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Abstract

Background: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of
the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic,
auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition
even within body sites of healthy humans. An individual’s microbiome varies over time in a high-dimensional space to
form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of
the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no
robust non-parametric test that determines whether a patient’s microbiome cloud is an outlier with respect
to a reference group of healthy individuals with widely varying microbiome profiles.

Methods: Here, we propose a test for outliers’ detection in the human gut microbiome that accounts for the
wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual
temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a
patient’s microbiome health: conformity, the extent to which the patient’s microbiome cloud is ecologically similar to a
subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects.
The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying
microbiome compositions among reference individuals. It also leverages temporal variability within patients
and reference individuals to increase the robustness of the test.

Results: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients
receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy
cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes.

Conclusions: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a
framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in
diagnosis and prognosis of numerous pediatric and adult diseases.
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Background
The human gut microbiome is known to be highly vari-
able between individuals, as well as within individuals over
time [1, 2]. Substantial methods development has resulted
in better discriminative tests for the microbiome, in which
the goal is to identify specific taxa that differentiate treat-
ment groups or correlate with experimental variables or

clinical metadata [3–7]. These supervised tests are useful
when a study has two or more experimental groups, or a
known biochemical gradient related to the microbiome.
Halfvarson et al. recently defined a two-dimensional

healthy plane, calculated in a space derived from principal
coordinates analysis (PCoA) of unweighted UniFrac dis-
tances of healthy subjects, using the least-squares method.
This plane was then used as a proxy to represent the nor-
mal microbial variation within healthy subjects and to
summarize the abnormal, intermittent dysbiosis associated
with inflammatory bowel disease (IBD). The authors
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found that microbiomes of IBD patients fluctuated more
than those of healthy individuals and, at times, occupied a
different region of PCoA space, based on deviation from
the newly defined healthy plane [8]. This approach rep-
resents a significant advance in dysbiosis testing and
is likely to be effective in cases with relatively homo-
geneous and unimodal reference populations.
There may be different situations where a model is de-

sired that can account for widely varying reference popula-
tions. Indeed, the human microbiome is highly
multivariate, and health can be associated with many differ-
ent taxonomic configurations that may not be captured by
a plane or hyperplane. There are currently no known
non-parametric tests for microbiome outliers, defined as
significant deviation of the community profile, in ecological
distance space, from those of a large reference group of
healthy subjects. Such a test will be important in medical
microbiome research for comparing a patient’s microbiome
to a reference population to determine when it is signifi-
cantly abnormal or dysbiotic in terms of conformity or sta-
bility, without a priori knowledge of the dysbiotic state.
Here, we present the Cloud-based LOcally linear Un-

biased Dysbiosis (CLOUD) test, a generalized robust
non-parametric test for dysbiosis that utilizes the full
high-dimensional between-sample ecological distance
matrix. Ultimately, this test could be incorporated into
clinical practice to enhance microbiome-based diagnos-
tics and decision-making.

Methods
Description of the CLOUD test
One major challenge in developing a generalized test for
dysbiosis is that human gut microbial composition is

highly different across individuals, with some healthy in-
dividuals having almost completely different sets of taxa
than others [9–13]. Thus, measures of ecological similar-
ity at the whole-community level are a reasonable alter-
native to conventional univariate tests such as those
used in blood. A typical blood test reports levels of indi-
vidual blood metabolites and classifies them as normal
or abnormal according to the normal range in a healthy
individual (Fig. 1a). This type of univariate test works
when each variable or metabolite has a relatively
well-defined normal range. However, the individual spe-
cies in the human gut microbiome can vary widely in
relative abundance from individual to individual, making
it impossible to define a healthy normal range (Fig. 1b).
Thus, our objective is to build an unsupervised multi-

dimensional test that will allow the classification of a
complete microbiome profile either as sufficiently
healthy or as an outlier, in comparison to a reference
cohort of healthy subjects. This test takes into account
the following three challenges:

i) The human microbiome is highly multivariate
ii) The healthy human gut microbiome has many

different taxonomic configurations
iii) An individual’s microbiome can vary substantially

