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Abstract

Background: Antimicrobial resistance (AMR) has been a worldwide public health concern. Current widespread AMR
pollution has posed a big challenge in accurately disentangling source-sink relationship, which has been further
confounded by point and non-point sources, as well as endogenous and exogenous cross-reactivity under complicated
environmental conditions. Because of insufficient capability in identifying source-sink relationship within a quantitative
framework, traditional antibiotic resistance gene (ARG) signatures-based source-tracking methods would hardly be a
practical solution.

Results: By combining broad-spectrum ARG profiling with machine-learning classification SourceTracker, here we present
a novel way to address the question in the era of high-throughput sequencing. Its potential in extensive application was
firstly validated by 656 global-scale samples covering diverse environmental types (e.g., human/animal gut, wastewater,
soil, ocean) and broad geographical regions (e.g., China, USA, Europe, Peru). Its potential and limitations in source
prediction as well as effect of parameter adjustment were then rigorously evaluated by artificial configurations
with representative source proportions. When applying SourceTracker in region-specific analysis, excellent performance
was achieved by ARG profiles in two sample types with obvious different source compositions, i.e., influent and effluent
of wastewater treatment plant. Two environmental metagenomic datasets of anthropogenic interference gradient
further supported its potential in practical application. To complement general-profile-based source tracking in
distinguishing continuous gradient pollution, a few generalist and specialist indicator ARGs across ecotypes were
identified in this study.

Conclusion: We demonstrated for the first time that the developed source-tracking platform when coupling with
proper experiment design and efficient metagenomic analysis tools will have significant implications for assessing
AMR pollution. Following predicted source contribution status, risk ranking of different sources in ARG dissemination
will be possible, thereby paving the way for establishing priority in mitigating ARG spread and designing effective
control strategies.
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Background
Antimicrobial resistance (AMR) is becoming a global
health crisis, threatening effectiveness of antibiotics to
treat infections. At least 700,000 people die annually
from drug-resistant infections [1]. The challenge will get
worse if we do not act immediately to turn the tide
against epidemic propagation of AMR. AMR mitigation

thus is a critical health security challenge of this century,
yet only limited progress has been achieved [2, 3].
Indeed, AMR has been substantially extended beyond
medical settings to include relevant environmental com-
partments [4–7], such as soil and water. Their fate and
behavior in different environments complicated the
problem. In particular, point and non-point potential
sources, as well as endogenous and exogenous antibiotic
resistance genes (ARGs), make it difficult to disentangle
the true origins [8–10]. Lack of comprehensive* Correspondence: zhangt@hku.hk
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understanding in source-sink relationship in ARG dis-
semination dramatically impedes efficient AMR control.
Ever since discovering frequent ARG occurrences in

human-related environments, considerable attention has
been paid to identify potential sources [11–16]. For ex-
ample, through combining PCR-derived detection fre-
quency/intensity of target genes and environmental
variables in a specific region, ARG distribution patterns
that unambiguously distinguish putative sources of ARG
pollution from a native environment have been studied
in livestock farm and river basin [14–16]. Nonetheless,
PCR bias and inhibition are always a concern with any
PCR-based source-tracking method. In addition, specifi-
city and sensitivity of single-marker tests vary among
ARGs [15, 16]. Measuring limited number of predeter-
mined representative ARGs and custom-tailored bio-
markers is often confounded by inputs from a variety of
sources. Therefore, accurately estimating the proportion
of ARG contamination from source environments poses
a grand challenge in AMR control.
Advances in high-throughput sequencing (HTS) have

revolutionized the way to detect genes in complex envir-
onmental communities, providing a promising approach
for comprehensive genetic profiling. Indeed, approxi-
mately thousands of ARGs have been identified through
environmental metagenomic studies [17–19], their po-
tential to be used as a means for identifying sources of
ARG contamination however remains largely unex-
plored, in spite of a few comparative surveys of ARG
composition among important sources [17–21]. The dis-
tinctive combinations of potential thousands of genetic
markers in HTS-based metagenomic analysis might
open up new avenues for source discrimination.
However, an automated and statistical robust classifica-
tion approach is necessary for routine application of
metagenomics-based methods in real ARG monitoring.
Machine-learning classification is an efficient tool in this
big-data era, which uses comprehensive sequence
profiling of samples from different source environments
(e.g., sample-wise abundance matrix across marker gene
sets) to train models to distinguish different source
types. Through eliminating uninformative features, these
algorithms select subsets of features from typical thou-
sands of sequences that are most useful for source
prediction [22], thereby allowing us to assess the likeli-
hood that individual source contributes to the overall
ARG composition in a sink sample. Recently developed
classification methods (e.g., RandomForest [23] and
SourceTracker [22]) have been successfully adopted for
community-based source tracking [22, 24, 25]. In par-
ticular, the Bayesian classification tool, SourceTracker,
uses Gibbs sampling to explore the joint possibility dis-
tribution of assigning all test sample sequences to the
different source environments, featuring in directly

