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Fast acquisition of a polysaccharide
fermenting gut microbiome by juvenile
green turtles Chelonia mydas after
settlement in coastal habitats
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Abstract

Background: Tetrapods do not express hydrolases for cellulose and hemicellulose assimilation, and hence, the
independent acquisition of herbivory required the establishment of new endosymbiotic relationships between
tetrapods and microbes. Green turtles (Chelonia mydas) are one of the three groups of marine tetrapods with an
herbivorous diet and which acquire it after several years consuming pelagic animals. We characterized the
microbiota present in the feces and rectum of 24 young wild and captive green turtles from the coastal waters of
Brazil, with curved carapace length ranging from 31.1 to 64.7 cm, to test the hypotheses that (1) the ontogenetic
dietary shift after settlement is followed by a gradual change in the composition and diversity of the gut
microbiome, (2) differences exist between the composition and diversity of the gut microbiome of green turtles
from tropical and subtropical regions, and (3) the consumption of omnivorous diets modifies the gut microbiota of
green turtles.

Results: A genomic library of 2,186,596 valid bacterial 16S rRNA reads was obtained and these sequences were
grouped into 6321 different operational taxonomic units (at 97% sequence homology cutoff). The results indicated
that most of the juvenile green turtles less than 45 cm of curved carapace length exhibited a fecal microbiota
co-dominated by representatives of the phyla Bacteroidetes and Firmicutes and high levels of Clostridiaceae,
Prophyromonas, Ruminococaceae, and Lachnospiraceae within the latter phylum. Furthermore, this was the only
microbiota profile found in wild green turtles > 45 cm CCL and in most of the captive green turtles of any size
feeding on a macroalgae/fish mixed diet. Nevertheless, microbial diversity increased with turtle size and was higher
in turtles from tropical than from subtropical regions.

Conclusions: These results indicate that juvenile green turtles from the coastal waters of Brazil had the same
general microbiota, regardless of body size and origin, and suggest a fast acquisition of a polysaccharide
fermenting gut microbiota by juvenile green turtles after settlement into coastal habitats.
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Background
Herbivory has evolved independently in several groups
of tetrapods belonging to diverse evolutionary lineages
[1]. Unlike some invertebrates, tetrapods do not express
hydrolases for cellulose and hemicellulose [2], and
hence, the independent acquisition of herbivory required
the establishment of new endosymbiotic relationships
between tetrapods and microbes [1, 3–5]. As a conse-
quence, the composition, abundance, and diversity of
the gut microbiota of herbivorous tetrapods vary widely
across groups, reflecting not only their evolutionary rela-
tionships but also their foraging habits and the location
of the cavity of fermentation into the gut–hindgut vs.
foregut fermenters [6–8].
Several groups of tetrapods have recolonised the marine

environment after independent evolution in land, but only
three of them are herbivores: sirenians (manatees and the
dugong), the marine iguana (Amblyrhynchus cristatus),
and the green turtle (Chelonia mydas). Sirenian diet is
dominated by seagrasses [9–12] which are vascular plants
rich in cellulose [13, 14]. Consequently, sirenians host
microorganisms producing the enzymes needed for the
fermentative digestion of cellulose [15, 16]. On the other
hand, marine iguanas feed only on macroalgae [17]. The
cell wall of macroalgae differs from that of seagrasses and
other vascular plants in the abundance of sulfated polysac-
charides and alginic acid and low levels of cellulose [18].
As a consequence, the microbiota of marine iguanas is
characterized by the presence of some specific groups of
methanogens and differs largely from that of terrestrial
iguanas, despite a close evolutionary relationship [3].
Green turtles exhibit a much larger dietary flexibility than
sirenians and marine iguanas, as they undergo a major
ontogenetic dietary shift from animal-based to plant-
based diets following settlement in coastal areas [19–25].
Nevertheless, they also exhibit a high level of regional vari-
ability in the degree of omnivory after settlement and the
relative importance of seagrasses and seaweeds in their
diets [20, 21, 23, 26–34].
The acquisition of a specialized microbiota is facilitated