from day to day

We propose the non-parametric CLOUD test to
address these issues. Specifically, to address point (i), the
CLOUD test uses multivariate ecological measures of
whole-community dissimilarity in place of univariate
tests of individual species (Fig. 1c). Comparisons of
microbiomes must necessarily be highly dimensional,
because low-dimensional embeddings of outliers in a

a

b

c

d

Fig. 1 Comparison of univariate blood and microbiome tests with the multivariate CLOUD test. a, b In contrast to a univariate blood panel, in
which healthy ranges for individual metabolites are well defined, the normal ranges for individual bacterial species in the human microbiome
are too wide to be meaningful, with many taxa being completely absent from some individuals’ guts and dominating other individuals’ guts.
c, d In contrast, CLOUD uses a high-dimensional representation of the whole microbiome profile to define the normal range of healthy microbiomes
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reference distribution, such as with PCoA, can com-
pletely obscure an outlier, even when there are no shared
taxa between the outlier and the reference samples, as
shown in Fig. 2a, b.
It is important to measure both the conformity (simi-

larity in profile to healthy individuals) and the stability
(consistency of profile over time relative to the
consistency of healthy individuals’ profiles over time) of
a patient’s microbiome. Testing for conformity of an in-
dividual microbiome profile compared to reference
microbiome profiles is a non-trivial problem. Micro-
biome distributions across healthy individuals can oc-
cupy arbitrary density distributions in high-dimensional
microbiome space. These distributions may have curva-
ture, gaps/clusters, multiple modes, and long gradients
[10, 11]. Thus, typical parametric measures of con-
formity, such as multivariate normal distributions or
the Mahalanobis distance, do not suffice to capture
these complex, arbitrary, and high-dimensional dens-
ity distributions [14–16]. On the other hand, simple
centroid-based tests, in which test samples are com-
pared to the centroid of the normal distribution
cloud, can also obscure outliers depending on the
shape of the reference cloud, as shown in Fig. 2c.

A nonparametric test for microbiome outliers using local
ecological distances
To address point (ii) above, the CLOUD test uses only
local ecological distances (UniFrac distances or Bray-Curtis
distances) to assess the similarity of a test point to the ref-
erence cloud rather than point-to-entire-distribution dis-
tances. The procedure is as follows:

1. For each reference subject i = 1…n in the reference
population of size n, identify the k nearest
neighbors also in the reference population.
Calculate the di, the diameter of the neighborhood,
as the average ecological distance from that subject

to the k neighbors. k is typically chosen as 5% of the
total size of the reference set.

2. Calculate the average neighborhood diameter d

¼
Pn

i¼1
di

n .
3. For each reference subject i = 1…n, calculate the

ratio of that subject’s neighborhood diameter to the
average neighborhood diameter, ri ¼ di

d
. This ratio

is the outlier detection test.
4. Identify the k nearest neighbors of the test sample

in the reference population. Calculate dj, the
average ecological distance from the test subject to
its k nearest reference neighbors, and the outlier
detection test, the ratio of that subject’s
neighborhood diameter to the average
neighborhood diameter in the reference group: r j
¼ d j

d
.

5. Calculate an empirical outlier percentile for the test
subject as the fraction of reference outlier detection
test greater than or equal to the test subject’s
outlier detection test.

In other words, a person’s microbiome is considered
normal if it is sufficiently close to at least a small num-
ber of other normal people and dysbiotic if it deviates
from this relationship. The detailed R code used for cal-
culating the neighborhood diameter is available in Add-
itional file 1. An outlier percentile of 0.05, for example,
indicates that the test subject is more distant from their
nearest k reference neighbors than 95% of reference sub-
jects are from their nearest k reference neighbors. The
outlier detection test statistic r also has a simple and
useful interpretation. A subject with outlier detection
test r = 2 has a neighborhood diameter that is twice as
large as the average neighborhood diameter in the refer-
ence population.
An important feature of the CLOUD test is that it lever-

