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Abstract

Background: The specific interactions of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB),
and the lung microbiota in infection are entirely unexplored. Studies in cancer and other infectious diseases
suggest that there are important exchanges occurring between host and microbiota that influence the
immunological landscape. This can result in alterations in immune regulation and inflammation both locally and
systemically. To assess whether Mtb infection modifies the lung microbiome, and identify changes in microbial
abundance and diversity as a function of pulmonary inflammation, we compared infected and uninfected lung lobe
washes collected serially from 26 macaques by bronchoalveolar lavage over the course of infection.

Results: We found that Mtb induced an initial increase in lung microbial diversity at 1 month post infection that
normalized by 5 months of infection across all macaques. Several core genera showed global shifts from baseline
and throughout infection. Moreover, we identified several specific taxa normally associated with the oral
microbiome that increased in relative abundance in the lung following Mtb infection, including SRT,
Aggregatibacter, Leptotrichia, Prevotella, and Campylobacter. On an individual macaque level, we found significant
heterogeneity in both the magnitude and duration of change within the lung microbial community that was
unrelated to lung inflammation and lobe involvement as seen by positron emission tomography/computed
tomography (PET/CT) imaging. By comparing microbial interaction networks pre- and post-infection using the
predictive algorithm SPIEC-EASI, we observe that extra connections are gained by Actinomycetales, the order
containing Mtb, in spite of an overall reduction in the number of interactions of the whole community post-
infection, implicating Mtb-driven ecological reorganization within the lung.
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macaque

Conclusions: This study is the first to probe the dynamic interplay between Mtb and host microbiota longitudinally
and in the macaque lung. Our findings suggest that Mtb can alter the microbial landscape of infected lung lobes
and that these interactions induce dysbiosis that can disrupt oral-airway boundaries, shift overall lung diversity, and
modulate specific microbial relationships. We also provide evidence that this effect is heterogeneous across
different macaques. Overall, however, the changes to the airway microbiota after Mtb infection were surprisingly
modest, despite a range of Mtb-induced pulmonary inflammation in this cohort of macaques.

Keywords: Mycobacterium tuberculosis, Lung and airway microbiota, Microbiome, 165 rRNA gene, Cynomolgus

Background

Microbial dysbiosis is increasingly recognized as a sig-
nificant factor influencing human disease and host im-
munity in a variety of contexts spanning allergy,
autoimmunity, cancer, and infectious disease [1-6]. In
the context of infectious disease, studies have shown
that the microbiome has important influences on the
immunological landscape by altering immune regulation,
inflammation, and pathogen colonization [2, 7-9]. The
gut has been the primary focus of a number of studies
linking the immune system and an organ’s microbiome
[3, 10, 11], but it is increasingly clear that other human
immune surfaces and interfaces, including the lung, are
actively shaped by host-microbe interactions [12-15].
How specific pathogens modify and influence host mi-
crobial landscapes and site-specific immunity, particu-
larly in the lung, is poorly understood. In particular, very
little is known about the interaction of the lung micro-
biome and Mycobacterium tuberculosis (Mtb), the bacil-
lus that causes tuberculosis (TB). Human Mtb infection
presents along a spectrum of host outcomes with only ~
10% presenting with active TB, a clinically defined state
of infection that includes chronic cough, hemoptysis,
weight loss, night sweats, and fever, and may manifest
for years until clinically diagnosed [16—18]. By contrast,
the majority of Mtb infections (90%) are successfully
contained in an asymptomatic state termed latent TB in-
fection (LTBI) that can persist for their lifetime [16, 18,
19]. Current estimates place 2 billion humans within this
clinically latent reservoir [19, 20] who are at risk of re-
activation and progression to active TB. The precise
mechanisms driving the variability in human Mtb infec-
tion outcome are poorly understood but may include the
earliest interactions between pathogen and the local lung
microbiota [21].