inferring the mixing proportion of sources in a sink
sample. SourceTracker allows sequences in a sink sam-
ple assigned to unknown sources, and it explicitly
models a sink sample as a mixture of sources rather than
predicts the entire sink sample from a single source.
Rigorous comparison showed that SourceTracker out-
performed other methods like naïve Bayes modeling and
RandomForest classifier, even when disambiguation was
difficult [22]. Despite lack of application in source track-
ing of ARG pollution, given the long-proposed strong
correlation between microbial community structure and
ARG profile [26–28], as well as the predictable variation
of ARG overall patterns in environments along an-
thropogenic activity gradient [17–19, 29], SourceTracker
could serve as a powerful tool in predicting putative
sources of ARG contamination in a probabilistic
framework.
In this study, rigorous analysis was conducted to com-

prehensively evaluate performance of SourceTracker in
source prediction of ARG pollution. To uncover ARG
profiles in diverse environments, 656 metagenomic data-
sets were retrieved from public databases, including four
ecotypes, i.e., human feces (HF), animal feces (AF),
activated sludge from wastewater treatment plant (WA),
and natural environments (NT). Using well-established
annotation pipeline, broad-spectrum ARG abundance
profile was obtained for each sample. Through
leave-one-out cross-validation, SourceTracker achieved
excellent performance in source prediction for 656 sam-
ples by leveraging information embedded in ARG pro-
files. Furthermore, three ways were utilized to validate
application of SourceTracker for samples with different
anthropogenic impacts, including artificial configura-
tions, influent and effluent of wastewater treatment
plant (WWTP), as well as region-specific sediment sam-
ples with significant anthropogenic activity gradients.
Besides general-profile-based source tracking, ARGs of
particular interest, including generalist/specialist indica-
tor and common/unique groups across ecotypes, were
explored. Taken together, in combination of comprehen-
sive ARG profiling with cutting-edge machine learning
classification, capability of the novel platform in source
tracking was well validated in this study, which may lead
to fundamentally new strategies to address the current
widespread ARG contamination.

Results
ARG overall distribution profile
After quality check, 656 metagenomic datasets were in-
cluded in this study, covering diverse environmental
types (e.g., human/animal gut, WWTP, soil, sediment,
ocean) and broad geographical regions (e.g., China,
Japan, US, Europe, Peru) (Fig. 1a, b, Additional file 1:
Table S1). Although diverse data sources were included,
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there is no obvious study effect observed across these
dataset (Additional file 2: Figure S1). Because of uneven
data sources in public databases, there were more sam-
ples of HF (n = 300) and NT (n = 188) while less samples
of AF (n = 109) and WA (n = 59). Despite possible bias
embedded in sample number distribution, we aim to use
best of current resources to disentangle potential rela-
tionship between ARG abundance profiles of source and
sink samples, especially association of environmental
resistome development with anthropogenic impact.
Overall, 3502 ARG reference sequences (87% out of the
total 4048 reference sequences) from all 24 types in
SARG database were detected in at least one of the 656
samples (i.e., 2688 ARGs were detected in HF, 2788 in
AF, 2400 in WA, and 2609 in NT). The relative abun-
dance (copies of ARG per copy of 16S rRNA gene) and
richness (number of ARG types) showed obvious
variability, both between and within the four eco-
types (Fig. 1c). Generally, ARGs were more abundant
in AF (avg. abund. 0.78 with range 0.06~ 4.68) and
HF (avg. abund. 0.52 with range 0.10~ 2.52) than
WA (avg. abund. 0.37 with range 0.20~ 1.52) and NT
samples (avg. abund. 0.22 with range 0~ 2.01). The top
abundant ARG types differed among the four ecotypes,
e.g., HF, ARGs against tetracycline, aminoglycoside, and
macrolides-lincosamides-streptogramines (MLS)); AF,

ARGs against tetracycline, MLS, and beta-lactam; WA,
ARGs against multidrug, bacitracin, and aminoglycoside;
NT, ARGs against multidrug and bacitracin. Many ARGs
were widespread across ecotypes, such as tetracycline,
aminoglycoside, and beta-lactam. Vancomycin-resistance
genes were with low abundance in NT and WA, whereas
frequently detected in both HF and AF. In addition, ARG
profiles in feces samples varied by regions with different
antibiotic consumption and management. For instance,
much more ARGs were detected in AFs of Peru (avg.
abund. = 6.40), El Salvador (avg. abund. = 6.40), and
China (avg. abund. = 3.80), whereas much less detected in
samples from Denmark (avg. abund. = 0.18), and
antibiotic-polluted environments have the highest
abundances of ARGs, such as Peru and El Salvador soil
(avg. abund. = 1.20). On the contrary, much less was
detected in almost pristine natural habitat, such as ocean
(avg. abund. = 0.05). In agreement with previous studies
[17, 18, 30], ARG abundance profiles obtained here lend
evidence for the essential role of human activities in ARG
development. To further investigate whether the mi-
crobial community correlated with the ARG compos-
ition, we used Procrustes analysis to correlate the two
profiles. Our results showed that ARG profiles were
significantly correlated to the shared bacterial compo-
sitions and structures (P < 0.001, based on 9999