ages only very local distances in the ecological distance

b ca

Fig. 2 a First two dimensions of principal coordinates analysis (PCoA) of a simulated outlier and 29 reference microbiomes. Even though the
outlier has no species in common with the reference samples, two-dimensional PCoA obscures the fact that it is an outlier, b PC6 PCoA axe
plotted against PC1, showing that in this particular case six dimensions are sufficient to observe the outlier. In real clinical data, the true number
of dimensions required is not known. c Example of an outlier that would not be detected by a centroid-based test
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space. This enables it to account, non-parametrically, for
arbitrary density distributions in the highly dimensional
landscape of healthy microbiomes (Fig. 3). Larger values
of k are typically associated with increasing numbers of
putative outliers, even within the reference distribution
(Fig. 3). For this and other tests described below, setting k
to be close to the size of the full data set allows the most
conservative identification of outliers from a clinical per-
spective. However, values of k that are much smaller than
the total number of subjects allow the test to account for
larger global variation in normal microbiome profiles.
Thus, k can be thought of as a smoothing parameter on
the shape of the high-dimensional reference microbiome
cloud. In general, k should be at least larger than the num-
ber of expected outliers in the reference distribution. In
our standard test, we set k to 5% of the total number of
reference samples when testing individual samples, and
5% of the total number of reference subjects when aver-
aging distances across samples within each subject. We
also tested several k values, corresponding to a range from
5 to 80% of the cohort, on several data sets described
below, and found that the results are not especially sensi-
tive to the choice of k.
The purpose of using k < n is a key component of the

CLOUD test as it allows the flexibility of the test with

respect to arbitrary shapes in the high-dimensional
manifold on which the reference population’s ecological
distances lie. Larger sample sizes are always important
to increase power. The way that a larger sample size
benefits the CLOUD test is at the level of n, the size of
the reference population. The entire reference popula-
tion is available to be used for the testing of any single
test subject to determine whether it is an outlier, but the
use of local neighborhoods is essential to avoid the
pitfalls associated with centroid-based tests as shown
graphically in Fig. 2.
To address point (iii) above, we also present here the

CLOUD stability test (Fig. 1d). As with the conformity
test, the stability test is performed separately on each
test subject from a cohort of test subjects. We calculate
day-to-day stability using self-similarity, by measuring
the ecological distance (e.g., Unweighted UniFrac
distance) of a subject on 1 day to that subject’s previous
day. The average of all day-to-day UniFrac self-distances
of a test subject is then compared to the distribution of
average day-to-day UniFrac self-distances of the refer-
ence subjects to obtain an empirical outlier percentile in
the same manner as the conformity test.

Patients and donors
We analyzed several published data sets as well as novel
samples from a reference population. These included
five patients from a published dataset who suffered from
multiply recurrent Clostridium difficile infection (CDI)
refractory to standard antibiotic therapies (patients CD1
to CD5) and were treated with fecal microbiota trans-
plantation (FMT) [9]. Among the five patients (CD1 to
CD5) with recurrent CDI who received FMT, four were
cured following FMT and one failed.
Sixteen healthy subjects who participated as standard

stool donors in the University of Minnesota Microbiota
Therapeutics Program also participated in this study.
Inclusion and exclusion criteria for stool donor qualifica-
tions were described previously [10]. Briefly, in addition
to qualifying as blood donors, these individuals took no
medications; had no history of recent (< 6 months) anti-
biotics exposure; had no gastrointestinal, immunologic,
neurodevelopmental, or psychiatric problems; had a
body mass index of < 25 kg/m2; and had normal meta-
bolic testing. The Institutional Review Board (IRB) at the
University of Minnesota approved prospective collection
of fecal specimens and their analysis.

Fecal microbiota transplantation
FMT was performed using a standardized preparation of
concentrated fresh or frozen fecal bacteria via colonos-
copy as previously described [17, 18]. All patients were
treated with oral vancomycin, 125 mg four times daily,

Fig. 3 Graphical illustration of how with certain high-dimensional
manifolds setting k too high can cause actual outliers to be classified as
normal (false negative) and can cause normal points to be classified as
outliers (false positive). Using large k approaching n defeats the purpose
of the local distance measure, which is to allow the test to use only local
regions in ecological distance space and can cause normal reference
samples at the extremes of the distributions to be classified as outliers. On
the other hand, if k is too small, then it is not robust to subtle variations in
the reference group. By default, the CLOUD test sets the neighborhood
size to 5% of the size of the reference set
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until 2 days prior to the procedure. The day before the
procedure, patients received a polyethylene glycol-based
colonoscopy prep (GoLYTELY® or MoviPrep®) to remove
residual antibiotics and fecal material. Donor fecal
microbiome was placed into the terminal ileum and/or
cecum via the biopsy channel of the colonoscope.