Previous work in human TB and the lung microbiome
suggested that TB patients have altered diversity in their
airway microbiota compared to uninfected humans [22—
24] but these studies have been limited by their
cross-sectional nature and some are confined to the spu-
tum. The distribution of some genera (Stenotrophomo-
nas, Phenylobacterium, and Cupriavidus) was unique to

TB patients [23, 24]. Certain patterns of microbiota (e.g.,
presence of Pseudomonas spp.) were observed in patients
with recurrent TB and treatment failure, suggesting that
the lung microbiota interacts with both host and patho-
gen [25]. Specifically, alterations in Treponema and Ato-
pobium were associated with recurrent TB suggesting
that an altered “normal” microbiome correlated with on-
going susceptibility to TB [25]. Studies examining the
microbiota of the oropharynx between healthy controls
and TB patients showed differences in diversity and
abundance of particular organisms although no differ-
ences in major phyla were observed [26]. Other studies
in experimental murine models of infection have noted
distinct changes in the gut microbiome following Mtb
challenge [27], although the precise effects and relation-
ship of these changes on course of infection were not
explored. A more recent study profiled alterations in the
gut microbiota after tuberculosis antibiotic treatment in
mice and observed a distinct change in bacterial taxa
that persisted months after cessation of treatment [28].
Collectively, this body of work hints at a related im-
mune—lung microbiome axis that extends from the lung
to the oropharynx, as well as the gut, that exhibits sig-
nificant cross-talk following Mtb infection.

Here, using a macaque model of TB, we explored for
the first time whether Mtb infection alters the lung
microbiota in a significant and durable manner, and
whether the microbial shift is associated with pulmonary
inflammation. By serially sampling the airway of 26 in-
fected macaques via bronchoalveolar lavage (BAL), we
have provided the first survey of the microbial lung
landscape over time in the context of this chronic lung
pathogen.

Results

Lung microbial richness and composition shift during Mtb
infection

To determine whether infection with Mtb had an effect
on the microbial composition of the macaque lung, we
sampled 26 macaques at baseline (2 weeks pre-infection)
and at 3 time points post-infection (months 1, 4, and 5
post-infection) (Table 1). For each time point, a
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Table 1 Number of samples for each sample type, including controls

Cohort Macaques Oral washes Bronchoscope controls BAL of lobes Reagent control Total number
1 10 36 36 70 20 162
2 16 55 55 108 32 250
Total 26 91 91 178 52 412

bronchoalveolar lavage (BAL) sample was collected from
the right and left lobes, separately. As a negative control,
a saline wash sample of the bronchoscope was also ob-
tained. To confirm that the BAL sampling would specif-
ically access the lungs and not be biased by the
microbial community of the oral cavity, we also collected
oral wash from each animal. We determined by statis-
tical testing that the microbial communities of these two
compartments were significantly different (p < 0.001), as
visualized by t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) analysis (Additional file 1: Figure S1).

We compared the microbial communities between
samples (Beta-diversity) at baseline and post-infection
using Bray-Curtis distance as a measure of similarity
(the more similar the communities, the shorter the dis-
tance). Visualized by t-SNE, there appears to be no clus-
tering of the samples based on their infection status
(baseline versus post-infection) or by specific time point
(Additional file 2: Figure S2). However, when we per-
formed a Wilcoxon test, we observed a small but signifi-
cant change post-infection compared to the baseline,
with an initial overall increase in Beta-diversity at
1 month followed by a decline in Beta-diversity at
months 4 and 5 (Fig. 1), indicating that microbial com-
munities of the samples are becoming more similar at
these later time points.

When performing analyses of the microbial communities
at the level of single macaques, we see unique compositions
of bacterial taxa that shifted over the course of the infection
(Additional file 3: Figure S3). Although the macaques were
given the same food, they were single-housed, thus the vari-
ability observed in the respiratory microbiota is not surpris-
ing given the genetic variability of macaques and the
different exposures of each monkey over time, including
antibiotic treatment (prior to Mtb infection) as well as the
host variability in TB [18]. To identify global shifts in mi-
crobial composition across all macaques, we focused on the
core microbiota, which is comprised of taxa with a mini-
mum relative abundance of 0.1% that are shared by 95% of
the subjects. We thus identified four core microbiota, one
for each time point, and we visualized the common taxa
across these time points (Fig. 2a). We compared baseline
samples with post-infection samples at each time point by
Linear discriminant analysis Effect Size (LEfSe). We identi-
fied three taxa that shifted significantly between baseline
and month 4, a time point at which host outcome is well
established [21, 29]. Lachnospiraceae (p value = 0.0212) was

