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Abstract

Background: Recent advances in sequencing technologies and bioinformatics tools have allowed for large-scale
microbiome studies that are rapidly advancing medical research. However, small changes in technique or analysis
can significantly alter the results and lead to conflicting findings. Quantifying the technical versus biological
variation expected in targeted 16S rRNA gene sequencing studies and how this variation changes with input
biomass is critical to guide meaningful interpretation of the current literature and plan future research.

Results: Data were compiled from 469 sequencing libraries across 19 separate targeted 16S rRNA gene sequencing
runs over a 2.5-year time period. Following removal of contaminant sequences identified from negative controls,
244 samples retained sufficient reads for further analysis. Coefficients of variation for intra- and inter-assay variation
from repeated measurements of a bacterial mock community ranged from 8.7 to 37.6% (intra) and 15.6 to 80.5%
(inter) for all but one genus of bacteria whose relative abundance was greater than 1%. Intra- versus inter-assay
Bray-Curtis pairwise distances for a single stool sample were 0.11 versus 0.31, whereas intra-assay variation from
repeat stool samples from the same donor was greater at 0.38 (Wilcoxon p =0.001). A dilution series of the
bacterial mock community was used to assess the effect of input biomass on variability. Pairwise distances
increased with more dilute samples, and estimates of relative abundance became unreliable below approximately
100 copies of the 16S rRNA gene per microliter. Using this data, we created a prediction model to estimate the
expected variation in microbiome measurements for given input biomass and relative abundance values.

Conclusions: Well-controlled microbiome studies are sufficiently robust to capture small biological effects and can
achieve levels of variability consistent with clinical assays. Relative abundance is negatively associated with
measures of variability and has a stronger effect on variability than does absolute biomass, suggesting that it is
feasible to detect differences in bacterial populations in very low-biomass samples. Further, by quantifying the
effect of biomass and relative abundance on compositional variability, we developed a tool for defining the
expected variance in a given microbiome study.
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Background

Continued improvements and decreasing costs of DNA se-
quencing technologies have enabled exponential growth in
human microbiome studies [1]. Alterations in these com-
plex and dynamic microbial communities have been associ-
ated with a plethora of human health-associated outcomes
including obesity, autism, asthma, and inflammatory bowel
disease. There is considerable enthusiasm for using targeted
sequencing of microbial communities to understand disease
pathogenesis as well as the development of novel diagnos-
tics, therapeutics, and preventative measures. However, as
with any relatively new technique, contradictory findings
are present. For example, the presence of low-biomass bac-
terial communities in environments long thought to be
sterile has been a topic of much debate, as these have been
attributed to either reagent contamination or a true com-
mensal population [2-5]. A growing body of work has
demonstrated the importance of experimental design and
execution on reproducibility and robustness of microbiome
studies [6-9]. Differences in sample storage, DNA extrac-
tion method, primer choice, and laboratory conditions have
all been shown to effect changes in the inferred microbial
composition that lead to potentially conflicting associations
with clinical outcomes [10-18].

Our goal in presenting this data is to help predict the re-
producibility of the relative abundance of bacterial commu-
nities in microbiome studies using a standardized
approach. In clinical assays, reproducibility relies on both
precision and accuracy. Accuracy is difficult to measure in
the absence of a well-defined ground truth, and most com-
plex microbial communities remain as of yet too unevenly
characterized to yield a true gold standard. As such, we
focus here on measures of precision. Our group standard-
ized all of the aforementioned experimental conditions and
performed a large number of microbiome studies over the
past few years. Through repeat sampling of both synthetic
and biologic bacterial communities, we focus on quantify-
ing the technical and biological variation that can be ex-
pected from rigorous microbiome experiments.

Specifically, through this study, we describe the baseline
intra- and inter-assay variation from repeated measure-
ments of a bacterial mock community across 19 sequencing
runs over the course of approximately 2 years. We also ex-
amined intra- and inter-assay variation versus biological
variation by repeated profiling of three stool specimens pro-
vided by a single donor. Finally, we quantified the robust-
ness of amplicon-based microbiome profiling as a function
of input bacterial biomass. We then defined a model com-
bining relative abundance and concentration to help predict
variance. These data show that the technical variation in
well-controlled microbiome studies is similar to those of
other standard laboratory assays. Additionally, these data
provide novel insights into the effect of input biomass and
relative abundance on variation in the inferred microbiome
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composition and may help guide future studies of similar
low-input communities.