Sample collection
Fecal samples were collected using swabs to obtain feces
deposited into a toilet hat immediately after production.
Samples were subsequently transferred to the laboratory,
processed as previously described and stored at − 80 °C
until used [18]. A total of 96 samples were collected
from day − 2 (2 days pre-FMT) to day 151 (151
post-FMT) from the 4 patients who were cured of recur-
rent CDI by the FMT procedure. Moreover, 59
post-FMT samples from patient CD5, who failed to be
cured by FMT, were collected. We also collected 247
fecal samples in healthy subjects longitudinally, from day
1 (first day of the collection) to day 75.

DNA extraction, PCR, sequencing, and sequence
processing and analysis
After fecal DNA isolation (MoBio, Carlsbad, CA fecal
DNA kit), amplicons spanning the V4 region of bac-
terial 16S rRNA were generated and sequenced using
an Illumina MiSeq platform at the University of Min-
nesota Genomic Center, Minneapolis, MN, (USA).
Amplicons were sequenced in 2 × 250 paired-end
mode. The 16S rRNA sequencing data from the Illu-
mina runs were quality controlled, trimmed, and
demultiplexed as implemented in Quantitative In-
sights Into Microbial Ecology (QIIME 1.8.1) [19] and
the Illumina demultiplexing and processing protocol
[20] with current quality-filtering recommendations
[21]. After quality control and demultiplexing, we
picked closed reference OTUs at a 97% similarity
cut-off against Greengenes database version 13_8 [22].
Following trimming and quality filtering from a total
of 49,521,442 sequences, we randomly subsampled to
5652 sequences/sample in order to normalize read
depth across all samples. All further analyses were
performed using this rarefied read depth. Sequences
were then analyzed by using unweighted UniFrac,
followed by PCoA [23]. Statistical analyses were
performed with R version 3.4.0 (2017-04-21) [24].

Results
Interpretation of the CLOUD test
The CLOUD test provides an outlier percentile for the
null hypothesis that a single predetermined test subject’s
microbiome profile is drawn from an independent refer-
ence population. The outlier percentile describes the
probability of a randomly chosen healthy subject having

as large a neighborhood size as that of the test subject.
The outlier percentile is determined by the empirical
distribution of neighborhood sizes within the reference
population. The repeated random sampling is the set of
reference subjects included in the reference population.
One may consider an analogy to assigning an outlier
percentile to a person’s physical height based on the dis-
tribution of physical heights observed in a reference
population of people. If the heights of the people in the
reference population are normally distributed, then one
may use a normal distribution to assign an outlier per-
centile to the test subject. This outlier percentile would
describe what fraction of the reference subjects have a
height greater than or equal to the height of the test
subject, under the assumption that the reference subject
heights followed a normal distribution with certain
parameters. If this normality assumption were to be false
for a particular reference population, and if the reference
population were sufficiently large to obtain small outlier
percentiles and were sufficiently unbiased to represent a
truly random sampling of the total reference population,
then one may instead use the empirical distribution of
heights in the reference group to obtain and empirical
outlier percentile for the independent test subject. In the
same way, the CLOUD test outlier percentile is simply
the fraction of reference subjects whose local neighbor-
hood diameter is greater than or equal to the neighbor-
hood diameter of the independent test subject.
Importantly, our test is not designed for identifying