present at a higher relative abundance in the pre-infection
compared with post-infection samples at month 4, whereas
SRI (p value=0.0006) and Aggregatibacter (p value =
0.0307) were enriched post-infection at month 4 (Fig. 2b).
The family Lachnospiraceae and the unculturable Candi-
date division SR1 bacteria have previously been found in
the mammalian gut [30] and mouth [31, 32], respectively,
and an oral strain of Aggregibacter was sequenced from the
Rhesus macaque [33], indicating that these are likely com-
mensal bacteria that have shifted in relative abundance with
Mtb infection. Comparisons of core microbiota across
other time points also led to the identification of taxa such
as Staphylococcus and Streptococcus from month 1 to
month 4 (p = 0.049 and p = 0.040, respectively).
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Fig. 1 Beta-diversity for the lung microbiota of Mtb infection.
Boxplots of the beta diversity (calculated as Bray-Curtis dissimilarity)
between BAL samples grouped by time point. ¥ axis: Bray-Curtis
distance. Whiskers represent values outside the upper and lower
quartiles. *p value between 0.01 and 0.05; **p value < 0.001
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Fig. 2 a Core microbiome heatmaps showing abundance of taxa and prevalence across samples at baseline and at each time point, providing a
measure of the lung microbiota dynamics in the progression of Mtb infection. Highlighted in red are some of the taxa that change significantly
over the course of the infection. Letters appended before names indicate whether the taxonomic assignment was made at the phylum (p_), class
(c_), order (o_), family (f_), or genus (g_) level. b Boxplots of relative abundance of significant taxa enriched in the lung airways at baseline and at
month 4. Significance was determined by LefSE. Whiskers indicate the highest or lowest occurring value within 1.5*IQR (interquartile range) of the
upper or lower quartile

Community abundance and structure are not associated
with pulmonary inflammation or lobe involvement in TB
To investigate whether the dynamics of the microbiota
are associated with progression of disease and its accom-
panying inflammation in the macaques, we performed a

multivariate statistical analysis that determines associa-
tions between clinical metadata and microbial commu-
nity abundance (MaAsLin). We did not identify any
specific taxa that were specifically correlated with pul-
monary inflammation throughout the course of infection
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in these animals (data not shown). We further explored
correlations with inflammation and disease involvement
by looking at the community structure as a whole. To
do that, we partitioned the data into community types
using Dirichlet multinomial mixture models [34]. We
identified four major community types in the lung
microbiota. Community types B and C had the lowest
alpha-diversities (Fig. 3a) and were dominated by one
taxon each: Gammaproteobacteria and Actinomycetales,
respectively (Fig. 3b). Community types A and D were
each represented by a mix of taxa at different relative
abundances. Capnocytophaga was over-represented in
community type D but at a relative abundance between
2 and 3% (not shown). When labeling the samples by
their ~community types and visualizing their
beta-diversity, we see that communities B and C stand
out as the tightest clusters (Fig. 3c). To determine the
stability of the community types over the course of the
infection, we mapped the communities at each time
point across the lung samples and in each monkey
(Fig. 3d). Monkeys were rank ordered by their inflamma-
tion status (least to greatest), as measured by their total
lung ['*F]fluoro-D-glucose (FDG) uptake by positron
emission tomography and computed tomography (PET/
CT) scans at 4—5 months post infection (Table 2). We
previously published that total lung FDG activity corre-
lates with thoracic bacterial burden in macaques [35].
Lung side involvement was determined by visual con-
firmation of disease pathology by PET/CT scan at the re-
spective time point post-infection. We observed several
community shifts during infection in a number of mon-
keys, but the microbial community appears stable in
others. Community types B and C were over-represented
in samples that come largely from two monkeys (IDs
20615 and 9815). Community type D was the most
prominent community found throughout infection, and
between left and right lung lobes. There was no discern-
ible relationship between the community types or shift in
community type over time and inflammation status or
lung side involvement (Fig. 3d).