Results

Study design

Data were aggregated from 469 sequencing libraries
across 19 different MiSeq runs (Table 1). All of the sam-
ples were subjected to the same DNA extraction, PCR
amplification, and library preparation methods. To
quantify intra- and inter-assay variation, data were ana-
lyzed from 118 libraries prepared from independent ali-
quots of a whole-cell bacterial mock community that
was extracted and sequenced alongside other projects
over the course of 2 years. To investigate biological ver-
sus technical variation, a set of 29 libraries was analyzed
from three separate stool samples from a single donor at
2-week intervals. To assess the variance in sequencing
low-biomass samples, given the stochastic variation in-
herent during PCR amplification of low quantities of
DNA, a set of dilutions ranging from stock concentra-
tion to thousandfold dilutions of our mock community
was performed and analyzed. Quantitative polymerase
chain reaction (qQPCR) was used to measure absolute 16S
rRNA gene copy number followed by targeted 16S rRNA
gene sequencing to determine microbial composition.
With these data, a model was created to predict vari-
ation based on relative abundance and biomass.

Quality control

Initial principal coordinates analysis (PCoA) revealed
three distinct groups comprising the stool, mock com-
munity, and negative control samples (Additional file 1:
Figure S1). Given the clear segregation of the negative
controls, we identified and removed contaminant se-
quences based on their overrepresentation in negative
control samples (Additional file 2: Figure S2a). Based on
the distribution observed, we removed all sequence variants
whose aggregate count in negative control samples exceeded
10% of the total count. Following this step, we examined the
number of reads remaining for each sample and identified
an inflection point at approximately 10,000 reads above
which only two negative controls remained (Additional file 2:
Figure S2b). We therefore chose to retain the samples with
at least 10,942 reads for all subsequent analyses, leaving us
with a total of 244 samples (2/222 (0.9%) negative control,
29/29 (100%) stool, 213/218 (97.7%) mock community)
across 19 sequencing runs (Table 1).

Intra- and inter-assay variation of a mock community
over time

One hundred eighteen samples prepared from independ-
ent aliquots of a custom designed 33-strain mock com-
munity extracted and sequenced in 17 runs over the
course of 2 years were selected for analysis. One run
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contained only a single mock sample and was therefore
excluded, leaving a total of 117 samples across 16 runs.
The inferred taxonomic compositions were highly
consistent across all samples (Fig. 1a) even though they
did not match the expected community composition
(Additional file 3: Table S1). A total of 204 amplicon
sequence variants (SV) were observed for the 33 strains,
which is comparable to the error rates reported in recent
benchmark studies [19, 20]. Clustering by run was
observed (Fig. 1b) with a large proportion of variance
explained (PERMANOVA R* = 0.80, p < 0.001), although
this measure is likely inflated by the inclusion of only a
very tightly clustered set of samples. Measures of pair-
wise distance and intraclass correlation (ICC) stratified
by sequencing run revealed generally high consistency
across the sequencing runs (Fig. 1c, mean Bray-Curtis
distance = 0.096, mean ICC=0.98 at all family/genus/
species/sequence variant levels). Of note, the overall ICC
across all 16 runs ranged from 0.94 at the family level to
0.96 at the sequence variant level, which is in agreement
with the PERMANOVA results suggesting a small
run-to-run batch effect.

To quantify intra- and inter-assay variation, we calcu-
lated the coefficient of variation (CV) at the family,
genus, species, and sequence variant levels (Fig. 1d and
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Additional file 4: Figure S3). Intra-assay variation was
defined based on the variation identified within a se-
quencing run. Inter-assay variation looked at reproduci-
bility of the same sample over multiple runs. Intra-assay
coefficients of variation ranged from a mean of 8.7%
(0.04-17.9%) for the most abundant genus, Citrobacter,
with a relative abundance of 47.45, to a mean of 37.6%
(1.6—87.6%) for Enterococcus, with a relative abundance
of 2.83. One genus, Lachnoclostridium, had much
greater variability with a mean intra-assay CV of 118.4%
(not detected—201% with a relative abundance of 0.82).
Mean CVs were remarkably consistent across taxonomic
levels (family, genus, species, and SV) (Kruskal-Wallis
p =0.77, Additional file 4: Figure S3). For bacteria with a
relative abundance <1%, CVs were highly variable.
Inter-assay variation ranged from 15.6% for Citrobacter
to 80.4% for Enterococcus with Enterococcus having
greater variability than some less abundant bacterial
taxa. Overall, a significant negative correlation between
CV and mean relative abundance at the family level
(Fig. 1d, Additional file 4: Figure S3 and Additional file 5:
Table S2) and other taxonomic levels was observed.
Levey-Jennings plots further revealed the greatest run
variance primarily among low-abundance bacterial fam-
ilies (Additional file 6: Figure S4).
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Does biological variation exceed technical variation?