by lactation and intimate calve/mother relationships in
mammals [35] and the consumption of conspecific excre-
ments in marine iguanas [17]. On the contrary, the soli-
tary lives of green turtles may delay the acquisition of a
specialized gut microbiota, which in combination with the
higher body temperature of larger turtles in winter may
explain the improved digestibility and assimilation of plant
material as green turtles grow [13, 20]. This is because
green turtles are ectothermic, and the body temperature
of inactive adult green turtles can be 2 °C above water
temperature thanks to gigantothermy [36], whereas that
of juveniles matches that of the environment [37]. It has
also been suggested that mixed seagrass/macroalgae diets
are uncommon in green turtles because the entirely

different structure of polysaccharides in their cell walls
would require different compositions of the gut micro-
biota [38]. In such case, frequent and short-term shifts in
diet may reduce the efficiency of plant digestion [39].
Unfortunately, very little is known about the gut

microbiota of green turtles, how it changes after settle-
ment in coastal areas in association to the increase in
the consumption of plant material, and the influence of
turtle diet on microbiota composition. The only infor-
mation available to our knowledge is about the micro-
biota present in the cloaca of pelagic and recently settled
green turtles, which reveals a high prevalence of Proteo-
bacteria and a low occurrence of bacteria associated to
the fermentation of structural polysaccharides [40]. In
this study, we characterize the microbiota present in the
feces and rectum of young wild and captive green turtles
from Brazil to test the hypotheses that (1) the ontogen-
etic dietary shift after settlement is followed by a gradual
change in the composition and diversity of the gut
microbiome, (2) differences exist in the composition and
diversity of the gut microbiome of green turtles from
tropical and subtropical regions, and (3) the consump-
tion of omnivorous diets modifies the gut microbiota of
green turtles.

Methods
Study area
Two different areas of Brazil were sampled in February
to March 2016. Most samples (n = 20) were collected
from subtropical Ubatuba (23° 26′ S, 45° 05′ W), in the
northern coast of the state of Sao Paulo. Rocky reefs and
sandy beaches dominate the coastline of Ubatuba [41].
A few additional samples (n = 5) were collected from
tropical Praia do Forte (12° 38′ S 38° 05′ W), located
70 km from Salvador do Bahia. The coastline is charac-
terized by the presence of shallow coral reefs with sub-
stantial air exposition during low tide [42].

Sampling
Fecal samples were collected from 8 turtles held in captive
at the facilities of Projeto Tamar at Ubatuba and 11 wild
turtles from Ubatuba. Some wild green turtles were
captured alive in weirs (“Cercos flutuantes”) used by local
fishermen and consisting on fixed nets attached to the
seafloor [43], and others were captured alive through free
diving by members of Projeto Tamar (www.tamar.org.br),
as part of the long-term study on the abundance and habi-
tat use of green turtles along the Brazilian coast. After
capture, curved carapace length (CCL) was measured with
a flexible tape (CCL, notch to tip) and turtles were moved
to the facilities of Projeto Tamar in Ubatuba. These turtles
were confined in individual PVC tanks until the moment
they defecated, between 24 and 36 h after capture, and
then released back to the sea at the same place of capture.
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Tanks had been previously disinfected with regular bleach.
The core of each fecal pellet was accessed using sterilized
forceps and sampled with a swab, to reduce as much as
possible contamination from water. Additionally, rectal
samples (n = 5) were collected with a swab during the nec-
ropsy of recently dead turtles at Praia do Forte.
Fecal and rectal samples were stored at 4 °C immedi-

ately after collection and then at − 20 °C until DNA
extraction. No buffers were used. All procedures were
non-invasive and conducted in accordance with guidelines
from the Projeto TAMAR and ICMBio.

