751) 675 (139,912) 330 (75, 368) 0.013
Positive skin allergen tests, % 73 35 46 25 0.006
Beta agonist use, % 27 11 8 1 0471
Inhaled steroid use, % 546 17.2 239 135 0342

FEV forced expiratory volume, FEF forced expiratory flow, NAEPP National Asthma Education and Prevention Program, ACT asthma control test, /TG Integrated
Therapeutics Group’s Child Asthma Short Form, IgE immunoglobulin E, SE standard error, IQR interquartile range. ®Variable used in cluster analysis
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indicators of asthma severity than APC3 was to either
APC1 or APC2. A Least significant difference (LSD) test
showed several of the APC3 variables to be more different
from APC1 and APC2 than APCI1 and APC2 were from
each other. For example, post-bronchodilator FEV,/FVC
(% predicted) and change in FEV; post-bronchodilator (%
predicted) variables were statistically different be-
tween APC3 when compared to APC1l and APC2
(0.05 < P<0.005). The LSD test showed that between APC1
and APC2 post-bronchodilator FEV,/FVC (% predicted)
and change in FEV; post-bronchodilator (% predicted) were
not statistically significant (P > 0.2).

As in Benton et al. [18], there was no significant cor-
relation between NAEPP (National Asthma Education
and Prevention Program) severity score and cluster
membership assignment—the NAEPP score classifies
asthma severity based on impairment and future risk.
The distribution of NAEPP severity scores was heteroge-
neous within and between the groups.

The taxonomic composition of the nasal microbiome

We collected 205 nasal washes from all participants dur-
ing one or two consecutive visits and sequenced the
variable region V4 of the 16S rRNA using the Illumina
MiSeq platform. Longitudinal differences between nasal
microbiomes sampled twice in this study have been de-
scribed in a previous publication by our group [29].
Here, we focus on the comparison of asthma pheno-
types. A total of 6,386,235 sequences ranging from 530
to 160,718 sequences per sample (mean =25,932; me-
dian = 31,152.4) were obtained after quality control
analyses. From these data, we identified a total of 8034
OTUs (Additional file 3: Table S2; OTU taxa).

The nasal microbiomes across all 205 samples included
sequences that corresponded to five dominant (>1%)
Phyla: Firmicutes (37.8), Proteobacteria (36.3%), Actino-
bacteria (11.1%), Bacteroidetes (8.2%), and Fusobac-
teria (3.5%) (Fig. 1). Those Phyla comprised 10 dominant
(> 1%) genera: Moraxella (28.3%), Staphylococcus (17.8%),
Corynebacterium (10.1%), Dolosigranulum (7.7%), Prevo-
tella (5.5%), Streptococcus (5.5%), Fusobacterium (3.3%),
Haemophilus (3.2%), Neisseriaceae sp. (1.4%), and Peptoni-
philus (1.2%) (Fig. 1). All the other detected genera
accounted for < 1% of the total 16S rRNA sequences each.
Each of the 205 nasal microbiomes contained 3 to 10
(mean = 7.8 genera) of the dominant bacterial genera. All
these genera are commonly found in the nose of infants
and adults with and without asthma, although in different
proportions [24-29, 33, 34, 36, 60—67]. Nonetheless, pre-
vious studies [25, 68] have also revealed that the nose in-
cludes microenvironments containing microbiotas with
different diversity and structure and that nasal washes
may only capture part of that diversity. Hence, the
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Fig. 1 Microbial profiles (mean relative proportions) of most
abundant (> 1%) phyla and genera in the nasal microbiomes of
children and adolescents belonging to three different asthma
phenotypic clusters (APCs)

diversity and complexity of the nasal microbiome is prob-
ably larger than what we show here.

