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Abstract

Background: pH is frequently reported as the main driver for prokaryotic community structure in soils. However,
pH changes are also linked to “spillover effects” on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and
Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Usually, pH
also co-varies with some confounding factors, such as land use, soil management (e.g, tillage and chemical inputs),
plant cover, and/or edapho-climatic conditions. So, a more comprehensive analysis of the direct and indirect
effects of pH brings a better understanding of the mechanisms driving prokaryotic (archaeal and bacterial)
community structures.

Results: We evaluated an agricultural soil pH gradient (from 4 to 6, the typical range for tropical farms), in a
liming gradient with confounding factors minimized, investigating relationships between prokaryotic communities (16S
rRNA) and physical-chemical parameters (indirect effects). Correlations, hierarchical modeling of species communities
(HMSQ), and random forest (RF) modeling indicated that both direct and indirect effects of the pH gradient affected
the prokaryotic communities. Some OTUs were more affected by the pH changes (e.g., some Actinobacteria), while
others were more affected by the indirect pH effects (e.g., some Proteobacteria). HMSC detected a phylogenetic signal
related to the effects. Both HMSC and RF indicated that the main indirect effect was the pH changes on the availability
of some elements (e.g, Al, Fe, and Cu), and secondarily, effects on plant growth and nutrient cycling also affected the
OTUs. Additionally, we found that some of the OTUs that responded to pH also correlated with CO,, CH,4, and N>O
greenhouse gas fluxes.

Conclusions: Our results indicate that there are two distinct pH-related mechanisms driving prokaryotic community
structures, the direct effect and “spillover effects” of pH (indirect effects). Moreover, the indirect effects are highly
relevant for some OTUs and consequently for the community structure; therefore, it is a mechanism that should be
further investigated in microbial ecology.
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Background

In microbial ecology, a key open question is what are
the main environmental drivers of microbial community
structure, such as the factors involved in the determinis-
tic processes behind community assembly [1, 2]. In soils,
pH is usually indicated as the most important driver for
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soil prokaryotic community structures. Previous studies
evaluated microbial communities across pH gradients
with high-throughput DNA sequencing and found that
both archaeal and bacterial community structures are
largely influenced by changes in pH [1, 3-7]. Beyond the
microbial community, the influence of pH on the dy-
namics of many elements in soil is well known, as well
as effects on their availability and uptake by plant roots,
which may itself influence soil microorganisms [4, 7-9].
It is crucial to improve our understanding of how pH
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affects microbial communities, because in environmental
conditions, pH may be dynamic (e.g., due to root exu-
dates, microbial respiration, and climatic factors) and be-
cause controlling soil pH is one of the main practices in
agriculture to improve crop production [1, 4, 8, 10].

Little is presently known about the “spillover effects”
of pH (indirect effects) on microbial community struc-
ture [1, 4], especially in sub-tropical and tropical soils.
The indirect effects of pH in soils are wide ranging. pH
affects the solubility of different elements, including
aluminum (AI**), which can be toxic to plants and mi-
croorganisms (AI** availability decreases with pH, being
completely precipitated in pH > 5.5), and also affects the
solubility of nutrients (SI 1) [4, 8, 10, 11]. Mineral nutri-
ent availability in soil is mainly studied in an agricultural
context and thus focuses on plant-available soluble frac-
tions [8, 12], but these fractions usually also correlate
with microbial community structures [4, 13—17]. Phos-
phorus (P) availability, in the form of phosphate, is
optimum at pH 6-6.5 but can be precipitated with iron
(Fe), manganese (Mn), and Al in acidic conditions or
calcium (Ca) in basic conditions. Additionally, in acidic
tropical soils, phosphate can ligate to weathered min-
erals, such iron and aluminum oxides, rendering it un-
available [8]. Nitrogen (N), sulfur (S), and boron (B)
availability (nitrate/ammonium, sulfate, and borate) is
optimum between pH 6 and 7.5. The availability of the
cations Fe**, Mn>*, cupper (Cu®*), and zinc (Zn**) de-
creases with pH, while molybdenum (Mo; molybdate)
and chlorine (CI") availability increases with pH. In
acidic conditions, increased Fe and Mn solubility may
cause toxicity to plants [8, 18, 19]. Due to these charac-
teristics, plant growth is usually optimal in the pH
(CaCl,) range of 5.5-6.5 [8, 10].

Although overall bacterial diversity is usually also
highest in this pH range [1, 3, 6, 20], the optimal ranges
of pH and nutrients for most environmental micro-
organism species are still largely unknown [4, 9, 21].
Some studies investigating the interaction of plants and
microorganisms, such as the symbiosis between rhizobia
and leguminous plants, demonstrated that Ca, P, Fe, and
Mo stimulate these bacteria and that their optimal pH
was also near 6 [11, 22—-24]. Other examples of the ef-
fects from pH-driven changes in soil nutrient availability
on bacterial species or communities are summarized in
Additional file 1.