outliers from within the reference population, although
we do perform hold-out cross-validation to assess outlier
status in a healthy population consisting of people from
three different countries as a demonstration of the flexi-
bility of the CLOUD test with respect to clustering and
high multivariate variation in the reference group. There
is a history of established statistical tests that are de-
signed to identify outliers within a given reference
group. These include Grubbs’ Test [25] for testing
whether there is a single outlier, the Tietjen-Moore test
[26] for testing whether there is a specific number of
outliers, and the Generalized extreme Studentized devi-
ate test [27] for testing whether there is any number,
below a certain upper bound, of outliers present in a
group of otherwise normally distributed reference values.
In contrast to these tests, the CLOUD test assumes that
the reference set does not have outliers and is instead
designed to test whether a single new independent sub-
ject is an outlier based on the reference set. In additional
contrast to the aforementioned established tests, the
CLOUD test is multivariate, non-parametric, making no
assumptions about the distribution of reference values,
and based on ecologically informed distance metrics spe-
cifically designed for comparing compositions of
communities.
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Dimensionality of the ecological distance matrix with
respect to taxonomy profiles
In contrast to outlier detection methods that use a
small number of dimensions of principal coordinates
analysis (PCoA) space, the CLOUD test does use a
full-rank version of the ecological distance matrix,
without any low-rank approximations. The distance
metric itself is a transformation of the data from a
P-dimensional space, where P is the number of taxa
in the microbiome profile, to an “N − 1” dimensional
space, where N is the number of samples. Depending
on the size of the reference population, P may at
times be substantially larger than N, and the distance
transformation would represent an embedding of the
taxonomy profiles into a lower dimension space. For
example, if there were 1000 taxa in a data set with
only 100 samples, then the ecological distance matrix
may have lower rank than the taxon profile matrix;
however, there are often many correlated groups of
taxa in the taxon profile matrix, such that the actual
rank of the taxon profile matrix may be less than the
number of unique taxa observed. Thus, the CLOUD
test that uses the full ecological distance matrix does
not necessarily utilize the full dimensionality of the
taxon profile space but does utilize a substantially
higher number of dimensions than a test that oper-
ates in only a small number of PCoA dimensions.

Application 1: conformity tests in healthy subjects
To assess the ability of our test to identify healthy in-
dividuals given a widely varying reference population,
we used two large-scale microbiome data sets to
populate the multidimensional landscape with healthy
microbiomes. We then used hold-out testing to evalu-
ate the type I error rates of the test with repeated
subsampling of these reference populations into sep-
arate “reference” and “test” groups. First, we analyzed
16S rRNA gene-based data (variable regions V3-V5)
from the Human Microbiome Project (HMP), includ-
ing 239 healthy subjects [10]. The data are available at
https://www.hmpdacc.org/. In this dataset, we used a subset
of the gut samples, excluding samples from obese patients,
leaving 200 samples from 200 patients. Full metadata and
annotation protocols are available on the HMP DACC web-
site (https://www.hmpdacc.org/HMMCP/). We used the
unweighted UniFrac distance matrix of the 200 fecal sam-
ples as the ecological distance matrix. Although the
CLOUD test is designed for comparing a test subject to an
independent reference group, we desired to assess the out-
lier status of subsets of the reference population with re-
spect to the rest of the reference population. To achieve
this result, we subsampled 50 subjects at random as test
cases and then subsampled the other 150 subjects down to
100 training cases and repeated the procedure 30 times. In

the 30 repeated procedures, using these randomly selected
training sets, we applied the CLOUD conformity test
with several values of k (number of nearest neigh-
bors), from k = 1 to k = (all test cohort − 1) and did
not identify any subjects as outliers, except for ex-
treme values of k in several random datasets, demon-
strating the robustness of the CLOUD test to
neighborhood sizes and the low false-positive rate, as
reported in Fig. 4a.
We also evaluated the CLOUD test on a previously

published cohort of individuals from the Amazonas of
Venezuela, rural Malawi and US metropolitan areas
[28]. We only included the stool samples from the
subjects older than 15 years old (n = 219). We used
the unweighted UniFrac distance matrix of the 219
fecal samples. We subsampled 50 subjects at random
as test cases and then subsampled the other 169 sub-
jects down to 100 training cases and repeated the
procedure 30 times. In the 30 repeated procedures,
using random selected training datasets, we applied
our dysbiosis test to several values of k, as described
above, and found no outliers in any train/test subsets,
as reported in Fig. 4b, c. This demonstrates the ro-
bustness of the CLOUD test to different training sets
from a given reference population. Here, the test can
successfully account for very high inter-individual
variability as the subjects from different countries had
highly divergent microbiomes.