Fig. 1 General information (including dataset composition, geographical location, and ARG abundance profile) of downloaded metagenomic
datasets and preliminary validation of SourceTracker prediction performance. a Dataset composition among four ecotypes (i.e., HF, AF, WA, and
NT) and regional distribution profile of HF samples. b Geographical location of global-scale metagenomic samples. c ARG abundance profile
(log2 transformed) across 24 ARG types among different eco-subtypes. d Ecotype prediction by SourceTracker using leave-one-out cross-validation, in
which bar chart was correctly predicted probability profile (error bar, standard deviation) among four ecotypes and pie charts were correct prediction
ratio (color part) of samples in the corresponding ecotype. Consistent pairs of color-ecotype were used in all sub-figures, i.e., orange-HF, yellow-AF,
green-WA, and cyan-NT
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permutations) based on Bray-Curtis dissimilarity
metrics (Additional file 2: Figure S2).

SourceTracker prediction performance
The distinct ARG abundance profile characterized by each
of the four ecotypes, implied its potential in distinguishing
samples with different ecotype origins. The significant cor-
relation between ARG and community profiles revealed in
this study and previous work [26–28], together with the
reported successful application of SourceTracker in mi-
crobial source tracking using community profile [24, 31,
32] further lend us confidence in extending SourceTracker
to broad-spectrum ARG profile-based source prediction.
After five runs by leave-one-out cross-validation strategy,
SourceTracker correctly predicted corresponding ecotype
of 88% (578/656) samples, in particular, 92% (276/300) HF
samples with predicted probability of 88%±12%, 81% (88/
109) AF samples with 84%±13%, 95% (56/59) WA samples
with 89%±11% and 84% (158/188) NT samples with
82%±11% (Fig. 1d). Prediction variation within five runs
was observed (Additional file 3: Table S2), which might be
improved by including more high-quality source samples in
training datasets in future studies. Generally, pre-test by
656 samples proved applicability of SourceTracker in ARG
source tracking, we then utilized three ways to further
validate robustness of this method. To avoid possible bias
introduced by parameter alteration (refer to the ‘Effect of
parameter adjustment’ section), all SourceTracker runs of
metagenomic datasets in this study were performed under
default setting.

Artificial configuration
Prior to applying SourceTracker in region-specific analysis,
its potentials and limitations were firstly examined by eight

artificial configurations, which were generated with differ-
ent ratio of ecotype input to simulate real possible pollution
levels. The averaged SourceTracker-predicted source ratio
and relative standard deviation (RSD) for each configur-
ation were presented in Fig. 2 and Additional file 3:
Table S3. The results of Pearson correlation analysis
demonstrated a significant correlation (r = 0.99, P < 0.001)
between expected and predicted source contributions
across all configurations. However, precision of the
prediction appeared to be dependent on the level of
contamination. This effect was clearly illustrated in Con-
figuration 1, where low variance among runs (RSD of 8%)
was observed for predicting sources with high expected
ratio (47% of WA contamination), while high variance
(RSD of 44%) for sources with low expected ratio (2% of
AF contamination). Indeed, the similar RSD variance has
been explicitly examined in application of SourceTracker
in community-based source tracking [33].

WWTP influent and effluent
We next tested SourceTracker performance by ARG pro-
files in two sample types with obvious different source
compositions, i.e., WWTP influent and effluent. WWTP
influent is a mixture of wastewater discharged from cer-
tain communities, of which the main source is HF.
Through a series of treatment processes, effluent samples
are mainly from WWTP rather than HF. SourceTracker
was then applied to analyze ARG profiles of four influent
and effluent datasets collected at different seasons (sum-
mer or winter) (Additional file 2: Figure S3). Clearly, hu-
man/animal feces were up to 30% in influent while less
than 5% in effluent and WA was predicted as the main
source of the effluent samples. Because WA training data-
sets of activated sludge were a mixture of influent and

Fig. 2 SourceTracker prediction performance validation by eight artificial configurations. a Predicted (result of SourceTracker prediction function)
and expected (defined source proportions of four ecotypes) source proportions of the configurations. b Correlation analysis between the SourceTracker
predicted source proportion (X-axis) and corresponding expected proportion (Y-axis)
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local WWTP community, it is not surprising that certain
portion of WA was also detected in the two influent sam-
ples (41% in summer and 20% in winter). Seasonal vari-
ation, as well as unknown sources were observed in the
source prediction, which might be attributed to complex
mixture of diverse microbial communities (e.g., bacteria
groups decided by the seasonal variation of organics in the
influent) and different selective pressures (e.g., antibiotics
and metals) in this type of environment [34, 35].

Environmental samples of anthropogenic interference
gradient
Based on above explicit evaluation, two published envir-
onmental metagenomic datasets were utilized as final test
samples, i.e., two sets of region-specific samples with obvi-
ous anthropogenic activity gradient (Fig. 3, Additional file 3:
Table S4).