Infection with Mtb leads to modified microbial
interactions

To determine how specific microbes potentially interact
with each other in the community and how their inter-
actions are disrupted by Mtb infection, we compared
co-occurrence of taxa over the course of the Mtb infec-
tion using the SPIEC-EASI algorithm (Fig. 4), which in-
fers a graphical model using conditional independence
between OTUs [36, 37]. In general, we see that the total
number of microbial interactions, as indicated by the
number of edges between the nodes, decreased
post-infection (pre: n =122, post: n=104) (Fig. 4 and
Table 3). Of the taxa profiled, Porphyromonas,
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Capnocytophaga, and Moraxellaceae had the greatest
loss in predicted interactions with the latter losing all of
its interactions indicating it has become conditionally in-
dependent of other taxa present. By contrast, Actinomy-
cetales—the order that includes mycobacteria—which
only had 3 connections (all positive) in pre-infection
samples, had 9 connections in post-infection samples,
including 2 positive and 7 negative correlations. This im-
plies that Mtb affects the overall network and competes
with specific taxa. We also observed that the diverse
class Gammaproteobacteria, which contains a number
of important human pathogens including Pseudomonas,
Yersinia, Salmonella, Vibrio, and Escherichia coli [38]
established six new taxonomic interactions in the airway
and became a central node following Mtb infection.

Discussion

In this study, we coupled our cynomolgus macaque
model of TB [35, 39] with the ability to serially sample
the airways of animals throughout the course of lung
infection for microbiome analysis. We exploited the
['®F]-FDG PET/CT imaging analyses that we have devel-
oped for use in this model to assess infection trajectory
and severity combined with microbial profiling [29, 40—
45] to determine whether Mtb infection changed the
lung microbial community and the duration of that ef-
fect. As a result, our study is the first targeted explor-
ation of the lung microbiome in an animal model that
faithfully replicates human Mtb infection outcomes and
pathology. Leveraging these imaging and sequencing
technologies with our TB animal model, we found that
Mtb induces an initial shift in the overall microbial rich-
ness that peaks at 1 month post infection and returns to
baseline by 5 months across our infected macaques
(Fig. 1); there was no discernible clustering that occurred
between pre-infection and any time points post-infection
of our monkeys in aggregate (Additional file 2: Figure S2).
Importantly, we observed a high degree of variability in
airway microbial change across the different macaques:
several monkeys displayed robust microbial shifts while
other monkeys harbored more stable lung communities
(Additional file 3: Figure S3) likely reflecting the outbred
nature of the animals, variable pre-Mtb exposures and
treatments, and the heterogeneity in Mtb infections in
macaques [18]. We postulate that this observed microbial
heterogeneity may in turn contribute to the spectrum
of host outcome seen in TB by modifying initial airway
interactions between host cells and Mtb or specific
granuloma microenvironments.

When we profiled core taxa for specific changes in
relative abundance and prevalence following Mtb infec-
tion, we found several shifts of residents associated with
the mammalian oral microbiota into the airway. These
included members of the Aggregatibacter, Streptococcus,
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(See figure on previous page.)

Fig. 3 Community types found in the lung microbiota. a Alpha diversity. p values from Wilcoxon rank sum tests are included. The alpha
diversities of community types B and C were overall significantly lower (p value = 2.2e-16) than those of community types A and D. b Relative
abundance of taxa over-represented in each community type. Letters appended before names indicate whether the taxonomic assignment was
made at the class (c_), order (o_), family (f_), or genus (g_) level. ¢ tSNE, colored by community types. d Community type that predominates in
each monkey at each time point. Triangles represent radiographic evidence of lung pathology (i.e., a granuloma or other grossly visible disease at
a resolution of 1 mm by CT) that coincide with microbiome sampling at the indicated time point. From top to bottom (arrow), monkeys were