Application 2: microbiome restoration following FMT
In humans and murine models, fecal microbiota trans-
plantation (FMT) has demonstrated high efficacy to cure
CDI, a severe and relapsing infection with an increasing
incidence rate [29, 30]. Several studies reported that the
fecal microbiome of recipients following FMT was more
diverse and more similar to the donor microbial com-
munity structure than the microbiome of the patient
collected prior to transplantation [31, 32]. A recent
study from our group showed that FMT resulted in
rapid normalization of bacterial fecal sample compos-
ition from a markedly dysbiotic state to one representa-
tive of normal fecal microbiome in patients successfully
treated with FMT [17]. However, there is no good statis-
tical test to determine whether a patient’s microbiome
has recovered relative to a population of healthy sub-
jects. Here, we applied the CLOUD test to FMT recipi-
ents and compared them in terms of conformity to a
group of healthy subjects.

Conformity and successful FMT
We applied the CLOUD test to assess the successful
microbiome restoration following FMT in our cohort of
patients [17]. Results in Fig. 5a, which plots the 10 near-
est independent healthy neighbors, show clear
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restoration to a non-dysbiotic microbiome in the pa-
tients who were cured of CDI following FMT, as the
Unweighted UniFrac distances were very close in the
two groups (healthy subjects and successful FMT)
and the difference between the mean distance was
not different. This also shows failed restoration of the
microbiome by FMT in the patient who ultimately re-
lapsed with CDI, as these distances were notably dif-
ferent between the two groups (healthy subjects and
failed FMT, outlier percentile < 0.001). This shows the
ability of CLOUD test to successfully differentiate
between patients whose FMT ultimately resulted in
success.
We then applied the CLOUD test on a per-patient

level, that is, aggregating all samples from a single

patient into a single averaged sample (responders and
non-responders to FMT), and found that the four
responder patients were not considered outliers,
whereas the patient non-responsive to FMT was
considered as an outlier. This conformity test is ro-
bust to neighborhood size as increasing the number
of nearest independent healthy neighbors (from k = 1
to k = 100) always showed a significant difference be-
tween the healthy controls and the samples from the
patient unsuccessfully treated with FMT, and no dif-
ference between the healthy controls and the samples
from the patients who responded to the FMT, as
showed in Fig. 5b. However, using very large k
(k > 100), one responder patient was considered as an
outlier (outlier percentile < 0.05). Again, this

a b c

Fig. 4 a Number of nearest healthy neighbors chosen in the CLOUD test prediction to find outliers in an international cohort (the HMP data set).
We randomly selected a test dataset of 50 subjects and randomly selected a training dataset of 100 subjects 30 times in the full dataset of 200
subjects. We repeated the random selection of the training dataset 30 times. We did not identify outliers, excepting for extreme value of k in
several random training datasets. This analysis demonstrates the robustness of the CLOUD test to the neighborhood size. The vertical bar represents
5% of the training dataset, the default neighborhood size for the test. b The same analysis was performed for the Global gut data set. c Principal
coordinate plot of the Global gut dataset, from Unweighted UniFrac distance, demonstrating that the CLOUD test is robust to strong clustering effects
with a reference group
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Fig. 5 a The first 10 nearest independent healthy neighbors. This plot shows the restoration of the microbiome in responders to FMT, as the distances
were very similar between samples from healthy subjects and those with successful FMT. This also shows failed restoration of the microbiome in the non-
responder patient, as the distances were very different between the samples from failed patient and from the healthy subjects. b Plot of the log10 outlier
percentile in patients who received FMT. The dashed line represents an outlier percentile of 0.05. When using k= 5% of the population, non-responder
patient was considered as outlier. Using large neighborhood sizes classified 1 responder patient as outlier. c Patient stability as measured by self-similarity
over time. Plot of the distance of a day to the corresponding previous day using Unweighted UniFrac distance. The figure shows stability between two
consecutive samples of the fecal microbiome in healthy controls and in responder patients among days whereas the non-responder patient showed
instability between two consecutive samples
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demonstrates the need for using only local neighbor-
hoods of ecological distances, as reported in Fig. 3.