Due to the effects of pH on elemental solubility, a
common practice in agriculture consists of applying lime
(Ca and Mg carbonates) in order to increase soil pH,
simultaneously increasing the concentrations of Ca and
Mg [8, 10]. This leads to increased plant growth that
usually results in higher output of plant exudates, roots
and litter decomposition, and consequently higher soil
organic matter (SOM) [8, 25]. Moreover, increased litter
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accumulation will result in increased nutrient cycling on
the soil surface, as bigger plants will extract more nutri-
ents from different soil depths that are then decomposed
and mineralized on the surface (e.g, K and NO3) [26,
27]. On the other hand, plants growing in acidic soils
are not usually smaller but also have altered metabolisms
and different biomass composition—for example, some
soybean varieties produce root organic exudates (e.g.,
malate) to reduce toxic effects of Al [28, 29]. Differing
plant biomasses and root exudates resulting from soil
pH effects can subsequently influence microbial commu-
nity structures, since they are usually responsive to
different carbon sources and quantities [7, 30].

Because of all these factors, pH can have direct and in-
direct effects on soil microbiota that are summarized in
a conceptual model (Fig. 1). Moreover, all these effects
can influence not only microbial community structure
but also microbial physiology and activity. This can have
consequences for biogeochemical cycles, changing fluxes
of CO,, and the greenhouse gases (GHG) CH,4 and N,O.
The flux of these gases, especially CO, and N,O, in soils
generally increases with increasing pH [1, 31].

Direct and indirect effects of pH are usually well de-
scribed in the soil fertility research field but are rarely
addressed in microbial ecology [8]. While pH is fre-
quently measured, the other elements and factors that
usually co-variate with it (e.g., Ca, Al, Fe, Mn) are often
ignored. Also, in most previous studies, pH co-varied
simultaneously with multiple confounding factors, such
as land use, soil management (e.g., fertilizers, lime, and
pesticides usage), plant cover, and/or edapho-climatic
conditions (e.g., soil type, clay content and type, precipi-
tation, and temperature) [3, 14, 32, 33]. For example, in
a study comparing bacterial community structure shifts
due to land-use change in south Amazonia, pH
co-varied with plant cover, liming, and other agricultural
practices, making it difficult to disentangle the most im-
portant driver [14]. On the other hand, two studies using
lime (Hoosfield acid strip at Rothamsted Research, UK)
and fertilizer (Park Grass experiment, UK) gradients
were better able to separate the effects of pH on micro-
bial communities, since confounding factors were mini-
mized [1, 4]. Furthermore, the latter study suggested
that factors that co-varied with pH should be investi-
gated in greater detail (e.g., mediation of nutrient avail-
ability). Thus, the application of lime or fertilizer
gradients in areas with identical land-use permit in-
creased control over edapho-climatic conditions, chem-
ical inputs, and plant cover to allow for improved
investigations of pH and co-varying factors on microbial
communities [1, 4].

The aim of this study was to evaluate an agricultural
pH gradient (from 4 to 6.2, a typical range for tropical
farms), quantifying changes in archaeal and bacterial
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Fig. 1 Simplified theoretical diagram of expected interactions in the pH range between 4 and 6 with the microbial community structure (full
diagram available in Additional file 1). The direct effect of pH is expected to be the biggest driver of microbial community structure. In this study,
the pH gradient was produced by liming application, thereby producing quantifiable co-variables (Ca and Mg). The indirect effects are the
“spillover” effect of the pH in the other soil and plant variables. Indirect effect 1 is mainly related to the solubility of elements (Al, B, Fe, Mn, Cu,
Zn, P) and the cation exchange capacity (CEC), while indirect effect 2 is related to these effects on plant growth and consequently on soil organic
matter (SOM) and nutrient cycling (e.g., K and nitrate, NOs). Temperature and soil water content (WC) are considered in this diagram only for the

survey day of greenhouse fluxes (as a proxy for microbial activity)

community structure and investigating relationships
with soil parameters, according to the conceptual model
(Fig. 1). We hypothesized that in addition to the direct
effects of pH, indirect effects are also important drivers
for prokaryotic community structure.

Methods
Study area and experimental design
Soils were sampled from a pH gradient in the agricul-
tural region of the “Campos Gerais” in southern Brazil,
which is one of the biggest producers of soybean (Gly-
cine max), corn (Zea mays), and wheat (Triticum aesti-
vum) in the country [34]. This area was under the
experimental management of the ABC Research Foun-
dation, where a typical no-till farm was identified with
soil pH around 4 (coordinates 24° 40" 34.7" S and 50°
26’ 52.5” W, 748 m amsl) and a liming experiment pro-
duced a gradient of pH (CaCl,) from 4 to 6.2 (the typical
pH range of farms in tropical regions). It is estimated
that 31.8 million hectares are cultivated in Brazil with
similar no-till techniques and soil pH ranges [34]. The
soil was identified as a Red Latosol (Oxisol—the most
common soil type in tropical crop regions), with clayey
texture. The climate in the region is mesothermal warm
summer (Cfb, by the K ppen—Geiger classification)
[35], with 18.7 °C annual average temperature and
1335 mm annual precipitation.