ordered, low to high, by the log transformed total ['®FJ-FDG activity at 4-5 months. Xs indicate samples not collected; white (blank) boxes
indicate that the sequence depth was not sufficient for analysis (fewer than 1000 sequence reads) and so the sample was not included

and Staphylococcus (Fig. 2) genera. Their enrichment
over the course of Mtb infection hints at increased tran-
sit of oral microbes into the lower airway. While LEfSe
analysis identified both SRI and Aggregatibacter as
significantly enriched at 4 months post challenge,
Lachnospiracea, a family associated with the intestinal
microbiome [46] and recently linked to adiposity following
broad spectrum antibiotic challenge [30], was significantly
decreased.

Table 2 ['®F-FDG uptake values for each monkey at 4-
5 months post infection by PET/CT

To further address functional microbe relationships
within the airways, we profiled microbe interaction net-
works at both pre- and post-infection using SPIEC-EASI
[37]. We saw that the majority of taxa have a net loss of
their total predicted interactions (both positive and
negative) post Mtb challenge; by contrast, Actinomycet-
ales, the order that contains Mtb, had an overall increase
in negative correlations. Other notable network shifts in-
cluded the transition of Gammaproteobacteria from a
peripheral node to a central node with the predicted in-
crease of six new edges following Mtb challenge. Col-
lectively, these microbial correlation networks imply that
Mtb may alter the functional interactions of microbes
residing within the airways during infection, possibly to

Macaques  PET HOT (4-5 months (SUV)  Log;o(PET HOT 4-5 months) X . . R R !
a Ell better establish a niche for infection. It posits unique
20,915 36.27 1.56 . . . . . X
microbe-microbe relationships secondary to infection
20,715 655.30 282 that may initiate local dysbiosis and potentially influence
20615 90338 296 barrier integrity, lung immunity, and host inflammation
16,514 911.11 296 [13, 14, 47].
16,314 110236 304 While relating specific host disease status and TB out-
15314 132082 310 come with ?\lteljatlon of lung mlcroblota was beyond the
scope of this pilot study (profiled monkeys were pooled
20815 142694 31 from multiple studies with differing infection lengths
16714 349834 354 and experimental endpoints), we observed remarkable
15113 3701.98 357 stability in the overall lung microbiota post Mtb chal-
15,213 526463 372 lenge. This relative stability was evident in both involved
16,914 579437 376 and uninvolved lung lobes (lobes with and without vis-
17014 649261 381 ible disease) and in ‘lung lobes‘ w1th‘ both high and low
levels of pulmonary inflammation (Fig. 3). Although this
9915 716613 3.86 o1s . . . .
stability was not entirely universal, as was highlighted
16614 /83235 389 above with some macaques exhibiting greater shifts in
14913 8517.50 393 both relative abundance and community structure, it is
15613 10,563.85 402 surprising that a robust lung bacterial infection did not
9815 1489656 417 cause a more significant dysbiosis of the airways. Inter-
15513 1873809 497 estingly, Morrls‘and Collgagues (48] a?so reported an ab-
sence of systemic or persistent alteration of the macaque
15413 27,612.06 444 . . . . .
lung microbiota following long-term SHIV infection
20515 3003282 448 despite notable host-specific variation and concomitant
15013 3349444 452 immunosuppression. Similar non-discriminatory results
21,015 3901351 459 were seen in a recent study of the oral and lung micro-
9715 5381537 473 biota of HIV-infected individuals (treatment naive me-
T ' . _ 3 .
16414 12101576 508 dian CD4 count = 668 cells/mr? and HAART me41an
CD4 count=618 cellsymm”) compared against
16,814 27717163 544

HIV-negative controls [49]. A separate lung study of
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Fig. 4 Microbial co-occurrence networks determined with SPIEC-EASI. Mtb infection modulates microbial interactions selecting for both positive
(blue edges) and negative (red edges) interactions between taxa. a Correlation network for pre-infection samples. b Correlation network for post-
infection samples. ¢ Nodes and edges connecting Actinomycetales with its partners pre- and post-infection. Each node represents a taxon and is
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ranges: 1-100, 101-500, 501-1500, 1501-4999, 5001-9999, 10,000-60,000