Hong Kong (HK) sediment (Fig. 3a) The results
showed that 5 of 12 HK sediment samples had more
than 20% feces-like contamination (i.e., aggregated pro-
portions of feces-related sources including HF, AF, and
WA). Particularly, HKSD-3 which suffered from
discharges of both harbor and municipal pollutants from
HK and Shenzhen areas showed a high feces-related
pollution with 47% WA, 2% HF, and 4% AF. The
point HKSD-10 close to HKSD-3 in outlet of harbor

also showed a relatively high pollution ratio with 16%
WA, 3% HF, and 3% AF. HKSD-53 and 54 sites
located along a water channel that is surrounded by a
high density of inhabitants showed 21 and 16% WA pollu-
tion, respectively. Close to another sewage discharge chan-
nel, HKSD-75 was also revealed 16% WA contamination.
Other 7 points within areas of limited human interference
were with less than 10% feces-related contamination.
Overall results from SourceTracker prediction well
matched regional characteristics of these sampling points.

Pearl River Estuary (PRE) and South China Sea (SCS)
sediment (Fig. 3b) The feces-related source contribu-
tion level to ARG profiles in sediments substantially
decreased from the mouth of the Pearl River (A8) to the
middle of the PRE (B2), and on to the SCS, which was in
good accordance with antibiotic concentrations detected
in a previous study [36]. Due to proximity to PRE region
that had been heavily impacted by rapid urbanization
and industrialization, significant proportion of WWTP
and minor proportion of HF/AF contamination were de-
tected at the two sampling sites, e.g., A8 of 60% WA and
B2 of 44% WA. There were seven sampling locations in
the SCS with varying distances to the Chinese mainland
and different water depths. Except E106 collected at a
location between the offshore area and the continental
shelf with 20% WA, other SCS sediment samples with

Fig. 3 Sampling geographical location and predicted source proportion of HK sediment samples (a) and PRE and SCS sediment samples (b). In both a
and b, X-axis were sample names and Y-axis were predicted source proportion (probability)
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less than 8% WA contamination. Overall, the average
pollution ratio of feces-like sources in the two PRE sedi-
ments was at least five times higher than those in the
SCS sediments, reflecting distinct levels of anthropo-
genic interference in the two regions.

Effect of parameter adjustment on SourceTracker
performance
In order to evaluate effect of parameter adjustment on
SourceTracker performance, additional three specific
artificial configurations (configurations A, B, and C) cov-
ering both negative and positive sources were run by
different parameter settings. Changes in parameters
away from default conditions had variable effect on
SourceTracker performance, but mainly depending on
the percentage of source present within the sink
(Additional file 1: Table S5). Alteration in restart (20,
default = 10) and burn-in (1000, default = 100) resulted
in similar RSD profile as default condition. Increasing
rarefaction depth to 50,000 (default = 1000) consistently
decreased RSD in identifying ratio of true positive sources
(i.e., WA and NT) in all three configurations, while it did
not improve in detecting true negative sources (i.e., HF
and AF). Changes in α and β Dirichlet hyperparameters
had variable effect. Decrease in RSD was observed in
configuration A by all alterations of α and most alterations
of β (except β=0.004, 0.006, 0.08, and 0.1), with the lowest
RSD achieved by α=0.01 (RSD of WA and NT ≤1%). On
the contrary, in configurations B and C, alterations of α
and β were more likely to be accompanied by increase in
RSD, with lowest RSD (≤ 10%) by α = 0.1/β = 0.04 in con-
figuration B and α=0.001/0.05 in configuration C. Note-
worthy, with the exception of β = 0.002/0.004/0.006 in
configuration A, α = 0.00001/β = 0.008 in configuration B,
and α = 0.05/β = 0.002 in configuration C, both default
and other parameter alterations tended to detect true
negative sources as positive at extremely low level. The
excellent improvement in identifying true negative sources
by these specific α and β values significantly increased
sensitivity, specificity, precision, and accuracy, which,
however, did not necessarily associated with low RSD.
Overall, such a variable parameter effect observed here
emphasized the need for comprehensive parameter
optimization by exquisite experimental design on regional
source-sink analysis.

Indicator ARGs
Besides characterizing patterns of overall ARG profiles
across such broad range of environments, we expanded
this study by identifying representative ARGs belonging
to each ecotype and thereby lending insight into the
potential roles of these ARGs in shaping resistome. Al-
though a few studies have applied representative ARGs
to distinguish one environment from another [14, 15, 37,