Direct and indirect effects of pH on soil prokaryotic
community structures are usually difficult to disentangle

due to co-variables and confounding factors. Here, we
surveyed a previously established liming experiment that
produced a pH gradient with quantifiable co-variables
(Ca and Mg). The experiment was composed of four
lime doses (0, 2250, 4500, and 6750 kg ha™ ' of Ca and
Mg carbonates) applied to nine replicate plots of 9 x 7 m
in blocks. Within the nine replicate plots, three different
lime brands were used, reducing bias. Thus, in the ana-
lysis, we assumed a nested design, considering the
brands as fixed effects in each dose. The experiment was
maintained following typical crop management and rota-
tion from the region, and all the plots received exactly
the same treatments (Additional file 2: Table SI2 A),
except the lime doses described above. The soil was
sampled in April 2014 (5 years after the lime applica-
tion), 3 weeks after soybean harvest, allowing the use of
the grain yield and litter quantification as proxies for
plant growth.

Sampling

First, one 32-cm-diameter ring was inserted into the soil
of each experimental plot, and the litter (dead debris
from previous crop harvests, mainly soybean harvested
in summer 2014 and oats from the previous winter sea-
son) was removed from the soil surface and placed in
paper bags for quantification. One hour later, green-
house gas (GHG) measurements were performed using
these rings as bases and 20-1 static chambers for gas ac-
cumulation [36, 37]. The chambers were coated with
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thermal insulation to avoid an increase of temperature
during GHG sampling and had a ventilator inside to
homogenize the air samples. Then, gas samples were
collected with 20-ml polypropylene syringes at 0, 5, 10,
and 20 min and stored in hermetic glass vessels (Labco
Exetainer® Vials) until analysis in the same week for
quantification of CO,, N,O, and CH, [36-38]. This sys-
tem was previously tested with standard gases, and no
leaking was observed. In parallel, air temperatures inside
the chambers were measured.

Then, soil samples were collected from a 0-10-cm
depth. Five soil cores were surveyed in each plot and ho-
mogenized, and approximately 200 g was stored in asep-
tic plastic bags. All the tools used were previously
disinfected with ethanol 80%. Aliquots for DNA and ni-
trate extractions were placed in 15-ml sterile conical
tubes on ice and later stored at — 20 °C until analyzed.

Chemical analysis

Soil samples were processed according to the standard
methods for Brazilian tropical soils proposed by the IAC
[12]. First, samples were sieved to 2 mm and air dried.
The pH values were measured in H,O and in 0.01 M
CaCl, (across the manuscript, we report pH CaCl,
values, since it is the most stable pH used in soil analysis
[8]). The exchangeable cations (K*, Ca**, and Mg**) and
available P-phosphate were extracted using ion exchange
resins; AI>* was extracted with KCI 2 M, the trace ele-
ments Cu>*, Fe**, Mn?', and Zn** were extracted by
diethylenetriaminepentaacetic acid (DTPA) and trietha-
nolamine, and B was thermally extracted in water and
analyzed according to Cantarella et al. [12]. K, Ca, Mg,
Al, Cu, Fe, Mn, and Zn were analyzed by an atomic ab-
sorption  spectrophotometer (Analytik Jena, con-
trAA300), and P and B were analyzed by the ammonium
molybdate method and by the azometin-H method, re-
spectively, and read spectrophotometrically (Micronal,
AJX 1600) [12]. Cation exchange capacity (CEC) was es-
timated by summing H, Al, Ca, Mg, and K. Nitrate was
extracted by adding 4-g frozen soil to 40 ml of 2 M KCl,
agitated for 1 h, and filtered [38] and analyzed spectro-
photometrically (Tecan, Infinite M200 PRO) [39].

Gas analysis

Gas samples were analyzed by gas chromatography
(Thermo Scientific, GC TRACE 1310), and the concen-
tration of CO, and CH, were determined by a flame
ionization detector (250 °C) and N,O by a Ni-electron
capture detector (320 °C). Injector was setting to 250 °C
and Porapak columns to 70 °C of temperature. The GC
was calibrated with standard gases (White Martins,
Praxair), and standard gases were read periodically (be-
tween every 20 samples), as quality control. The gas
molar volume (Vm) was corrected for the headspace
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chamber air temperature (K) as measured at sampling
time. And the gas fluxes (f) were calculated by each gas
considering the change in gas concentration in the
chamber during the incubation time (AC/At), the cham-
ber volume (V), the soil area covered by the chamber
(A), and the molecular weight of the gas (m), by the
equation: f= AC/At x V/A x m/Vm [36-38].