A critical question in most microbiome studies is whether a
biological signal can be distinguished from technical vari-
ation. To this end, we first jointly examined 146 quality
control-filtered stool and undiluted bacterial mock samples
using PCoA on Jensen-Shannon distances (JSD) (Fig. 2a). As
expected, the tight clustering of the bacterial mock and stool
samples was observed. Permutational multivariate analysis of
variance (PERMANOVA) confirmed sample type as the
dominant driver of variation (R* =065, p <0.001), with
sequencing run (R* =0.07, p <0.001) also contributing sig-
nificantly to overall variation. Intra- versus inter-assay
Bray-Curtis distances for a single stool sample were 0.11 ver-
sus 0.31, whereas biological variation from the same subject
2 to 4 weeks apart was greater at 0.38 (Wilcoxon p =0.001,
Fig. 2b). Similar results were observed for other distance
metrics (Additional file 7: Figure S5). Taken together, these
findings suggest that even small biological effects (e.g., stool
specimens from a single individual) can be readily distin-
guished from technical variation.

How does input biomass affect technical variation?

Recent studies have highlighted the importance of abso-
lute quantification of input DNA, particularly in studies
where the samples are known to be of low biomass and
susceptible to being overwhelmed by contamination [3,
9]. To quantitatively assess the impact of starting DNA
amount on variability in microbial composition, a careful
investigation of a dilution series of our bacterial mock
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community spanning the stock concentration to a thou-
sandfold dilution was performed.

Using 16S rRNA gene quantitative PCR (qPCR) as a
measure of absolute abundance, the expected strong cor-
relation between theoretical dilution constants and 16S
rRNA gene copies was found (Fig. 3a Pearson r =0.99).
Notably, a small but consistent over-dilution effect in
our series was observed; that is, the 16S rRNA gene copy
numbers as measured by qPCR were monotonically
lower than the expected copy numbers. This effect was
somewhat ameliorated when the expected copy numbers
were recalibrated to account for the sequential nature of
the dilution series (e.g., 1:20 dilution was made from the
1:10 dilution). In the 16S rRNA gene sequencing data, we
observed unexpected sequences classified as Pseudomonas,
Moraxella, among others, most noticeably in the more di-
lute samples (Additional file 8: Figure S6a). Although the
contaminant filtering steps removed this effect quite well
(Additional file 8: Figure S6b), we still suggest that the 1:80
dilution series (approximately 94 copies of 16S rRNA gene/
pL) may represent the lower limit of what can be accurately
and robustly profiled without being significantly impacted
by contamination. As expected, pairwise distances in-
creased with more dilute samples (Fig. 3b) and approached
the distances representative of biological variation (Fig. 2b)
with the 1:100, 1:500, and 1:1000 dilutions. CV values at
selected taxonomic levels (Fig. 3c, Additional file 9:
Figure S7) also point to the unreliability of relative
abundance estimates in samples past the 1:80 dilution
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set (~ 94 copies/pL). Finally, the expected decrease in
alpha diversity estimates with more dilute samples (Fig. 3d)
also suggests that the 1:80 dilution set be treated as the
lower limit of what can be reliably measured.

Predicting variation in 16S rRNA gene measurements

As the dilution coefficients here represent an artificial
construct, an attempt was made to place estimates of
variability in the context of absolute abundance mea-
surements (e.g., 165 rRNA qPCR), so that they may be
broadly applicable to microbiome studies.

As expected, CV values were negatively correlated with
both absolute 16S rRNA gene copy number and mean rela-
tive abundance (Fig. 4, Spearman rho = - 0.67 and - 0.55,
respectively). Multivariate linear regression revealed the
same effect and further allowed a predictive model of the
expected variation in microbiome measurements for given
input biomass and relative abundance values to be created
(Table 2, Additional file 10: Table S3).