Table 3 Summary of edges (positive and negative) for each taxon

Pre-infection Post-infection

Total Positive Negative Total Positive Negative
Pasteurellaceae 18 9 9 17 7 10
Neisseriaceae 12 9 3 9 6 3
Actinobacillus 13 9 4 8 6 2
Actinomycetales* 3 0 3 9 2 7
Gammaproteobacteria 0 - - 6 2 4
Fusobacterium 18 7 11 15 8 7
Streptococcus 14 6 8 15 5 10
Porphyromonas 18 10 8 11 8 3
Moraxellaceae 8 2 6 0 - -
Gemellaceae 17 9 8 10 5 5
Capnocytophaga 11 6 5 4 4 0

*Order to which Mtb belongs
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HIV+ individuals with more advanced disease (baseline
mean CD4 count =262 cells/mm?®) did, however, find
significant alterations in both bacterial diversity and
composition compared to an uninfected population [50].
The observations from the human studies, the macaque
SHIV model, and the findings in our Mtb-infected cyno-
molgus macaques suggest that the bacterial landscape
within the airway is a highly variable mucosal surface
with indications of both resistance and plasticity that is
influenced by the type of pathogen, the initial status of
the lung, the severity of disease, host inflammation, and
the incidence of exacerbation [13, 14, 47]. However,
there are key features of tuberculosis that may contrib-
ute to the relatively modest overall changes in airway
microbiota we observed following Mtb infection. First,
Mtb is a relatively slowly evolving infection, since the
bacteria replicate quite slowly in vitro and in vivo; our
previous studies suggested a doubling time in macaque
lung of ~ 40 h in the first month of infection [51]. Acute
lung infections could have a stronger impact on airway
microbiome composition [14, 52]. Second, TB is primar-
ily a parenchymal infection rather than a strict airway
infection, so there may be stronger effects on the actual
lung vs. the airway microbiota. It is possible that much
more severe TB disease, including cavitary disease,
would have a larger impact on the airway microbiome.
Third, Mtb infection results in the formation of granu-
lomas, which are designed to compartmentalize the in-
fection, protecting the lung from further infection
spread, and thus effects on microbiome may be more
local. Finally, unlike the gut, the lungs and airways are
sparsely populated by microbes, and there may be ad-
equate space for new microbial agents to enter and rep-
licate without major changes to the microbial residents.
A better understanding of the interaction of the lung
microbiota, TB disease pathogenesis, and host response
will rely on a more targeted exploration of the local,
granuloma microenvironment [18, 53, 54], as well as
sequencing approaches including transcriptomics and
metagenomics that complement and enrich 16S rRNA
gene sequence analyses.

Conclusions

By serially sampling the BAL of both infected and unin-
fected lung lobes in macaques over the course of Mtb
infection, we have provided an initial survey into how
Mtb modifies the microbial environment of the lung.
We observed alteration of the lung microbiota post chal-
lenge in early infection as well as significant intra-host
variation that reflects the spectrum of outcomes ob-
served in TB. We identified several changes among the
microbial interactome that posit an Mtb-mediated
reshuffling of intra-microbial relationships. However,
despite the presence of a wide range of pulmonary
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inflammation in the macaques studied here, there was a
relatively modest effect overall on the airway micro-
biome in response to Mtb infection, and the effects ob-
served were quite variable among subjects.

Methods

Macaque infections and imaging, microbiome
experimental design, and sample collection

In this study, we analyzed oral washes (OW), bronchoal-
veolar lavages (BALs), and bronchoscope control sam-
ples of 26 cynomolgus macaques (Macacca fasicularis)
obtained from Valley Biosystems (Sacramento, CA). All
animals underwent baseline blood and chemical profiles
and were housed in biosafety level 3 facilities in accord-
ance with the standards of the Animal Welfare Act and
the Guide for the Care and Use of Laboratory Animals.
All macaque procedures and protocols were approved
by the University of Pittsburgh’s Institutional Animal
Care and Use Committee.