A variable number of OTUs from these 10 dominant
genera were included in the NP core microbiome, which
potentially comprises the stable and consistent members
and associations from the whole community [69, 70].
The least stringent definition of the core (presence in at
least 50% of the samples) identified 44 OTUs of com-
mensal and pathogenic bacteria; while a more stringent
definition (presence in at least 95% of the samples) in-
cluded four OTUs of the following genera: Moraxella,
Staphylococcus, Streptococcus, and Haemophilus. Patho-
genic representatives from these four genera have been
consistently associated to asthma [23, 24, 27, 28, 30, 31,
34, 36, 60]; hence, these four OTUs may represent finger-
prints or biological markers of the NP microbiome in
asthmatic children. Future metagenomic studies will need
to confirm their consistency across asthmatic cohorts,
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nasal microenvironments [25, 68] and specificity (i.e.,
dominant in asthmatics and absent in healthy controls).

The nasal microbiome of asthmatic children and
adolescents varies across phenotypic clusters

Microbial abundances of all the five dominant (< 1%)
bacterial phyla varied across the three asthma pheno-
typic clusters (Table 3 and Fig. 1). APC1 showed the
highest abundance of Actinobacteria and Bacteroidetes,
high abundances of Firmicutes and Fusobacteria, and
the lowest abundance of Proteobacteria; APC2 showed
the highest abundance of Proteobacteria and the lowest
abundance of the other four phyla; and APC3 showed

Table 3 Mean alpha-diversity indices and mean relative
proportions of dominant phyla and genera (> 1%) in decreasing
order of abundance for ALL samples and across three asthma
phenotypic clusters (APC1, APC2, and APC3) in pediatric asthma

Taxon ALL APC1  APC2 APC3 F DF  P(>F)
Alpha-diversity
ACE 2259 2273 2179 2346 08 151 04710
PD 215 215 215 216 002 155 09787
Shannon 182 202 1.59 188 3.1 141 0.0445
Beta-diversity
UniFrac-w - - - - 52 2 0.0001
UniFrac-unw - - - - 1.1 2 0.1156
Bray-Curtis - - - - 36 2 0.0001
Jaccard - - - - 27 2 0.0002
Phyla
Firmicutes 378 404 333 407 06 139 05548
Proteobacteria 363 228 484 362 54 140 00056
Actinobacteria 1.1 174 75 84 4.7 136 0.0105
Bacteroidetes 82 115 57 77 31 153 00491
Fusobacteria 35 42 25 4.1 14 126 02523
Genus
Moraxella 283 152 417 258 6.1 141 0.0029
Staphylococcus 178 209 145 185 09 142 04013
Corynebacterium ~ 10.1 162 6.7 7.5 47 136 00110
Dolosigranulum 7.7 53 100 74 30 146 0.0484
Prevotella 55 88 30 5.1 38 155 0.0242
Streptococcus 55 52 43 74 1.1 150 03518
Fusobacterium 33 39 24 37 1.1 126 0.3251
Haemophilus 32 24 19 56 16 113 02056
Neisseriaceae sp 1.4 16 1.7 0.7 13 156 0.2643
Peptoniphilus 12 1.8 06 12 09 156 04201

Linear mixed-effects (LME) models results are shown for alpha-diversity indices
and taxa abundances, while permutational multivariate analysis of variance
(adonis) results are shown for beta-diversity indices. The significance of LME
models was estimated using ANOVA of type Ill with Satterthwaite
approximation for degrees of freedom. For each test, we report the relevant F
statistic (F), degrees of freedom (DF), and significance (P(> F))
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intermediate proportions of Proteobacteria, Actinobac-
teria, and Bacteroidetes and high abundances of Firmi-
cutes and Fusobacteria (as APC1). Our LME analyses
showed significant differences in the mean relative pro-
portions of Proteobacteria (P =0.0005), Actinobacteria
(P=0.001), and Bacteroidetes (P =0.0491) across the
three asthma phenotypic clusters.