Discussion

In this study, we characterized intra- and inter-assay
variation, providing coefficients of variation, in targeted
16S rRNA gene sequencing studies in ideal experimental

models and biological specimens. Additionally, the effect
of low-biomass input on expected variance was explored,
and a prediction model was created. These results pro-
vide context for the amount of technical variation to be
expected over the course of long-running microbiome
studies and may be useful in both study design and in
assessing the validity of minute compositional differ-
ences in other datasets.

As discussed in the literature, the inclusion and analysis
of negative control samples is critical in microbiome stud-
ies [9]. Although the filtering and quality control steps de-
scribed here appear ad hoc, they are strongly motivated by
the empiric observations in the data. Recent approaches
to identify and remove contaminant sequences from
microbiome sequencing data utilize frequency and preva-
lence of sequences in low-biomass samples and negative
controls in a manner that may be less ad hoc than the ap-
proach described herein [5, 21]. Nevertheless, we wish to
highlight the importance of the thoughtful application of
data from negative controls to remove as much unwanted
variance as possible from microbiome datasets.

Although mock communities are becoming much bet-
ter characterized and applied to microbiome research
[22], little has been done to explicitly follow these over
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Table 2 Linear regression modeling of variation versus input biomass and mean relative abundance. Summary of the linear
regression model (a) and predicted variation values for a subset of 16S rRNA gene copies/microliter and mean relative abundance

values (b)
a. Model Estimate Standard error t value p value
(Intercept) 143238 0.12556 11.408 <22E-16
log10 copies/microliter —-0.2816 0.04905 —5.741 6.93E-8
log10 mean relative abundance —0.54936 0.06927 -7931 1.13E-12
Residual standard error 05196
Multiple R-squared 04496
Adjusted R-squared 04407
F statistic 50.25 on DF (2123)
b. Prediction Mean relative abundance (%)
Copies/microliter 1 5 10 25 50
Low biomass 10 0.5723 1.7313 2.7888 52376 84370
Medium biomass 1000 0.2865 0.8668 1.3963 26224 4.2242
High biomass 100,000 0.1435 04340 0.6991 1.3130 2.1150
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time. We demonstrated with our repeated mock controls
over a 2-year time frame that run-to-run variation may
be limited to a fraction of the overall variation observed
as long as procedures for extraction, amplification, and
sequencing remain identical. We recommend following
the known bacterial species in mock control samples
using Levey-Jennings plots to help identify runs that
may represent outliers in terms of bacterial composition.
While we found good precision in amplification of our
mock control community, accuracy was marginal. Ac-
curacy likely reflects the limitations of the current data-
bases, quantification of input, variability in extraction,
and PCR amplification. This is consistent with previous
studies that found higher precision than accuracy in
microbiome profiling data [9, 22]. Of note, the expected
taxonomic proportions for the mock community are
based on whole-cell estimates and likely do not reflect
post-extraction DNA content. We intentionally used a
whole-cell mock control as we believe it is necessary to
control for variation in the DNA extraction step; the de-
bate between whole-cell versus DNA mock communities
is a topic of much current interest [23].

When examining individual bacterial taxa, Bifidobacterium
showed high consistency in relative abundance mea-
surements. This robustness may help explain why small
changes in Bifidobacterium abundances can be reliably
detected [24, 25]. Interestingly, the trifecta of Strepto-
coccus, Enterococcus, and Staphylococcus tended to be
more variable, at least in a subset of the sequencing
runs. It remains unclear whether this was due to tech-
nical variation in extraction and amplification. Further-
more, certain species may present specific difficulties
and may be subject to even greater variability, such as
Dorea formicigenerans in our mock community. Thus,
while inter-assay coefficients of variation may be as low
as 15.6% and usually fall under 80%, these values must
be interpreted with caution in the context of the spe-
cific bacteria of interest.

Further concerns for technical variation outweighing
biological variation have made interpretation of human
microbiome studies difficult. Many studies have shown
now that storage, extraction technique, sequencing plat-
form, and analysis pipeline can all have effects on the re-
sults of a study. Further, a recent study of mock controls
demonstrates that most of the technical variation oc-
curred with extraction and amplification and not during
the sequencing itself [10]. That being said, we found that
under well-controlled experimental conditions, repeat
samples showed little intra- or inter-assay variation, es-
pecially in taxa with high relative abundance. Inter-assay
coefficients of variation generally exceeded intra-assay
variation, although both sets of values were within the
ranges reported in previous studies of microbiome sta-
bility [26—28]. Although accuracy potentially may not be
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great, the ability to replicate results with these standard
methods with precision is there and argues for biological
variation to be the key contributor of these types of
studies.