DNA extraction, 16S rDNA amplification, and sequencing
The 15-ml frozen soil samples were ground in mortars
in liquid nitrogen to improve homogeneity and lysis effi-
ciency. Aliquots (250 mg) were then used for extraction
with the Power Lyzer Soil DNA Isolation Kit (MOBIO
laboratories, Inc.), and DNA concentration was analyzed
spectrophotometrically (Thermo Fisher Scientific, Nano-
drop). Later, the V4 region of the 16S rRNA was ampli-
fied by PCR using 1 pl of the DNA extracts (49 + 9 ng of
DNA) and the KlenTaq Master Mix 1X (Sigma) and the
primers 515F and 806R [40]. PCR conditions were 94 °C
for 3 min and 18 cycles of 94 °C for 15 s, 50 °C for 30 s,
and 68 °C for 60 s, followed by 68 °C for 7 min. PCR
was performed in triplicate for each sample, and then,
the amplicons were merged in equal volumes, quantified
fluorometrically (Thermo Fisher Scientific, Qubit),
pooled, purified using the PureLink PCR Purification Kit
(Invitrogen), and sequenced with the v2 Reagent Kit
(500 cycles PE) in the MiSeq platform (Illumina, MiSeq),
following the manufacturer’s instructions [40]. Se-
quences were deposited in the NCBI Genbank (BioPro-
ject PRINA413794).

Sequence analysis

Sequencing data were analyzed with the QIIME pipeline
[41]. Sequences were quality filtered and identified ac-
cording to the SILVA 123 database [42, 43]. Since the
[lumina output ranged from ~ 4000 to 100,000 reads
per sample, they were re-sampled to 31,000 reads per
sample, allowing the diversity comparisons [44]. For four
samples, sequencing yielded less than 31,000 reads, and
s0, these samples were excluded from the analysis (ana-
lyses were applied for 32 samples). QIIME output was
exported for further analysis.

Statistical analysis

Statistical analyses were first performed using the R soft-
ware [45], and the package Vegan was used to calculate
the Simpson diversity index [46]. Soil data were analyzed
by ANOVA and ranked according to the Tukey post hoc
test (P<0.05) (SI 2). The operational taxonomy units
(OTUs; previously identified by the QIIME pipeline at
phylum and genus levels) were correlated with the
chemical data (Pearson and Spearman correlation
indices). Also, unweighted UniFrac distances previously
obtained from QIIME were used for ordination using
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PCoA and further correlated with the environmental pa-
rameters using Vegan envfit function [46].

Hierarchical modeling of species communities (HMSC)

We then analyzed the data with HMSC [2], an approach
that belongs to the class of joint species distribution
models (JSDM; [47]), using R and Mathlab. We consid-
ered four groups of explanatory variables based on the
conceptual model (Fig. 1). The first group (G1 = direct
1) of variables consisted solely of pH, as this variable
was our main focus. The second group (G2 = direct 2)
consisted of the effects of Ca and Mg, the variation in
which we considered to be a direct consequence of the
lime application (co-variables). The third group (G3 = in-
direct 1) consisted of those variables that we expected to
be primarily influenced by changes in pH: Al, Fe, Mn,
Cu, Zn, P, B, and CEC. The fourth group (G4 = indirect
2) consisted of those variables that we expected to be
secondarily related to pH: soybean yield and litter (both
proxies of plant growth), soil organic matter (SOM), K,
and NOs. In order to measure the influences that are
beyond those explained by pH, we regressed the vari-
ables in groups G2, G3, and G4 against pH and used the
residuals from these models as explanatory variables.
Further, due to the experimental design (n = 32), we re-
duced the number of explanatory variables to avoid
overfitting. To do this, we run principal component ana-
lysis and included as explanatory variables only the two
first principal components of the variables in groups G3
and G4. Thus, the full model consisted of seven explana-
tory variables: pH (G1), Ca and Mg (G2), and two vari-
ables representing G3 (principal components G3_1 and
G3_2) and G4 (G4_1 and G4_2).