38], they were conducted at one or a handful of fixed
locations and focused on a few typical ARGs such as
sul1 and tetW. In the study here, large-scale profiling of
3502 detected ARGs across 656 diverse samples could
help find out more solid indicators using robust statis-
tical method. Based on ARG distribution across the four
ecotypes, 95 ARGs were chosen as indicators (Fig. 4,
Additional file 1: Table S6), including 30 indicators in
each of HF (IV≥0.56, P < 0.001 (IV, indicator value)), AF
(IV≥0.68, P < 0.001), and WA (IV≥0.65, P < 0.001). Con-
sidering much lower abundance profile in NT samples,
only 5 ARGs were selected as indictors of the ecotype
(IV≥0.34, P < 0.001). Different ecotypes were character-
ized by different ARG indicators, e.g., (1) HF indicators
were mainly composed by resistance genes against
beta-lactam (class A), vancomycin, bacitracin, and tetra-
cycline; (2) AF were tetracycline, aminoglycoside, and
MLS; (3) WA were bacitracin, MLS, and beta-lactam;
and (4) NT was multidrug. Abundance distribution of
these indicators clearly implied much higher abundance
level in each indicated ecotype while lower in others.
Although indicators were a minor part of total 3502 de-
tected ARGs, they corresponded to the dominant among
ARGs detected in each ecotype, e.g., comprising up to
11, 20, and 17% of ARG abundance in HF, AF, and WA,
respectively. Specifically, top abundant indicators were
bacA (bacitracin), class A beta-lactamase (beta-lactam),
and vanR (vancomycin) in HF, aadE (aminoglycoside),
mefA (MLS), tet40 (tetracycline) in AF, cpxR (transcrip-
tional regulatory), arr (rifamycin), ompR (multidrug) in
WA, and mexF (multidrug) in NT. These top abundant
indicators were dominant groups in each ecotype, indi-
cating their key roles in shaping resistome and driving
fluctuation. In addition, in a graph of indicator, relative
abundance of ARGs in samples where they occur vs
occupancy (Additional file 2: Figure S4), a few indicator
ARGs appeared to be generalists, with high relative
abundance across a large number of samples outside
their indicated ecotypes, e.g., WA indicator ompR
(multidrug) was detected in all WT samples meanwhile
detected in 76% non-WT samples and HF indicator bcrA
(bacitracin) detected in 99% HF samples meanwhile
detected in 73% non-HF samples. Some indicators
tended towards specialists, with high relative abundance
but detected in fewer samples outside indicator eco-
types, e.g., class A beta-lactamase (beta-lactam) in HF
and ereA (MLS) in WA were detected in less than 5%
other samples. In addition to specific indicators, five
ARGs with relatively high R2 correlation (≥ 0.50) with
total ARG abundance across all samples were chosen as
the general indicators (Additional file 2: Figure S5,
Additional file 3: Table S7), including three ARGs of
mexX and acrB with multidrug resistance, one ARG in
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class C beta-lactamase, and one unclassified ARG coding
alamin adenosyltransferase.

Common and unique ARGs
According to occurrence among samples, all 3502 de-
tected ARGs were classified as the unique or common
in each or combination of the four ecotypes (Fig. 5).
1678 ARGs were shared among all ecotypes (i.e., de-
tected in at least one sample in each ecotype) mainly be-
longing to resistance genes against multidrug (n = 562),
tetracycline (n = 202), bacitracin (n = 179), beta-lactam
(n = 137), MLS (n = 137), and aminoglycoside (n = 101).
These common ARGs made up a large percentage of
ARGs detected in each ecotype, e.g., 60–68% in HF, AF,
and AS; and 74% in NT. Such large amount of wide-
spread ARGs indicated frequent flow crossing ecological
barriers, which has been detected between habitats, such
as soil and human [39], WWTP and surface water [40,
41], as well as livestock farm and surrounding environ-
ments [42]. Interestingly, 86 of 95 specific indicator
ARGs were shared by all ecotypes, whereas the other 9
indicators were all three-ecotype common ARGs.
Among ARGs common between specific two ecotypes,
HF and AF (hereafter refer to HF-AF (common between
ecotypes indicated by ‘ecotype-ecotype’)) shared most
ARGs (n = 315) followed by NT-WW (n = 163) and
FA-NT (n = 78), least shared by FH-WW (n = 20),
FA-WW (n = 33), and FH-NT (n = 38). Especially, the
top three in HF-AF were resistance genes against multi-
drug, beta-lactam, and vancomycin. In addition, the two

feces ecotypes, HF and AF, shared 223 ARGs with NT
and 208 ARGs with AS. Regarding unique ARGs in
each ecotype, most unique ARGs were detected in
natural (n = 219) while least in WWTP (n = 88). Indeed,
functional metagenomics have resulted in elucidating en-
tirely new resistance functions in natural environments
[26, 39, 43], implying substantial potential of underappre-
ciated wild resistome in contributing to future health risks.
On the contrary, WWTPs were engineered facilities of
wastewater mixture, featuring in active exchange of exist-
ing genes from various human-related sources [5, 44].

Discussion
Because of multi-sources interaction and regional bio-
geographical characters, directly identifying sources of
contamination and implementing targeted mitigation
strategies have long been a challenging topic in AMR
control. Based upon explicit evaluation of potential and
limitation, in the current big-data era, we here presented
a novel framework combining both metagenomic profil-
ing and machine-learning classification SourceTracker to
address source tracking of ARG contamination in the
environment. Through comprehensive performance
examination by both global-scale and region-specific
datasets, feasibility of the platform was generally well
supported despite of its fluctuation in predicting low
source ratio. However, it should be noted that predicted
source proportions from SourceTracker were limited by
the comprehensiveness of source datasets used for train-
ing, thus, sample impurity and regional variation among