Microbial profiles of some of the most abundant bac-
terial genera (Table 3 and Fig. 1) also varied across
asthma phenotypic clusters. APC1 showed the highest
abundance of Corynebacterium and Prevotella and the
lowest abundance of Moraxella and Dolosigranulum;
APC2 showed the highest abundance of Moraxella and
the lowest abundance of Corynebacterium, Staphylococ-
cus, and Prevotella; while APC3 showed an intermediate
abundance of those five genera. Our LME analyses
showed significant associations with asthma pheno-
typic cluster for Moraxella (P =0.0003), Corynebacter-
ium (P=0.0014), Dolosigranulum (P =0.0484), and
Prevotella (P=0.0256). All these significant associa-
tions above between phyla and genera and asthma pheno-
typic clusters were confirmed by the Wald test with Cook’ s
distance correction for outliers (0.05< P <0.0001) while
accounting for preterm birth.

Alpha-diversity index (Shannon, ACE, and PD) var-
ied across asthma phenotypic clusters (Additional file 4:
Figure S2), but only Shannon estimates, which showed less
diversity for APC2, were significantly different (P =0.024)
in our LME analyses (Table 3).

PCoAs of UniFrac (unweighted and weighted),
Bray-Curtis, and Jaccard distances showed partial segre-
gation of the microbiotas from each asthma phenotype
(Additional file 5: Figure S3). Our adonis analyses detected
significant differences (P < 0.0002) in beta-diversity among
phenotypes for all of the four distances but UniFrac
unweighted (P =0.1172). Mantel (r=0.54, P =0.038) and
Procrustes tests showed a significant correlation between
asthma phenotypic diversity and nasal microbial diversity
(sum of squares M = 0.29, P = 0.001).

Genus-based microbial interaction networks varied
across the three asthma phenotypic clusters (Fig. 2).
Only co-occurrence (positive) relationships were de-
tected under our parameter settings. APC1 (red) and
APC2 (cyan) involved four genera and five edges, while
APC3 (green) involved 6 genera and 9 edges at probabil-
ity =0.9. All phenotype networks involved two genera
and one edge at probability =0.95. There was partial
overlap among all networks, with genera Staphylococcus,
Streptococcus, and Corynebacterium being involved in all
of them.

Preterm birth was significantly associated to variation
in alpha-diversity (Shannon; P =0.005), all beta-diversity
indices (P <0.0008) except UniFrac unweighted dis-
tance, and the abundances of four taxa: Proteobacteria
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Moraxella
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o

Staphylococcus

Peptoniphilus
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Fig. 2 Network analyses of microbial co-occurrences in the nasal microbiomes of children and adolescents belonging to three different asthma
phenotypic clusters (APCs). Different network edge colors were used for each phenotype. Thin edges correspond to probabilities of 0.90, while
thick edges correspond to probabilities of 0.95. Only bacterial genera involved in a network are displayed

Corynebacterium

Streptococcus

Haemophilus

(P =0.0017), Firmicutes (P =0.0233), Moraxella (P = 0.0042),
and Staphylococcus (P = 0.0167).

Discussion

In this study, we investigated the composition and struc-
ture of bacterial communities inhabiting the nasal cavity
of 163 asthmatic children and adolescents from the
Washington, DC area. We first used clinical, physio-
logical, and biochemical information to separate patients
into three phenotypic clusters corresponding to different
phenotypes of asthma, and then used bacterial 16S
rRNA sequences to compare their NP microbiotas
across those three asthma phenotypic clusters.

Pediatric asthma comprises different phenotypic clusters

Our cluster analysis of the AsthMaP-2 cohort identified
three clusters corresponding to three pediatric asthma
phenotypes. Clusters of similar proportion and charac-
teristics were identified in a previous study of asthmatic
children and adolescents, mainly African Americans,
also from the DC area using the AsthMaP cohort [18].
AsthMaP-2 and AsthMaP are two consecutive longitu-
dinal cohorts including different patients. AstMaP-2 is
analyzed here for the first time using both clinical and
microbiome data. The clinical variables used here to
cluster by case overlapped with the 11 variables used to
cluster the original AsthMaP cohort, but here, we used
only 6 variables. Despite the use of fewer variables to
cluster, the k-means cluster analysis still produced three
clusters of similar clinical characteristics. Since in both
cohorts we found three phenotypic clusters comprised
of individuals of similar clinical characteristics, we may

conclude that the studied asthma phenotypes are prob-
ably stable and reproducible.