Due to the zero-inflated nature of the data (absences)
and the high number of OTUs involved, we constructed
two models, one for presence—absence (assuming probit
link function and Bernoulli distribution), and another
one for abundance (assuming normal distribution for
log-transformed and centered data). In the presence—ab-
sence model, we included only those 248 OTUs that
were both present and absent in at least 10 samples and
thus showed substantial variation in occurrence. In the
abundance model, we included only those 271 OTUs
that were present in all samples and thus showed vari-
ation in terms of abundance but not occurrence. To
quantify the influences of variables other than pH, we
also considered four reduced models containing subsets
of full model predictors: (i) G1 only, (i) G1 and G2, (iii)
G1, G2, and G3, and (iv) G1, G2, and G4. We examined
the predictive powers of these models through fivefold
cross-validation (Additional file 3: Table SI3 A, B). We
thus randomly split the 32 data points into five groups
and predicted the data for each group by a model fitted
to a subset of the data from which the focal group was
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excluded. We assessed the predictive performance of the
models separately for each species, by Tjur R* [48] for the
presence—absence models and by correlation for the abun-
dance models. We averaged the species-specific values to
obtain an overall measure of model performance.

Additionally, to examine if the responses of the OTUs
to the explanatory variables are structured by phylogeny,
we included a phylogenetic correlation matrix (generated
based on the QIIME phylogenetic tree) into the HMSC
analyses. To assess possible co-occurrence patterns
among the OTUs that cannot be attributed to their
responses to the environment, we also included a
community-level random effect implemented through a
latent variable approach [2].

Random forest (RF)

The abundance of each OTU was modeled according to
the environmental predictors using the machine-learning
algorithm RE, which is independent of data distribution
[49]. RF algorithms are able to evaluate the relative
importance of predictors that are highly correlated to each
other (cf. multicollinearity), thereby improving confidence
in determining which predictors are affected more
strongly to the response variable [50, 51]. Using the
approach by Hapfelmeier and Ulm [52], statistically sig-
nificant predictors were selected with a permutation ap-
proach (P =0.05, trees = 500, and permutations = 400). If
none of the predictors were significant, no model was pro-
duced for the response variable (OTUs). Model perfor-
mances were measured as variance explained (R?) and
validation score, and OTUs that had a validation score
lower than 0.1 were excluded from the “Results” section
(but are shown in Additional file 4).

Results

The direct and indirect effects of a pH gradient on the
soil prokaryotic community structure were evaluated. A
lime gradient produced alterations in the soil pH (ran-
ging from 4.1 to 6.2) that caused changes in soil chemis-
try and shifts on the prokaryotic community structures.
Some effects were observed at Phylum level (Table 1 and
Additional file 5), including two archaeal phyla and 17
bacterial phyla that correlated with pH (e.g., Bacteroides
p 0.65, Hydrogenedentes p 0.74, and WD272 p - 0.78; P
< 0.001). But the strongest effects were observed at
genus level, as will be described in Fig. 2 and Table 2.

Soil chemistry, plant yield, and gases

The pH gradient caused alterations to several soil chem-
ical attributes (Table 1 and Additional file 2). The direct
effect of the liming increased the pH CaCl, (from 4.2 + 0.3
in the control to 5.3+ 5 in the highest lime dose) and the
concentration of the co-variables Ca (from 22.9 + 10.9 in
the control to 81.4 + 31.8 cmolc dm® in the highest lime
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Table 1 Spearman (p) Correlation indexes (or Pearson when
indicated “r), between the soil pH CaCl,, Ca and Mg with
analyzed parameters and the relative abundance of archaeal
and bacterial phyla (only significant values are shown: r or p
>04 or <-04 and P<0.05)

Variable pH (CaCl,) Ca Mg
Soil Chemistry
pH (H,0) 0.98° 094 0.72
Ca 0.95 1.00
Mg 0.72 0.65 1.00
Al -0.98 -0.94 -0.70
Fe -0.51 -0.44
Mn -0.51 -0.53 -041
Cu -045 (n -0.51 (0
B -0.54 (r) -0.44 -046
p 048
CEC 052 (n 069 ( 056 (1
Soy Yield 049 045
Simpson diversity index 0.73 0.60 0.59
Archaeal Phyla
Euryarchaeota 041 044
Woesearchaeota 0.59 (n) 051 (n
Bacterial Phyla
Bacteroidetes 0.69 () 0.54 048
OP3 0.52 (n 046 () 0.52
SR1 045 (n
Gemmatimonadetes 049 () 041
Hydrogenedentes 0.74 0.76 (n 0.64
Latescibacteria 0.53 049
Lentisphaerae 044 045
Microgenomates 0.76 (n 0.70 (n 0.58
Nitrospirae 0.55 0.51 0.55
Omnitrophica 058 (n 049 (n 049
Parcubacteria 043 (n 047 (n
Planctomycetes 0.65 (1) 0.66 (r) 048
Proteobacteria 040 (n 045 (n
Verrucomicrobia -061 -061
WCHB1.60 -042
WD272 -0.83 (n -0.73 -0.64
Unclassified Bacteria -0.44 -047