The complexities associated with low biomass studies
have been documented [9, 14]. Salter et al. elegantly
showed the significant impact of kit contaminants on
low-biomass samples both by a serial dilution study and
re-analysis of a nasopharyngeal study. This is highlighted
in recent reports of a commensal placenta microbiome
followed by conflicting studies that revealed no evidence
for a placental microbiome distinct from contamination
controls [2, 3, 29]. In our dilution study of a known bac-
terial community, both absolute 16S rRNA gene copy
number and mean relative abundance affected the vari-
ance in microbiome measurements. As the coefficient of
variation is a standardized measurement of dispersion,
the implication of this relationship is that additional
variation is present in amplicon-based microbiome data
beyond that derived from the underlying bacterial
counts. Indeed, a number of recent studies have sug-
gested that modeling of overdispersion as well as zero
inflation is critical to the accurate interpretation of
microbiome sequencing data [30, 31]. We further
propose that these methods should incorporate the ef-
fect of input biomass as this may improve the ability to
control false discoveries particularly for lower biomass
samples.

Our study has a number of limitations. This is primar-
ily an investigation at the intra- and inter-assay variation
of samples being processed through a standardized pipe-
line and therefore may not be applicable to studies using
other procedures. Regardless, because of the large num-
ber of ongoing studies in our microbiome-sequencing la-
boratory, we have a large number of repeated samples
for intra- and inter-assay variation as well as positive
and negative controls. The mock community we use is
of relatively low complexity, and thus, the number of
samples limits measures of biologic variation. Further-
more, the repeat stool samples from a single donor
taken at 2-week intervals likely represent minimal bio-
logical variation given the relatively short time frame of
their collection and the limited number of samples. In-
deed, the measured inter-assay technical variation was
surprisingly close to the biological intra- and inter-assay
variation. We hypothesize that this is due to the limited
number of comparisons made in this study and would
caution that future studies to explore biological variation
encompass a far greater diversity of specimens. Given
the large sample numbers and commonly used sequen-
cing protocol, we feel that this study provides a
real-world experience and helps establish a baseline for
the amount of biological and technical variation one
should expect in a microbiome study.
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Conclusions

In this study, we characterized the variation that can be
expected from well-controlled microbiome experiments
to help establish a baseline so that future studies may be
interpreted more accurately. Under well-controlled con-
ditions, intra- and inter-assay variation should have little
impact on the validity of the results. We further demon-
strated that minimal biological variation (e.g., three re-
peat stool samples from the same donor) exceeds
technical variation. Lastly, we show that the relative
abundance has a stronger impact on variability than in-
put biomass. In quantifying the effect of biomass and
relative abundance on compositional variability, we pro-
vide a tool that will allow future microbiome studies to a
priori define the expected variance.

Methods

Overall study design

A total of 469 samples from 19 separate sequencing runs
spanning 2.5 years were analyzed in aggregate. Inde-
pendent aliquots of a whole-cell bacterial mock commu-
nity totaling 118 samples were included on 17 runs. One
run (run 14) only contained a single mock sample which
was excluded from further analysis, leaving a total of 117
samples across 16 runs. A prospective dilution study of
the same mock community was conducted on a single
run (run 18). Dilutions of 1:10, 1:20, 1:30, 1:40, 1:50,
1:60, 1:80, 1:100, 1:500, and 1:1000 bacterial mock com-
munity to sterile water were prepared and stored at -
80 °C until extraction. A total of 29 libraries prepared
from three distinct stool specimens from the same
donor taken at 1-week intervals were included on three
runs. Negative controls were included on 17 of the 19
runs. Further details are provided below.

Positive and negative controls

Our bacterial mock community comprises 33 clinical and
ATCC strains (Additional file 3: Table S1). Colonies from
sheep blood agar plates were resuspended in sterile nor-
mal saline. These were standardized to 1.0 MacFarland
optic density based on nephelometer reading. Additional
bacteria were added straight from glycerol stock as sup-
plied by BEI Resources (Manassas, VA).