Conformity test in two other studies of FMT in recurrent CDI
We applied the CLOUD test to a published dataset
describing recurrent CDI that explored the fecal micro-
biota of FMT stool donors and recipients [32]. This
dataset includes 10 samples from donors, 14 pre-FMT
samples from recipients, and 16 post-FMT samples. Spe-
cifically, 5 post-FMT samples tested positive for con-
comitant Clostridium difficile and 11 post-FMT samples
tested negative. We used the cohort of donors to define
the nearest independent healthy neighbors. Using
Bray-Curtis distances, we tested all the samples collected
from FMT recipients. We showed that with k corre-
sponding to 5 to 40% of the number of healthy donor
samples, the post-FMT samples which tested positive for
concomitant Clostridium difficile were all considered
outliers by CLOUD (outlier percentile < 0.001). Add-
itionally, the pre-FMT samples were considered outliers
(outlier percentile < 0.001) whereas the post-FMT sam-
ples testing negative for concomitant Clostridium diffi-
cile (outlier percentile = 0.4 to 0.75) were correctly
classified as non-outliers.
We also applied the CLOUD test to another published

fecal dataset that described the relationship between pre-
dictive signals from the gut microbiome and the devel-
opment of recurrent CDI [33]. This dataset included 10
samples from donors, 11 recipient samples collected
from patients who presented a recurrence of CDI, and
21 recipient samples from patients who did not present
a recurrence as they were considered non-dysbiotic and
cured. We used the cohort of donors from the same
dataset to define the nearest independent healthy neigh-
bors. Using the Bray-Curtis distances matrix of the fecal
samples, we tested all the samples collected in the FMT
recipients. As with the previous dataset, we showed that
with a k corresponding to 5 to 40% of the number of
healthy donor samples, the samples from the patients
who presented a recurrence were all considered outliers
by CLOUD (outlier percentile < 0.001), as were all
pre-FMT recipient samples (outlier percentile < 0.001).
In contrast, all samples from the patients who did not
experience a recurrence were conformant (not consid-
ered outliers, outlier percentile = 0.6 to 0.65).

Stability test in the FMT data set
To assess the stability of the intestinal microbiome in
patients cured of CDI by FMT, we obtained the CLOUD
stability metric described above. We observed a high sta-
bility of the fecal microbiome in healthy controls over a
daily time-course as well as in patients who successfully
responded to FMT in the days following the FMT pro-
cedure. In contrast, the microbiome of the patient who

did not respond to FMT showed dysbiosis and instability
across the different sample time collections after the
FMT procedure (Additional file 2). Results in Fig. 5c
show high stability between consecutive daily samples of
the fecal microbiome in healthy controls and in patients
who responded successfully to FMT, whereas the patient
who relapsed showed substantially higher instability on
average between each two consecutive samples, although
there were an insufficient number of independent refer-
ence subjects with multiple daily time points to obtain a
reliable outlier percentile.

Discussion
There is a large variability in terms of microbiome com-
position between individuals and within individuals over
time [1, 2]. Methods have been developed to test
whether disease conditions are associated or correlated
with specific taxa or overall ecological community com-
position [3–7]. However, to our knowledge, there are no
previously published non-parametric statistic tests of
whether a patient’s overall microbiome profile can be
considered healthy, based on a reference group of
healthy individuals with widely varying microbiome pro-
files at a given moment or during a given period. Here,
we developed a test for restoration from a dysbiotic state
following FMT by characterizing the human gut micro-
biome that accounts for the wide range of microbiome
phenotypes observed in a set of healthy individuals and
for intra-individual temporal variation. This robust
non-parametric test is based on local ecological dis-
tances and can be used to identify subjects with micro-
biomes that are significantly abnormal in terms of
conformity or stability over time. Our test further allows
unsupervised detection of microbiome outliers. We have
validated the dysbiosis test in three clinical data sets
to show concordance of the dysbiosis test with clin-
ical outcomes of Clostridium difficile infection recur-
rence [17, 32, 33]. We have also demonstrated that
local stability analysis within a subject’s microbiome
cloud over time provides strong separation of patients
who underwent successful and unsuccessful FMT pro-
cedures, with a failed procedure (defined as presence
of later CDI relapse) resulting in a significantly less
stable patient microbiome.
Such unsupervised identification of conformity and