The macaques were infected with <25 CFU Mtb strain
Erdman via bronchoscopic instillation into the right lower
lung, as previously described [39]. A 5 mL oral wash was
first obtained from the cheek pouch. A 5 mL saline wash
of the sterilized bronchoscope was also obtained to detect
any residual DNA within the scope. The mouth was
swabbed with an antiseptic agent (chlorohexane) immedi-
ately prior to endotracheal insertion of the bronchoscope.
Saline lavage (7 mL each lobe) of the right and left lower
lung lobes was performed with scope sterilization between
entering each lobe. On average, 4-5 mL were obtained
from both sides of the lung (left and right lobes) for each
macaque at 2 weeks before infection (considered the base-
line), and 1, 4, and 5 months post-infection. The samples
were stored at — 80 °C until they were processed (Table 1).
Macaques were serially imaged throughout infection with
2-deoxy-2-[**F]fluoro-D-glucose positron emission tom-
ography and computed tomography ([**F]-FDG PET/CT),
as previously published [29, 54, 55], to track inflammation
and disease progression. Total lung inflammation (total
FDG activity) is a cumulative summation of [®F]-FDG
uptake (as measured by standard uptake value [SUV] with
positive PET above 2.3) [35, 56](Table 2).

DNA isolation, amplification, and sequencing

DNA was isolated from 5 mL of the oral wash, 5 mL of
the bronchoscope wash, and 4-5 mL lavage from each
lobe using the PowerSoil® DNA Isolation Kit (MO BIO
Laboratories Inc.). DNA isolations were performed at
the University of Pittsburgh in a dedicated biosafety level
3 cabinet that was first exposed to a UV light source for
15 min. Reagent and sterile PBS were also processed
through the DNA isolation procedure as negative con-
trols. The DNA was eluted in 100 pL elution buffer.
Each sample was quantified with the Qubit 2.0
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Fluorometer (ThermoFisher Scientific Inc.). The samples
were stored at —20 °C until shipment to New York
University for analysis.

Extracted DNA was used in a PCR reaction with
sequencing primers targeting the V4 hypervariable re-
gion of the bacterial 16S ribosomal RNA (rRNA) gene.
6 uL of DNA were amplified in a final volume of 25 pL
with 0.35 pL Q5 Hot Start High-Fidelity DNA Polymer-
ase (New England BioLabs Inc.), 5 pL 5X Q5 Buffer,
0.5 pL ANTP and 5 pM primers (515F/806R) [57], 5 uM
barcoded reverse primer and water. Cycling conditions
were 94 °C for 2 min, then 33 cycles at 94 °C for 30 s,
55 °C for 30 s, and 72 °C for 30 s, followed by 72 °C for
10 min.

Reactions were cleaned up using 0.65x volume of
AMPure XP Beads (Agencourt) and eluted into 20 pL
low TE, pH 8.0 on the Bravo Automated Liquid Hand-
ling Platform (Agilent Technologies). Eluted PCR prod-
ucts were quantified with a Quant-iT double-stranded
DNA (ds-DNA) High-Sensitivity Assay Kit (Invitrogen)
according to the manufacturer’s instructions and com-
bined into a pool with equal amounts of each amplicon.
Samples were then pooled and each pool was re-purified
with 0.65x volume of AMPure XP Beads (Agencourt).
All pools were re-run on a HSD1000 ScreenTape with
the TapeStation instrument (Agilent Technologies) and
quantified with the Qubit 2.0 Fluorometer. Three pools
were combined into a final pool with equal amounts of
each amplicon and re-purified with 0.65x volume of
AMPure XP Beads to ensure library quality. The pool
was quantified by gPCR with the KAPA Library Quanti-
fication Kit (KAPA Biosystems) for the Roche 480 Light-
Cycler system. The final library was 2x250 bp
paired-end sequenced on the MiSeq Illumina Sequencer
at the Genomics Core Facility of the Center for Genomics
and Systems Biology (CGSB), New York University.