Aliquots of this bacterial mock community were pre-
pared and stored in sterile water at — 80 °C until use.
Negative controls included DNA extraction controls
(e.g., reagents from DNA extraction kit) as well as PCR
blanks using PCR-grade water with no DNA template.

DNA extraction

After addition of RLT+ lysis buffer from the AllPrep
DNA/RNA Mini Kit (Qiagen, Hilden, Germany), sam-
ples were transferred to Lysing Matrix E beads (MP
Biomedicals, California, USA) and heated at 37 °C for
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10 min with shaking at 700-800 rpm. This was followed
by bead beating on a TissueLyser II (Qiagen) system.
The supernatant was then removed from the centrifuged
samples and placed on an automated QIAcube (Qiagen)
workflow system. DNA was then extracted using the All-
Prep DNA/RNA Mini Kit (Qiagen) in accordance with
the manufacturer’s protocols. Extracted DNA was stored
in elution buffer at — 80 °C.

Library preparation

The 16S rDNA was amplified in triplicate and barcoded
using a previously published protocol (26). Briefly, 1 pL
of the extracted DNA was amplified using primers com-
plementary to the V4 (515F/806R) region of the 16S
rRNA gene in a single-step PCR reaction. Illumina (San
Diego, CA, USA) flow cell adapter sequences and a
12-bp barcode were incorporated into the PCR primers,
yielding a fully Illumina-compatible sequencing library.
DNA amplicon purity and concentration was quantified
on a 2100 BioAnalyzer (Agilent Technologies, Santa
Clara, California, USA) and Qubit 3.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA).

Sequencing

We followed the detailed sequencing protocol as pre-
sented previously by Caporaso et al. [32]. Briefly, unless
stated otherwise, we diluted each sample to 2 nM.
Amplicons were then denatured and loaded onto a
MiSeq desktop sequencer (Illumina, San Diego, CA,
USA) using 2 x 150 bp v2 chemistry. After cluster for-
mation, the amplicons were sequenced with custom
primers complementary to the 515F/806R amplification
primers, thereby avoiding sequencing of the constant re-
gions at the ends of the target amplicon. The barcode
was read using a third sequencing primer in an add-
itional set of cycles.

Quantitative PCR

The positive mock bacterial control dilution series was
further analyzed by quantitative PCR. Degenerate primers
were modified from the original 515F-806R primer pair by
removal of the linker, pad, barcode, and adapter sequences
[32]. (Primer sequences—forward: GTGYCAGCMGCCG
CGGTAA; reverse: GGACTACNVGGGTWTCTAAT)
Real-time quantitative PCR was done using PerfeCTa
SYBR Green FastMix ROX (Quanta Bio, Catalog
95073-012) using a 384-well format on an ABI 7900HT
machine. All samples were run in triplicate wells. Run
setup was based on Quanta Bio’s product manual using
standard cycling (95 °C for 3 min, followed by 40 cycles of
95 °C for 15 s, 50°for 60 s). We used 5 pL of template per
reaction for a final reaction volume of 20 pL per sample.
A plasmid-encoded single-copy 16S rRNA gene standard
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was used at the following concentrations (copies/5 pL): O,
10%, 10% 10% 10° 10° and 10”.

Data analysis and statistics
Sequences were demultiplexed with Golay error correc-
tion using QIIME 1.9.1 [32]. Divisive amplicon denoising
algorithm version 2 (DADA2) was used for error correc-
tion, exact sequence inference, and chimera removal
[33]. All statistical analyses, including the calculation of
alpha and beta diversity metrics and taxonomic compo-
sitions, were performed using the “phyloseq” package in
the R software environment (version 3.3.2) [34].
Removal of contaminant sequence variants was per-
formed by a simple “contaminant score” S;:

>
_ T
D¢

For sequence i, j being the set of negative control sam-
ples, and c;; being the read count of sequence i in sample
j. This score ranges from O for sequences that are only
observed in “true” samples to 1 for sequences that are
only observed in negative controls. Intermediate values
are interpreted as a measurement of the likelihood that
a given sequence variant was derived from negative con-
trols (i.e., contamination) as opposed to being truly
present in a sample of interest. We used a threshold of
0.1 to identify and remove contaminant SVs prior to all
further analysis. Following removal of contaminant SVs,
a rarefaction depth of 10,942 reads was selected based
on the empirically observed distribution of read counts.
The rarefied SV table was used for analysis of alpha di-
versity, and relative abundances were used for all other
analyses.