Fig. 4 Abundance profile (log2 transformed) of 95 indicator ARGs in all downloaded metagenomic datasets. In the heatmap, four groups of
indicator ARGs were arranged from left to right: I. 30 HF indicator ARGs; II. 30 AF indicator ARGs; III.30 WA indicator ARGs; IV. Five NT indicator
ARGs. The four heatmap blocks from top to bottom were abundance profile of all indicator ARGs in HF, AF, WA, and NT
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datasets retrieved from public databases might bias our
analysis to an extent despite effort in smoothing out
dataset heterogeneity. For example, more HF and NT
samples along with less AF and WA samples, might
hinder SourceTracker in identifying discriminatory ARG
signatures in AF and WA to attribute sources. We believe
that large-scale metagenomic projects of either pristine or
human-impacted environments will dramatically expand
availability of more representative resources. In particular,
training by region-specific datasets will improve its source
discrimination performance in a target area.
Indeed, ARG pollution is a region-specific problem

with global impact. Both anthropogenic activities and
geographic features can influence ARG pollution status
substantially. ARGs can enter environments through a
variety of pathways, including point sources such as
discharge from WWTPs and livestock farms, as well as
non-point sources such as runoff from fields treated
with biosolids or manure. In contrast to direct release of
pollutants into target environment by point sources,
contamination caused by non-point sources is always
subject to dilution and decay thus largely impeding
accurate source prediction. Additionally, cross-reactivity
between source pollution and environmental back-
ground will generate certain biotic and abiotic

conditions favoring specific bacteria and/or genes [11,
12, 45, 46]. What might further confuse source detection
is frequent genetic exchange, that is, once associated
with efficient mobile genetic elements like
broad-host-range plasmids [47, 48] and class I integrons
[49, 50], dissemination of ARGs across phylogenetic and
ecological barriers could be dramatically enhanced.
Moreover, resistome development was even more com-
plicated by diverse co-selection pressure (e.g., metal and
biocides) in source/sink environment [51, 52]. Under
such complex environmental conditions, source-tracking
investigations can only be achieved through comprehen-
sive biogeographical surveillance. Experiments directed
to identifying quantitative source-sink relationship at
certain sites should be carefully designed to normalize
possible background influence, such as comprehensive
analysis along temporal (e.g., dry and wet seasons) and
spatial (e.g., upstream and downstream) scales. Also,
high sensitivity and specificity of prediction platform are
required for disentangling such complicated source-sink
relationship. Through integrating metagenomics profil-
ing with machine learning classification, excellent source
prediction has been demonstrated in this study, which is
far beyond the capability of traditional source-tracking
methods. In particular, metagenomic profiling improves

Fig. 5 Common and unique ARGs across four ecotypes. a Venn diagram. b Sequence number distribution of common/unique ARG groups (X-axis,
e.g., HF–AF indicated common ARG group shared by HF and AF ecotypes) across 24 ARG types (Y-axis)
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source tracking through parallel detection of a multitude
of different genetic markers that are unique to sources,
and machine learning classification algorithm deempha-
sizes overlapped signatures that occur among training
sets to further minimize biases like background
cross-reactivity. Compared with traditional methods,
broad-spectrum ARG profiling-based SourceTracker
classification took a fundamental step in advancing
precise source-sink relationship quantification. To the
best of our knowledge, this is the first study directed
to combine broad-spectrum ARG profiles and
machine-learning classification to track potential ARG
pollution sources.
To further explore potentials and limitations of the

approach in source tracking, especially its application in
diluted areas such as recreational beaches in which
correct source identification is crucial in public health
risk assessment, more extensive parameter optimization
and rigorous in-laboratory test are necessary. As demon-
strated in source discrimination of artificial configura-
tions, SourceTracker will report high variability in the
proportion estimates for low-representative source.
Therefore, confident results of low source proportion
should be based on multiple runs instead of single run,
which is consistent with the previous studies on commu-
nity structure-based fecal signal tracking [22, 33].
Alteration of the investigated parameters resulted in
RSD variation in contrast to default setting. Increasing
rarefaction depth consistently decreased RSD, but no
equivalent improvement in sensitivity and specificity was
observed, which suggested that increasing rarefaction
depth only enhanced repeatability due to the inclusion
of 50-fold more ARG abundance for SourceTracker
analysis. By assigning different relative values for α and
β, prior counts (relative to the number of sequences in
the test sample) that smooth the distributions for
low-coverage source and sink samples were adjusted,
which had a remarkable effect on detecting true negative
sources. However, in which (in)dependent way the two
parameters of prior count affecting SourceTracker per-
formance still need more rigorous examination. When
applying the classification tool in source tracking of
complex region-specific pollution, both complementary
in vitro assay and thorough assessment of parameter
settings should be conducted to enhance its performance
in identifying true/false positive sources and detecting
known proportions of sources present within a sink
matrix. In this way, its capability in detecting low level
of ARGs will be fully realized, lending much more confi-
dence in broad application.
In addition to exploring overall ARG profile in dis-

criminating source-sink relationship, we extended this
study to identify representative ARGs in characterizing
distinct ecotypes. Realizing challenges in predicting

attenuated source-sink signal, indicator analysis was
performed to seek for additional tools. The generalist
and specialist indicator ARGs act as representative ARG
signatures in the indicated ecotype, providing potential
in resolving closely connected ecosystems through coup-
ling with general abundance profile-based source track-
ing. One typical example is coastal site in which
continuous gradient pollution is hard to be detected by
overall abundance distribution. As mixing occurred across
the coastal margin, a high level of abundance across many
environments might be maintained for generalist indica-
tors, while pattern specific to their respective indicated
environment were more likely associated with specialist
indicators [53]. In addition, among retrieved common and
unique ARGs in such global-scale samples, large part of
overlapped ARGs implied past frequent transmission,
whereas minor unique ARGs might be intrinsic to each
ecotype. We believe that region-specific studies will help
identify more representative ARG signatures and thereby
contribute to assessing resistome development in the area.