Asthma phenotypic cluster 1 (APC1) had lower mean
scores in terms of severity measures (ITGc score) and
asthma control measures (ACT), as previously mentioned.
This predominantly African American female cluster with
a mean age of 12.1 (0.50) years has many of the hallmarks
of patients at risk for refractory asthma. Benton et al. [18]
previously established a phenotypic cluster of predomin-
antly overweight or obese asthmatics in the AsthMaP co-
hort. This phenotypic cluster had a mean age of 13.8 (0.6)
years. The potential re-appearance of this phenotypic clus-
ter indicates a possible socio-biological context for this
group’s disease process. Data from the Childhood Asthma
Management Program (CAMP) also suggests that the on-
set of puberty in both sexes represents a turning point in
the disease progression for both females and males. Female
symptoms worsen during puberty while male symptoms
improve in late puberty [71]. This, in conjunction with our
cluster analysis, suggests there may be an association be-
tween sex hormones and the pathogenesis of asthma.

APC2 was predominantly male with a preponderance
of positive allergic asthma measures (e.g., blood eosino-
phil %, serum IgE) and the lowest mean age of 9.1 (0.3)
years. The IgE antibody production in asthma patients
mediates hypersensitivity reactions; it binds to receptors
in mast cells and basophils and triggers the release of
mediators. APC2 high mean IgE values indicate atopy in
this phenotypic cluster.

APC3 also responded to bronchodilator use measured
by the pulmonary function tests (e.g., post-bronchodilator
FEV,) and asthma control questionnaires. APC3 was also
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predominantly male and had the lowest mean BMI per-
centile of 53.7 (0.6). Benton et al. [18] also introduced a
similar phenotypic cluster (81% male) with a mean BMI
percentile of 51 (3.2) in the AsthMaP cohort. This cluster
also had the highest mean ITGc score of the three clus-
ters. Another study of a cohort of African American and
Hispanic children in New York City has demonstrated an
inverse correlation between asthma risk and extreme
BMI percentiles (underweight and overweight, 95th
percentile) in young males [72]. This phenotype of
low-BMI males with asthma appears in both the
AsthMaP and AsthMaP-2 cohorts for the males with
the lowest BMI percentiles.

The nose is a reservoir for opportunistic pathogens

The nose is the major ecological niche for potential
pathogens that cause lower respiratory infections such
as asthma [23, 24, 27, 28, 30, 31, 34, 36, 60]. All core
microbiome genera (Fig. 1) we detected in the nose
(Moraxella, Staphylococcus, Streptococcus, and Hae-
mophilus) include opportunistic pathogenic species of
the airways [73, 74]. Other population-based micro-
biome studies of the lower and upper respiratory airways
(excluding the nose and nasopharynx) have also shown
enrichment of these genera in asthmatic infants, chil-
dren, or adults [20, 34, 75-77]. Thus, our results con-
firm in children and adolescents the potential role of the
nose as a reservoir of pathogens for other sections of the
respiratory tract [23, 29, 34].