Additional statistical analyses were performed using R stat-
istical software version 3.3.1. Nonparametric Kruskal-Wallis
and Wilcoxon tests were used as described in the text. Mean
relative abundance when used in the text refers to the mean
of per-sample relative abundance values for a given taxon.

Si

Analysis of bacterial mock community over time

A total of 118 samples over 17 sequencing runs were ini-
tially selected for this analysis. Of note, one run (run 14)
only contained a single mock sample and was therefore
excluded from the analysis. Additionally, ten undiluted
mock samples from the dilution study run (run 18 in
Table 1) were included in the n = 117 final set. Intra-assay
measures of variability (e.g., stratified by run) were com-
puted by taking subsets of data for each sequencing run
and computing the associated statistic, whereas the
inter-assay variability was computed using the entire data
matrix of 117 samples. The intraclass correlation coeffi-
cient (ICC), a commonly used statistic of measurement
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reproducibility, was computed using the “irr” R package
(version 0.84) using a one-way model.

Analysis of biological versus technical variation

A total of 147 samples over 19 sequencing runs were ini-
tially selected for this analysis. One run (run 14) only
contained a single mock sample and was therefore ex-
cluded, leaving a total of 146 samples across 18 runs for
analysis. Pairwise distances were first computed for all
146 samples, and then the appropriate elements were
extracted for each comparison group.

Analysis of input biomass and variation

A total of 105 samples from a dilution series sequenced in
a single run (run 18) were used for this analysis. Multivari-
ate linear regression was performed using the “stats” base
R package and a model of coefficient of variation ~
log10(qPCR copies per uL)+ loglO(mean relative abun-
dance) for each taxa of interest.

Additional files

Additional file 1: Figure S1. Principal coordinates analysis (PCoA) on
Bray-Curtis distances for all samples (n = 469), prior to contaminant se-
quence variant (SV) removal and filtering. (PDF 599 kb)

Additional file 2: Figure S2. Removal of contaminant sequence
variants (SVs). a) Frequency plot of percentage of reads derived from
negative controls for each SV. b) Read counts for each sample after
removal of contaminant SVs. Horizontal dotted line at approximately
10,000 reads is the rarefaction threshold (10942). (PDF 112 kb)

Additional file 3: Table S1. Composition of the bacterial mock
community. (DOCX 17 kb)

Additional file 4: Figure S3. Heatmaps of coefficient of variation (CV)
values for each taxon across sequencing runs, at the family (a), species
(b), and sequence variant (c) levels. Greyscale cells on the left indicate

mean relative abundances for each taxon (also given as percentages in
parentheses). (PDF 692 kb)

Additional file 5: Table S2. Coefficient of variation (CV) values for
individual bacteria taxa in the bacterial mock community samples
measured across 16 sequencing runs. (XLSX 29 kb)

Additional file 6: Figure S4. Levey-Jennings plots for bacterial genera
over the course of 16 sequencing runs (x-axis, sorted chronologically from
left to right). Mean relative abundance (solid line), one standard deviation
(dashed line), and two standard deviations (dotted line) are indicated.
Samples in red represent observations more than two standard devia-
tions from the mean. (PDF 972 kb)

Additional file 7: Figure S5. Boxplots of Jensen-Shannon (a) and Jac-
card (b) distances for bacterial mock and stool samples. (PDF 257 kb)

Additional file 8: Figure S6. Taxonomic composition of bacterial mock
community samples pre-filtering (a) and post-filtering (b). Compositions
are sorted by dilution constant and shown at the family level. Shading
along bottom indicates less (darker) and more (lighter) dilution. Only taxa
with an average abundance of at least 1% are shown. (PDF 253 kb)

Additional file 9: Figure S7. Heatmaps of coefficient of variation (CV)
values for each taxon by dilution constant, at the family (a), species (b),
and sequence variant (c) levels. Greyscale cells on the left indicate mean
relative abundances for each taxon (also given as percentages in
parentheses). (PDF 484 kb)

Additional file 10: Table S3. Predictive models of the expected
variation in microbiome measurements for given input biomass and
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relative abundance values at the family, species, and sequence variant
level. (XLSX 15 kb)
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