“We reported Spearman (p) correlations since it fitted better for most of the
data and Pearson (r) in the cases it fitted better (full data is available in
Additional file 3)

dose) and Mg (from 9.6 + 8.0 to 21.3 + 14.8 cmolc dm?®).
Indirect effects of the pH were also detected, accordingly
to the correlation between pH with the different vari-
ables (P<0.01): Al (p —0.98), Fe (p - 0.51), Mn (p - 0.51),
Cu (r - 045), B (r - 0.54), CEC (r 0.52), and soybean yield
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(p 0.49) (Table 1). No significant correlations were observed
for litter quantity, nitrate, and gas emissions (P < 0.05).
Perhaps, future studies using litter traps and temporal
survey of the gases could bring better correlations.
Litter quantity among all plots was 78.8 +31.7 g m™ 2,
nitrate 6.4+ 1.1, CO, flux 107 +89 mg m> h™', CH,
flux -7 +19 ug m> h™ ', and N,O flux 13 + 60 pg m* h™*,
but no statistical difference was observed between the
pH ranges or lime doses (P<0.05, Additional file 2:
Table SI2 B). However, some OTUs correlated with
gas fluxes (mostly Proteobacteria), of which 34 OTUs
correlated with CO,, 46 with CH,, and 32 with N,O
(Additional file 6).

pH effects on the community structures

Community structures were highly modulated by pH
(Fig. 2), as indicated by the PCoA ordination of the sam-
ples across the first axis of the PCoA analysis (PCoAl,
Fig. 2). The indirect effects of pH were then indicated by
the sample ordination across the second axis (PCoA2)
and both supported by the envfit algorithm coefficients
(P <0.05) with pH CaCl, (* 0.85), the co-variates Ca (*
0.75) and Mg (* 0.26), and the indirect effects 1: Al (+*
0.88), B (r* 0.26), Cu, (r, 0.31), Mn (+* 0.37), and Fe (+*
0.49), and the indirect effects 2: soy yield (** 0.31), NO;
(r* 0.15), K (r* 0.37), and CEC (r* 0.20) (variables statisti-
cally not significant were not reported). Additionally, the
Simpson diversity index positively correlated with pH (p
0.73, P<0.01) (Table 1).

Further analysis revealed that 493 out of 1374 OTUs
(at genus level) were highly correlated with pH, but
some were correlated also with the indirect effects
(Additional file 6). Among the 15 most abundant OTUs
correlated with pH, 11 of them correlated equally or bet-
ter with the indirect effects (e.g., Ca, Al, Fe, and Cu)
(Table 2). For example, Variibacter and Bradyrhizobium
(relative abundances of 8.1 and 2.9%) had negative corre-
lations with pH, but correlated better with Fe, as sup-
ported by the RF analysis (Table 2). The same pattern
occurred for bacteria potentially beneficial to plants. Rhi-
zobium, Mesorhizobium, and Herbaspirillum (that can
promote plant growth [53, 54]) had correlation not only
with pH but also with Ca and Al, and Rhizobium was
correlated better with Fe (Table 2).

HMSC analysis

The data were further explored using HMSC. The
cross-validation exercise of the models showed that the
presence—absence model had little predictive power (R
0.06), whereas the abundance model had better predict-
ive power (R? 0.29), so the results are shown for this
model (Fig. 3; see Additional file 3 for the presence—ab-
sence model). Variance partitioning indicated that the
pH was the most important explanatory variable (33%)
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and the group G3 (indirect 1) was the second most im-
portant variable (18%), which is in accordance with the
cross-validation results (R* 0.28, when including both
variables). A large proportion of OTUs obtained strong
statistical support for either a positive (37 OTUs) or a
negative response to pH (23 OTUs) and also to the vari-
ables from the group G3 (indirect 1; 43 positive and 10
negative responses) and G4 (indirect 2; 13 negative and
2 positive responses) (Fig. 3). Of these, 39 OTUs
responded more strongly to indirect effects than to the
pH itself, including 17 Chloroflexi and 8 Proteobacteria
(Additional file 3: Table S3 C).

There was a strong phylogenetic influence on how the
species responded to the explanatory variables. The par-
ameter p, that measures the strength of the phylogenetic
signal in the HMSC model (varying from 0 to 1) [2], was
0.68 (0.54-0.83) for the presence—absence model and
0.99 (0.97-1.00) for the abundance model (95% confi-
dence interval). This effect is shown in Fig. 3, e.g., the
OTUs belonging to rectangle 1 (some Proteobacteria)
responded positively (increase in abundance) to group
G3 (indirect 1), while rectangle 2 (some Actinobacteria)
responded positively to pH. The community-level ran-
dom effect included in the model captured also residual
co-occurrence patterns among the OTUs that were not
explained by the environmental covariates (Fig. 3c). The
residual co-occurrences were unrelated to phylogeny, as
the association network ordered by phylogeny lacks a
clear structure (Fig. 3d).