DNA extraction and next-generation sequencing
DNA was extracted from a subsample of 0.25 g from
each fecal or rectal sample using the PowerSoil DNA kit
(MO BIO Laboratories, Carlsbad, CA, USA) following
the manufacturer’s instructions. All DNA extracts were
kept frozen at − 20 °C until further analysis. Massive bar-
coded 16S rRNA gene-based libraries in the Eubacteria
domain were sequenced by using the MiSeq Illumina plat-
form (Molecular Research DNA LP, Shallowater, USA).
These gene libraries were constructed by targeting the
V1–V3 hypervariable regions with the primer set 27F
(5′-AGRGTTTGATCMTGGCTCAG-3′)/519R (5′-GTN
TTACNGCGGCKGCTG-3′) as previously described in
[44]. The obtained DNA reads were compiled in FASTq
files for further bioinformatic processing. Trimming of the
16S rRNA barcoded sequences into libraries was carried
out using QIIME software version 1.8.0 [45]. Quality filter-
ing of the reads was performed at Q25, the default set in
QIIME, prior to the grouping into operational taxonomic
units (OTU) at a 97% sequence homology cutoff. The
following steps were performed using QIIME: Denois-
ing of sequence data using Denoiser [46], picking up of
OTU reference sequences via the first method of the
UCLUST algorithm [47] and, for sequence alignment
and chimera detection, processing by PyNAST [48] and
ChimeraSlayer [49]. OTUs were then taxonomically
classified using BLASTn against GreenGenes and RDP
(Bayesian Classifier) databases and compiled into each
taxonomic level [50].

Biostatistical methods
A general lineal model (GLM) using locality (Ubatuba
vs. Praia do Forte) as a fixed factor and turtle curved
carapace length as a covariable was used to test the hy-
pothesis that the microbial diversity of wild green turtles
increases with turtle size and varies across localities. A
general lineal model using origin (captive vs. wild) as a
fixed factor and turtles curved carapace length as a cov-
ariable was used to test the hypothesis that the microbial
diversity of green turtles increases with turtle size and
differs between captive and wild green turtles from sub-
tropical Ubatuba. GLMs were run in IBM SPSS Statistics

23. Multivariate principal coordinate analysis (PCoA)
based on Bray-Curtis similarity distances was carried out
on the OTUs incidence matrix using the CANOCO soft-
ware package, version 5 (Microcomputer Power, Ithaca,
NY, USA), to identify clusters of green turtles differing
in the community structure of their microbiomes.

Results
The gut microbiome of 24 green turtles ranging in curved
carapace length (CCL) from 31.1 to 64.7 cm was studied.
A genomic library of 2,187,066 valid eubacterial 16S rRNA
reads was obtained from their feces (Additional file 1).
These sequences were grouped into 6321 different OTUs
(at 97% sequence homology cutoff), ranging from 473 to
1952 in individual turtles (Table 1). The Good’s coverage
estimator on the percentage of the total species (as OTUs)
represented in any given sample was above 98%, indicat-
ing that the observed species encompassed a very signifi-
cant proportion of the entire sample populations. With
this respect, the number of expected OTUs (Chao 1)
ranged from 959 to 2818 and the Shannon index from 2.17
to 5.38 (Table 1). The number of recovered and expected
OTUs in wild turtles form Praia del Forte was larger than
those in wild turtles from Ubatuba and increased signifi-
cantly with curved carapace length in both areas according
to GLM (Table 2). However, the indices of microbial diver-
sity did not differ between wild and captive turtles from
Ubatuba (GLM; OTUs: F2,18 = 1.750, p = 0.205; Chao1:
F2,18 = 1.922, p = 0.179; Shannon: F2,18 = 2.445, p = 0.118).
The dominant phyla in the majority of wild and cap-