Conclusions
Altogether, by combining comprehensive metagenomic
ARG profiling with machine-learning classification
SourceTracker, we here presented a novel quantitative
framework to address ARG pollution source tracking.
Although sequencing expense and computational com-
plexity might impede the platform application as a rou-
tine ARG pollution monitor tool, continued reduction in
sequencing costs and increase in public accessible com-
putational resources (e.g., online ARG annotation plat-
form ARGs-OAP [54]) may soon make this approach
feasible. Following predicted source contribution status,
risk ranking of different sources in ARG dissemination
will be possible, thereby paving the way for establishing
priority in mitigating further ARG spread. Particularly,
differentiation of sources will shed light on areas where
intervention can be most effective in reducing ARG
spread in the environment. Thus, the presented
source-tracking platform will have far-reaching signifi-
cance for both science community and public authorities
in AMR control.

Methods
Dataset information
A total of 656 metagenomic datasets covering four dis-
tinct ecological categories (i.e., HF, AF, WA, and NT)
were included in this study, which were downloaded
from public databases including NCBI-SRA (https://
www.ncbi.nlm.nih.gov/sra/), MGRAST (http://metagen
omics.anl.gov/), and HMPDACC (http://hmpdacc.org/
HMIWGS/all/) during period from November 2016 to
January 2017. In order to guarantee data quality, all
datasets were generated on Illumina shotgun sequencing
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platform and downloaded in FASTQ format with ori-
ginal sequencing quality information. In addition, back-
ground information of all datasets was supported by
relevant publications. To minimize possible bias intro-
duced by dataset heterogeneity, only feces samples of
healthy human adults were used. Considering large vari-
ation in microbial communities at different wastewater
treatment processes, activated sludge was used as the
representative of WWTP samples. All downloaded raw
data went through quality check and filtration by
PRINSEQ (prinseq-lite.pl using parameter setting: mean
quality score ≥ 20 and number of ambiguous ≤ 1). To
eliminate inconsistence in sequences, only reads with
length ≥ 100 bp were included and then all trimmed to
100 bp. In final datasets, average sequence number across
all samples was 27,712,728 with minimum 2,038,492 and
maximum 210,543,839. The full list of sample information
was summarized in Additional file 1: Table S1.

ARG annotation and community structure retrieval
Potential ARGs in all datasets were retrieved through
pipeline embedded in online platform ARGs-OAP
(smile.hku.hk/SARGs) [54]. Briefly, pre-screening for
ARG-like and 16S rRNA gene sequences were con-
ducted by UBLAST using Perl script supplied by the
platform. The candidate ARG sequences were aligned
against ARG database SARG using BLASTX and then
classified according to the SARG hierarchy (type-subty-
pe-sequence) when meeting the criteria in BLASTX
results (i.e., alignment length 25 aa, similarity 80% and
evalue 1e-5). ARG abundance (unit: copies of ARG per
copy of 16S rRNA) in each metagenomic dataset was
ARG-like sequence number normalized to the corre-
sponding ARG reference sequence length (nucleotide)
and the number of 16S rRNA genes. Community com-
position was identified by 16S rRNA gene hypervariable
region from metagenomic datasets by USEARCH against
Greengenes nr90 database.

SourceTracker method validation
Analysis was conducted in R using SourceTracker under
default parameter settings (burnin = 100, nrestarts = 10,
ndraws.per.restart = 1, delay = 10, α = 0.001, β = 0.01, rare-
faction_depth = 1000), in which different categorical prob-
abilities were used for calling a certain ratio of source
present. The predictive performance of the classifier in
ARG source tracking was evaluated by leave-one-out
cross-validation of 656 datasets with five runs. For each
sample, predicted proportion for each of five potential
sources (i.e., HF, AF, WA, NT, and UN (unknown))
across all five runs was averaged and source with the
highest average proportion was deemed as the pre-
dicted source. Consistency between the predicted
source and original ecotype was used to calculate

general SourceTracker prediction accuracy. Within
each ecotype, standard deviation (SD) and RSD were
calculated across predicted proportions. To further
examine potential and limitation of SourceTracker in
predicting specific source contributions within sink
samples, eight artificial sink configurations were gener-
ated containing defined proportions of source ARGs.
ARG tables consisted of average proportions of ARGs
associated with each ecotype were combined into a
single representative source sample. The sink sample
was generated by multiplying and adding these averages
into a single configuration. The SourceTracker output
was designated as the ‘predicted’ proportion, and the
artificial source inputs were designated as ‘expected’.
Taking variation between runs (i.e., RSD) into account,
predicted proportions were compared with the ex-
pected across configurations. In addition, the trained
classifier was challenged by three sets of metagenomic
samples with obvious gradient influence from human
activities to evaluate its performance in the following
real application: 1). influent and effluent samples of a
WWTP from summer and winter seasons respectively
[55]; 2). marine sediments collected from different HK
coastal locations [56]; 3). PRE sediment in south China
and deep ocean sediment in SCS [36].