RF analysis

Lastly, the OTUs were modeled using RF. From the
1374 OTUs, 810 were successfully modeled based on the
best model selection (P =0.05), resulting in overall mean
variance explained of 0.32 and mean validation score of
0.12 (Additional file 4). After screening the models to
validation score higher than 0.1, 338 OTUs were se-
lected, resulting in overall mean variance explained of
0.45 and mean validation score of 0.23 (Fig. 4). The top
five individual predictors were, in order of importance,
the following: pH with 13.5%, Al 8.1%, Ca 6.8%, Fe 4.5%,
and Cu 2.1%. We also built RF models for the

greenhouses fluxes, CO,, N,O, and CHy, but neither pH
nor individual OTUs or Simpson diversity indices were
significant predictors.

Discussion

It is well known that pH influences the growth and di-
versity of prokaryotes [1, 4—6, 20]. However, many other
factors in soil are also influenced by pH that may also
indirectly affect microbial communities, and this issue is
still unclear and not explicitly investigated [1, 4]. Thus,
the investigation of these aspects is highly relevant for
microbial ecology and provides insight into the mecha-
nisms driving prokaryotic community structures in soils.
Our results indicated a clear effect of pH on the micro-
bial communities (Table 1 and Fig. 2), as previously re-
ported [1, 3-6, 20] but, furthermore, indicated that
indirect effects and co-variables also played a significant
role in the microbial community assembly (Figs. 3 and
4). Interestingly, we also detected an influence on the
phylogenetic structure of the community, related to both
the direct and indirect effects of pH, suggesting a certain
level of phylogenetic niche conservatism (Fig. 3).

Our data indicate that diversity increases with pH
changing from 4 to 6 (Spearman correlation, p 0.73,
Table 1), which is in agreement with several studies that
showed maximum values of prokaryotic diversity in the
pH range 6-7 [1, 3, 6, 20]. In this pH range, the highest
overall availability of soil nutrients is expected, while
metal (ie, Al Fe, Mn) concentrations are typically
non-toxic [8, 18]. However, up to now, only a few
studies have suggested this link between the indirect
effects of pH on soil elements with microbial community
structures [4, 14].

Moreover, our data point to a strong influence of pH
on the community structure indirectly throughout
effects on elemental availability (Al, Fe, Cu, Mn, Zn, P,
and B; Figs. 2, 3, and 4). Previous studies in tropical soils
that investigated shifts in bacterial community structures
due to land-use change also detected similar correlations
[15, 32]. In these studies, changes in the microbial
community structures were directly correlated with pH,
as well to elemental availability (e.g., Ca, Mg, P, Al, Fe,
Cu, B, and Zn). However, during land-use change,
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SPECIES RESPONSES TO THE
ENVIRONMENTAL COVARIATES

b

VARIANCE PARTITIONING
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Fig. 3 Panels highlighting the main HMSC results based on the abundance model (details in Additional file 3). a HSMC-based estimates of species
responses to the environmental covariates. The OTUs were ordered by their phylogeny (high-resolution tree in Additional file 7), as illustrated by the
plots. Positive and negative responses, based on posterior mean, are shown in red and blue, respectively. The darker red and blue colors corresponding to
cases with strong statistical support (posterior probability at least 95%), and the percentages of such OTUs are given on the bottom of the panel. The areas
highlighted by the green rectangles are discussed in the text (1, Deltaproteobacteria and 2, Actinobacteria). b Variance partitioning of the species responses

200 250

associations. In panel ¢, the species have been ordered in a way that
have been ordered by the phylogeny (as illustrated in the plots). Red
association is positive (respectively, negative) with at least 95% posteri

to the environmental covariates. Panels ¢ and d show the HMSC-based estimates of species residual (after accounting for influences of covariates)

best show clusters of associated OTUs, whereas in panel d, they
(respectively, blue) entries show OTU pairs for which the residual
or probability

simultaneously, changes occur, such as plant cover and
applications of lime and fertilizers, masking indirect rela-
tionship between pH and the co-variates [14]. Another
study in New Zealand evaluated multiple factors in soils,
and their results also indicated that some pH effects on
bacterial community structures were parallel to the P,
Al, Cu, and Mg effects [17]. In our study, with

confounding factors minimized, we could clearly observe
the same trends, where some taxa (e.g., Acidobacteria
and Proteobacteria) also shifted simultaneously (e.g., in
response to pH and Al). Additionally, in the Park Grass
experiment in UK, a pH gradient that had confounding
factors minimized, community structures were linked to
pH, P, C, and N, and the authors suggested that the
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effect of pH on nutrient availability was the most prob-
able mechanism, in line with our results [4].