The nasal microbiome changes across pediatric asthma
phenotypes and preterm birth

The relationship between airway microbiology and asthma
phenotypes is still poorly understood [37-39]. Here, we
investigated if unbiased phenotypic clusters of pediatric
asthma and clinical, physiological, and biochemical char-
acteristics were associated with nasal bacterial diversity.
Microbial profiles of some of the most abundant bac-
terial phyla and pathogenic genera associated with
asthma (e.g., Proteobacteria and Moraxella) varied sig-
nificantly (LME, P < 0.05) across pediatric asthma pheno-
typic clusters. Similarly, both alpha-diversity (Shannon
index) and beta-diversity (UniFrac weighted, Bray-Curtis,
and Jaccard distances) estimates revealed significant differ-
ences (Table 3; LME, P <0.05) in the composition (abun-
dance and evenness) and structure, respectively, of the
microbial communities of the three asthma phenotypes.
Additionally, microbial co-occurrences (as indicated by
our network analysis) among dominant bacterial members
also varied across asthma phenotypic clusters (Fig. 2). This
likely reflects different symbiotic interactions between
pathogenic and commensal bacteria in the nose as seen in
other respiratory diseases [65, 78]. Nonetheless, taxa
co-occurrences as described here, do not necessarily
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reflect functional relationships. Further studies, focusing
on the functional capabilities these taxa display within the
nose (e.g., via RNASeq analyses, see [24]) are needed to
determine if these bacteria truly contribute to symbiosis
during asthma.

By combining microbiome and clinical information
from the same cohort of individuals, we were able to
distinguish different disease variants of pediatric asthma
with potentially different etiologies and pathophysiol-
ogies. No other study we are aware of has studied the
relationships between pediatric asthma phenotypes and
airway microbiomes, but a few studies have investigated
microbiome-phenotype associations in adult asthma.
Taylor et al. [37] found that participants with four differ-
ent inflammatory asthma phenotypes (as indicated by
relative proportions of neutrophils and eosinophils) also
showed differences in composition and structure for
both pathogens and commensal bacteria. The study also
revealed differences in the abundance of opportunistic
pathogens, like Moraxella, among inflammatory pheno-
types. In our study, Moraxella abundance also varied
significantly (LME; F =5.6; DF = 119; P = 0.0194) in rela-
tion to eosinophil proportions across pediatric pheno-
types—we did not collect neutrophil information. Future
studies will need to assess if microbial profiles seen in
adults with different inflammatory asthma phenotypes
mimic (or develop from) those seen in asthmatic children
and adolescents.

Another study by Zhang et al. [38] also revealed
marked differences in the distribution of bacterial phyla
(Proteobacteria and Firmicutes) and genera (Streptococ-
cus and Prevotella) between two phenotypes of asthma
severity (severe and non-severe) in adults. They did not
observe differences in microbial composition (alpha-di-
versity) between phenotypes, but the opposite was true
for microbial community structure (beta-diversity). In
our study, asthma severity was classified as mild, moder-
ate, intermediate, and severe, and it was not significantly
associated (P>0.07) with microbial diversity or taxa
abundances. Several factors may explain the different
outcomes between our results and Zhang et al’s study;
firstly, the studied cohorts have different characteristics,
including patient age, ethnicity, country of residence,
and treatment; secondly, the analyzed sample types were
different—we used nasal washes while Zhang et al. used
induced sputum; thirdly, the applied asthma severity clas-
sification systems are different—we used the National
Asthma Education and Prevention Program (NAEPP)
[79], while Zhang et al. used the Severe Asthma Protocol
[80]. The microbiome similarity seen in our study across
asthma severity types is supported by our cluster analysis
and agrees with a previous clinical study of 154 children
in the AsthMaP project (Washington, DC) [18], which
also did not find significant differences in NAEPP severity
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scores and cluster membership assignment. Our study,
hence, confirms previous results [18] and suggests that a
clustering method like the one used here coupled with mi-
crobial profiles could be used as a new strategy to group
asthmatic children and adolescents based on their asthma
phenotype. Future work is needed to investigate the effi-
cacy of current and new treatment options for these
asthma phenotypes.