Sequence data processing and analysis

The 16S rRNA gene sequences were processed using the
Quantitative Insights into Microbial Ecology (QIIME)
pipeline for analysis of microbiome data [58]. The reads
were end-paired with the 1.1.2 ea-utils [59], filtered, and
de-multiplexed. Chimeric sequences were identified and
filtered out with the ChimeraSlayer sequence detection
tool [60]. Sequences were clustered into Operational
Taxonomic Units (OTUs) at a 97% similarity threshold
with the open-reference approach, which begins by run-
ning a close-reference step followed by a de novo step that
clustered the sequences that failed closed-reference as-
signment. Taxonomic assignments of the sequences were
made using the RDP (Ribosomal Database Project) classi-
fier [61], which classifies sequences to the species level,
aligning the reference sequences picked for each OTU
against the 16S rRNA gene database Greengenes 13_5
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(version of May 2013) [62]. Assignments of taxonomy
were refined though phylogenetic methods using PyYNAST
[63] to generate an alignment for each cluster from which
a phylogenetic tree was generated using the FastTree ap-
proximately maximal likelihood method [64]. We identi-
fied Burkholderia as being one of the dominant genera in
the bronchoscope controls, and so any OTU matching
that genus was removed from the analyses. After removal
of Burkholderia, we identified 16,218 OTUs (from an ori-
ginal total of 16,243) with a mean of 26,600 reads per sam-
ple and 511 genus-level OTUs. Singletons and OTUs
present in less than 10% of the samples were filtered out
of the dataset to reduce statistical noise, leaving the 98
most abundant OTUs for downstream analyses. Samples
with fewer than 1000 reads were removed, and all others
were subsampled/rarified to 1000 reads.

The QIIME output data were imported in RStudio
(Version 1.0.136) with the Bioconductor package phyloseq
[65], including subsetting, normalizing, and plotting of the
input data. The taxonomic and OTU-based profiles were
used in a series of ordination, clustering, and community
diversity analyses designed to identify significant shifts in
16S rRNA gene profiles between samples across time
points and for further statistical analyses. Alpha diversities
of different groups, calculated as the inverse Simpson
Index, were compared using the Wilcoxon signed-rank
test. The beta-diversity was calculated as Bray-Curtis dis-
similarity [66] and analyzed/compared using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [67] which allows
dimensionality reduction.

For OTU differential relative abundance analysis, the
Linear Discriminant Analysis Effect Size (LEfSe) [68]
method was applied. This method consists of a
Kruskal-Wallis test followed by subsequent Wilcoxon
rank-sum tests on subgroups. This analysis was per-
formed using the Huttenhower lab online Galaxy web
application [69]. For the association analysis between
microbial abundance and lung inflammation, Multivari-
ate Association with Linear Models (MaAsLin) analysis
was applied [70]. This analysis was performed using the
MaAsLin R package (https://bitbucket.org/biobakery/
maaslin/downloads/Maaslin_0.0.4.tar.gz).

Ecological correlation networks were constructed to
identify interactions of the microbial community associ-
ated with Mtb infection. Taxa counts were normalized
using total sum scaling (also known as relative abun-
dance) followed by centered log ratio scaling [71]. Each
network was built using SParse InversE Covariance
estimation for Ecological ASsociation Inference (SPIE-
C-EASI) package version 0.1 in R (https://github.com/
zdk123/SpiecEasi) [37, 36]. The sparse graphical lasso
(glasso) setting was used and the optimal sparsity par-
ameter was selected, based on the Stability Approach to
Regularization Selection (StARS) [72]. The StARS
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variability threshold was set to 0.1 for all networks. Net-
works were analyzed using functions of the R package
igraph version 1.0.1 [73].

Community types [74] of the lung microbiome were
identified using the Dirichlet Multinomial Mixture (DMM)
model [34], implemented in mothur [75]. The Laplace
approximation was used for selecting the best number of
community types, and the optimal number of community
types was found when the minimum Laplace value was
observed.
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