In a further analysis of the variables that impacted spe-
cific groups in a stronger way than directly pH in our
dataset, the HMSC models indicated 39 OTUs, of which
17 were Chloroflexi and 8 Proteobacteria (SI 3-C). RF in-
dicated that these OTUs were mostly related to Al, Fe,
Zn, and Cu (Additional file 4). This is in agreement with
previous studies that report some Proteobacteria and
Chloroflexi tolerant to heavy metals and that soil com-
munities respond to metal gradients (such Fe, Zn, and
Cu) in soil [13, 16, 17]. Interestingly, the phylogenetic
closely related OTUs Varibacter, Bradyrhizobium, and
Rhizobium were highly correlated with Fe (Table 2), and
a recent review highlighted the diverse and complex
mechanisms that rhizobia uses for Fe homeostatic
control, including tolerance to high levels [55]. We also
detected indirect effects of pH on plant growth and litter
nutrient cycling (e.g., K and NOj3) that influenced micro-
bial community structure (Fig. 1, indirect 2) [27]. A total
of 35 OTUs (including 11 Actinobacteria and 14 Proteo-
bacteria; Figs. 3 and 4) were found to change under
these influences. Among these OTUs, one example is
Azospirillum, a well-known genus that contain represen-
tatives of plant growth-promoting bacteria associated to
rhizosphere [53, 54].

Additionally, we found that the microbial community
structures influenced by the direct and indirect effects of
pH were also influenced by phylogenetic patterns. It
could be that closely related organisms, due to similarity
on basic structural and physiological processes, are more
likely to react similarly to the direct and indirect effects
of pH [56, 57], as shown to some Actinobacteria and
Proteobacteria, respectively (Fig. 3). After accounting for
the direct and indirect effects, the communities were
better assembled by association with other OTUs
(co-occurrence) than with phylogeny (Fig. 3c, d), indicat-
ing that the detected phylogenetical patterns occurred
only for the pH-related factors. This result is in line with
a recent study that found that communities in more
acidic soils are driven by deterministic process and
linked to phylogenetic relationships, while soils close to
neutral pH are more influenced by stochastic processes
not related to phylogeny [6].

Although this phylogenetical pattern was observed for
some groups of OTUs in our data, it is still hypothesized
that a high degree of variation to pH exists even at spe-
cies/strain levels [1] and not well resolved by 16S rRNA
gene sequence-based analysis. For example, it is known
that during isolation and screening of symbiotic Bradyr-
hizobium isolates, a wide variation of genotypes growing
in different pH ranges can be found, with a generally ex-
pected predominance in neutral pH ranges [23, 24]. In
our study, Bradyrhizobium (including environmental
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genotypes) had higher relative occurrence in low pH, as
also reported in a European soil [4]. This is also in ac-
cordance with the result that different groups of OTUs
identified within Actinobacteria may benefit from higher
(Fig. 3) or lower pH (Table 2). These examples illustrate
that not always taxonomic groups (e.g., phylum/genus) un-
equivocally correlate to specific pH ranges. Even though cor-
relations are sometimes observed, usually, they are highly
variable when comparing different study sites [1, 4]. For ex-
ample, usually, Acidobacteria is suggested as negatively cor-
related with pH, but in our study, as well as others in
Europe and the Amazon, variations were observed (1, 32].

Also, our data strongly support that OTUs should be
better investigated regardless not only to the direct
effects of pH but also to the indirect effects of pH which
are the main drivers for their occurrence. In recent
years, there has been a large increase in the number of
studies correlating prokaryotic community structures to
pH, so we suggest that it is timely a call to more studies
focusing to disentangle these direct and indirect effects
[1, 4]. This kind of information could be obtained from
an increased global database about microbial com-
munities considering the co-variables (more articles
published), followed by meta-analysis and factorial ex-
periments simultaneously testing pH and specific
elements.

It could have important applications for agronomic and
land reclamation systems. For example, there is a current
research focus in identifying which bacterial species are re-
lated to plant yield, disease suppression, and environmental
services [53, 54]. One possibility could be the stimulation
of these bacteria using the knowledge about indirect effects
of pH. Even though prokaryotic community structures and
specific OTUs are affected by changes in the pH, the
knowledge of specific indirect effects may allow a mineral
supplementation to stimulate (or suppress) the growth of
particular OTUs (e.g., Fe could be applied to stimulate
Bradyrhizobium after a lime event).

Lastly, based on our conceptual model, we hypothe-
sized that the pH effects on soil chemistry and in the
microbial community structures could also affect micro-
bial activity, such as gas fluxes [1, 31, 38]. We did not
detect significant effects of the pH gradient on these
fluxes at the sampling time but detected correlation with
some microbial groups. It is likely, rather than investi-
gating the relative abundance of specific OTUs, the
quantification of marker genes related directly to the
processes (e.g., nosZ, mcrA, and pmoA) simultaneously
coupled to a temporal survey of the gases could be a bet-
ter proxy to it, as demonstrated previously [31, 38].

Conclusions
pH changes in soil co-occur with interactions among soil
elements (e.g., precipitation of ions), hiding many
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