Preterm birth was significantly associated with vari-
ation in microbiome diversity and abundance of several
microbial taxa. Individuals born prematurely undergo
dramatically different early-life exposures in the neonatal
intensive care unit (NICU). Prematurity-related chal-
lenges include nosocomial pathogens, supplemental
oxygen, mechanical respiratory support, broad-spectrum
antimicrobials, and deprivation of the normal intrauter-
ine environment. Previous studies have shown that the
airway microbiome may also play a role in post-natal
problems faced by premature infants [73, 81]. A recent
study has shown that the NP microbiota of premature
infants is altered relative to that of infants born at term
and that those changes persist during at least early child-
hood (6 months to 2 years) [82]. Microbial dysbiosis
may play an important role in modulating airway inflam-
matory and immune responses [83]. Indeed, previous
studies have established that the early nasal and naso-
pharyngeal microbial composition correlates with indi-
vidual frequency and severity of upper and lower
respiratory infections as well as subsequent risk of devel-
oping asthma [27, 33, 84—86]. Our results suggest that
nasal microbiome changes acquired by preterm neonates
may persist into adolescence. Future longitudinal studies
will be needed to further investigate the interplay be-
tween preterm birth, nasal microbiota, and the develop-
ment of airway immune responses against respiratory
pathogens in early life.

Limitations

Metataxonomic studies like ours suffer from the inherent
limitations of collecting sequence data from a single partial
gene target (16S rRNA) [87]. First, there is no validation of
the composition and structure of the microbiotas using an
alternative molecular marker. There are well-known issues
with bias in PCR amplification early in the PCR reaction
that can impact microbial compositional assessment. The
single partial gene approach has also limited resolution at
the species and sometimes even genus level for taxonomic
assignment. Nevertheless, the composition of the nasal
microbiomes in this study is similar to those described in
previous microbial studies of the nose and nasopharynx in
asthmatics using the same cohort but different individuals
[25, 29, 60] or different cohorts [27, 33, 34]. Second, the
relevance of detecting organisms associated with specific
phenotypes of clinical variables is unknown—do the taxa
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that differentiate asthma phenotypic clusters engage in dis-
tinct interactions with the host or induce features consist-
ent with the phenotypic features of the cluster in which
they are enriched? Previous research by our group [24, 26]
has used dual transcriptomics (RNAseq) to investigate
host-microbe interactions during asthma. Metatranscrip-
tomic insights coupled with longitudinal sampling (as op-
pose to the cross-sectional sampling design using here)
can help to clarify whether specific microbes are drivers or
bystanders in asthmatic patients. Our future microbiome
research will address this issue. Lastly, we did not include
healthy control samples in our study; hence, we cannot
test how bacterial profiles in asthmatics compare to
healthy children of similar age. Multiple studies, however
(including ours), have already established that the
nasal microbiomes of asthmatic and healthy individ-
uals differ across ages in infants, children, and adults
[20, 21, 29, 34, 77]. The focus of our study was differ-
ent since we aimed to determine if asthmatic children
belonging to different asthma phenotypes also have
different microbiomes. Our results demonstrate this
difference in a rather large cohort; however, including
control samples would help to further validate if rela-
tive microbial enrichments are exclusive to children
with asthma or are also detected in upper airways of
healthy children or non-asthmatic individuals with a
relevant history of nasal allergies or frequent respira-
tory infections [29, 77, 88].

Conclusions

Microbiome information has been consistently neglected
in the study of asthma phenotypes. Our study identifies
significant differences in the composition and structure
of the nasal microbiotas of children and adolescents
across asthma phenotypic clusters. Microbial profiles
(e.g., Moraxella and Corynebacterium) coupled with clin-
ical, physiological, and biochemical factors (e.g., ITG and
ACT scores) revealed different disease variants of pediatric
asthma. This information could ultimately inform our un-
derstanding of asthma pathophysiology, validate (and fur-
ther refine) current asthma classifications, improve current
prognostic markers (i.e., asthma biomarkers) of disease
[18, 37], and custom-fit treatment options for precision
medicine. This study represents a step forward towards
that ultimate goal.
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