stability outliers in microbiome analyses is especially
challenging for three reasons, which we have addressed
in our method as follows. First, the human microbiome
is highly multivariate, containing hundreds or thousands
of different species within each individual. Our dysbiosis
test uses ecologically and phylogenetically informed
whole-microbiome distance metrics, such as UniFrac
(for operational taxonomic units or OTUs) or
Bray-Curtis (for species-level taxa) to assess the level of
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divergence of the mixtures of species or OTUs within
two individuals, rather than focusing on any individual
members of the microbiome.
Second, the healthy human gut microbiome has

many different taxonomic configurations. Two
humans can have almost completely different sets of
bacteria in them and yet can still be considered
healthy. Our method uses local measures of ecological
distance only. We assess the ecological proximity of
the test subject to that subject’s nearest healthy
neighbors to determine the conformity of the test
subject’s “personal microbiome cloud”. We then com-
pare the cloud’s proximity to the clouds of all healthy
individuals to determine whether the test subject is
sufficiently close to at least some other healthy people
to be considered healthy. Relying only on local eco-
logical distances allows flexibility to account for the
arbitrary topography and density distribution of the
high-dimensional set of personal microbiome clouds
of healthy individuals.
Third, an individual’s microbiome can vary substan-

tially from day to day. We calculated the neighbor-
hood sizes above not based on a single time point
from each subject, but rather on the average across
multiple time points to account for temporal variabil-
ity in estimating a subject’s microbiome cloud con-
formity. Furthermore, we propose a separate test of
the diameter of the test subject’s personal microbiome
cloud and compared it to the distribution of diame-
ters of the reference or healthy subjects’ microbiome
clouds to evaluate stability.
Fourth, it is difficult to collect and store all samples in

exactly the same way in a study, especially in longitu-
dinal studies, where samples collected at the final time
point may spend less time in frozen storage prior to
DNA extraction than samples collected at other time
points. In mouse studies, cage and animal batch effects
can also introduce systematic biases. The CLOUD test
may be a useful way to detect outliers in a study with
problematic data linked to sample collection or preser-
vation errors.
The CLOUD test has several limitations that are im-

portant to note. A key component of the approach is the
choice of distance metric being used, as different dis-
tances posit different models of ecological similarity.
Here, we used Unweighted UniFrac distance metric as
we were analyzing 16S data and UniFrac distance are an
effective distance metric in this case. However, other
ecological distances may be appropriate for certain stud-
ies, and indeed, we found that Bray-Curtis worked well
with the CLOUD test in discriminating between recov-
ery and non-recovery in two recurrent CDI data sets.
The CLOUD test also requires that the reference set be
chosen properly to represent sufficient variation in the

high-dimensional reference microbiome landscape, and
that the test samples be collected and analyzed in the
same way as the reference samples.

Conclusions
As the medical microbiome research field moves closer
to translation from epidemiological surveys to clinical
applications, clinicians need a robust measure that can
determine whether a microbiome is statistically similar
to microbiomes in a reference population. This measure
must account for the high dimensionality, high
inter-individual variability, and high longitudinal vari-
ability of the microbiome. The CLOUD test is designed
to account for these constraints and is useful for com-
paring a patient’s microbiome to a reference population
to determine whether it is significantly abnormal or
dysbiotic in terms of conformity or stability [34]. The
test is reliant on having a relevant reference cohort of
healthy individuals but is also entirely invariant to the
addition or removal of highly discordant samples from
the database due to its reliance on local distances. The
ability to detect conformity- or stability-related dysbiosis
may become useful as a diagnostic tool in a variety of
medical conditions associated with altered functionality
of microbiome in pediatric or adult clinical practice.

Additional files

Additional file 1: R code for calculating the neighborhood diameter.
(DOCX 58 kb)

Additional file 2: Patient stability as measured by self-similarity over
time. Plot of the distance of a day using Unweighted UniFrac distance of
the 4 patients who succeed FMT, one patient who failed FMT and 16
healthy controls. Samples were collected from day 1 to day 150. The plot
does not include the preFMT samples in FMT-recipient patients. The figure
shows stability between samples of the fecal microbiome in healthy controls
and in patients with successful FMT among days whereas the patient who
failed FMT showed instability between two consecutive samples.
(PDF 193 kb)
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