Evaluation of parameter adjustment
Three particular artificial configurations (configuration A,
B, and C), covering a range of positive and negative
sources, were applied to evaluate effect of parameter
adjustment on SourceTracker performance. HF and AF
were included as negative control sources which should
not be detected, while WA and NT were present at
defined concentrations which should always be detected.
Independent parameter adjustment of rarefaction depth
(1000 (default), 5000, 20,000 and 50,000), burn-in period
(100 (default) and 1000), restarts (10 (default) and 20), as
well as Dirichlet hyperparameters α (0.1, 0.05, 0.01, 0.005,
0.001(default), 0.0005, 0.0001, 0.00005, 0.00001) and β
(0.1, 0.08, 0.06, 0.04, 0.02, 0.01(default), 0.008, 0.006,
0.004, 0.002) was investigated. Based on predicted pres-
ence/absence and ratio of sources in the configurations,
sensitivity (TP/(TP + FN)), specificity (TN/(TN + FP)),
precision (TP/(TP + FP)), accuracy ((TP + TN)/total num-
ber of sources) and RSD were calculated to evaluate effect
of the parameter adjustment on SourceTracker prediction
performance (TP: true positive, detected WA and NT
sources; TN: true negative, non-detected HF and AF
sources; FP: false positive, detected AF and HF sources;
FN: false negative, non-detected WA and NT sources).

Statistical analysis
The beta-diversity of ARG and community structure be-
tween different samples was compared using principal
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coordinate analysis (PCoA) based on Bray-Curtis dis-
tance. Procrustes test for correlation analysis between
ARGs and bacterial communities was performed in R
with the vegan package. To identify specific indicator
ARGs that characterize each of the environments, both
abundant (this is called specificity) and predominant
(this is called fidelity) in the type of environment, the
package labdsv and test indval were run in R, where IV
ranges from 0 to 1 with higher values for stronger indi-
cators. Linear correlation was conducted to identify the
association between the abundance distribution of indi-
vidual profile of each ARG and general profile across all
ARGs, in which those ARGs with higher linear correl-
ation were selected as potential general indicators of
overall ARG pollution. Common and unique ARGs were
obtained based on absence and presence pattern in the
four ecotypes. All graphs were produced by ggplot2
package. R script used for this study is available at
https://github.com/LiguanLi/SourceTrack.

Additional files

Additional file 1: Table S1. Metadata of 656 metagenomic datasets.
Table S5. SourceTracker parameter adjustment. a Defined source input
ratio in the three artificial configurations (A, B, and C). b Effect of parameter
adjustment on SourceTracker prediction performance of configurations A, B,
and C (indicated by RSD, sensitivity, specificity, precision, and accuracy).
Table S6. Statistical details (IV and P value) of 95 indicator ARGs of the four
ecotypes. (XLSX 78 kb)

Additional file 2: Figure S1. ARG abundance profile-based PCoA across
all collected metagenomics datasets (featured by both their ecotype and
project/study). Shape of each dot indicates different ecotype, and dot
color indicates different project or study in which these datasets involved.
Figure S2. PCoA analysis based on abundance profiles of overall ARG (a)
and community structure at phylum level (b). Procrustes analysis revealed
that PCoA of overall ARG and community structure profiles are significantly
correlated (P < 0.001, based on 9999 permutations). Figure S3. Predicted
source proportion in WWTP influent and effluent by SourceTracker.
Figure S4. Occurrence and abundance profile of indicator ARGs. a
Relative abundance of indicator ARGs in samples where they occur vs
occupancy. b Specific occurrence (occurrence ratio in samples of indicated
ecotype) vs general occurrence (occurrence ratio in samples outside
indicated ecotype) of indicator ARGs across 656 samples. Figure S5.
Abundance profiles (log2 transformed) of five top ARGs with high
correlation with overall abundance across 656 metagenomic datasets.
Inner circles, top correlation sequence I–V (in an outward direction from
innermost circle layers); outer circle, overall ARGs abundance. (DOCX 2108 kb)

Additional file 3: Table S2. SourceTracker prediction proportion
variation (indicated by mean, SD, and RSD) between runs in leave-one-
out cross-validation by 656 samples (refer to Fig. 1d). Table S3. SourceTracker
prediction proportion variation (indicated by mean, SD, and RSD)
between runs of eight artificial configurations (refer to Fig. 2). Table S4.
Location of 12 HK sediment samples, 9 PRE and SCS sediments. Table S7.
Sequence information of ARGs of relative high correlation (R2 ≥ 0.5) with
overall abundance profiles. (DOCX 1430 kb)
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