tive turtles were Bacteroidetes, ranging 20–70% of rela-
tive abundance (RA), and Firmicutes with a 24–56% of
RA (Fig. 1). In most of the studied turtles (Fig. 2), the
predominant families within Bacteroidetes phylum were
Bacteroidaceae and Porphyromonadaceae, while within
Firmicutes phylum the predominant families were Clos-
tridiaceae, Lachnospiraceae, and Ruminococaceae, with
the exception of two wild individuals and one captive in-
dividual from Ubatuba. The bacterial community struc-
ture of these two anomalous wild turtles (UB7 and
UB10) was characterized by a high RA of representatives
from the phyla Proteobacteria (approximately 60% RA)
and Actinobacteria, which in this latter phylum belonged
to the Mycobacterium genus (1.2 and 4.7% RA in UB7
and UB10, respectively). The main OTUs of the former
Proteobacteria phylum were related to Burkholderia spp.
(Betaproteobacteria), Sphingopyxis spp. (Alphaproteobac-
teria), and Pseudomonas spp. (Gammaproteobacteria),
which combined represented 49.5 and 38.3% RA for
UB7 and UB10, respectively. Except for Sphingopyxis,
these genera have been associated to the presence of
Staphylococcus spp., in the phylum Firmicutes (5.0% and
3.5% of RA in UB7 and UB10, respectively). Regarding
the bacterial community of the anomalous captive turtle
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(UB18), it was characterized by a high abundance of the
phylum Fusobacteria (27% RA). Such dominance was
primarily caused by OTU7, affiliated with the microaero-
tolerant fermentative Cetobacterium sp. (96% of similar-
ity to Cetobacterium ceti), also found in whale, dolphin,
and porpoise gut flora (Bik et al. 2016).
When those three anomalous turtles (UB7, UB10,

and UB18) were removed from the analysis, the abun-
dance of Proteobacteria was consistently higher in
captive (range 0.7–7.7% RA) than in wild (range 0.2–
1.9% RA) turtles from Ubatuba (Mann-Whitney test;
U = 57.00, p = 0.046). On the other hand, Akkermansia
spp., belonging to the phylum Verrumicrobia, was
found with a RA of 8–15% in captive turtles UB18,
UB20, and UB21. It is noteworthy that in one of the
wild individuals (UB14), Akkermansia was enriched
up to a 30% of RA and, curiously, the microbiome of
this individual was rather different from that of other
wild turtles.

Table 2 Summary statistics of general lineal models describing
the relationship between indices of microbial diversity in fecal and
rectal samples of wild juvenile green turtles Chelonia mydas,
sampling area (subtropical Ubatuba and tropical Praia do Forte)
and curved carapace length (CCL)

Microbial diversity F df p r2

OTUs Model 4.155 2.15 0.040 0.296

CCL 6.016 2.16 0.023

Area 6.205 2.16 0.028

Chao 1 Model 4.517 2.16 0.032 0.319

CCL 6.177 2.15 0.027

Area 7.671 2.15 0.016

Shannon Model 3.180 2.16 0.075 NA

CCL 3.939 2.15 0.069

Area 2.708 2.15 0.033

Microbial diversity is higher in tropical Praia do Forte and increases with
turtles size. Italics denote statistical significance
NA not applicable

Table 1 Descriptors of bacterial diversity in fecal and rectal samples of juvenile green turtles Chelonia mydas from Brazil

Study area Origin Turtle CCL (cm) Total reads OTUs Coverage (%) Shannon (ave ± SD)a Chao1 (ave ± SD)a

Praia do Forte–BA Wild PF1 31.1 70,792 1589 99 4.69 ± 0.006 2015 ± 78

Praia do Forte–BA Wild PF2 35.0 111,405 1794 99 4.17 ± 0.008 1790 ± 88

Praia do Forte–BA Wild PF3 38.8 70,850 1997 98 5.14 ± 0.006 2523 ± 85

Praia do Forte–BA Wild PF4 40.0 90,045 1911 99 4.22 ± 0.008 2148 ± 87

Praia do Forte–BA Wild PF5 44.0 89,351 2211 98 5.05 ± 0.007 2466 ± 90

Ubatuba–SP Wild UB6 37.0 127,862 1217 99 2.16 ± 0.009 1071 ± 69

Ubatuba–SP Wild UB7 39.7 68,389 601 99 2.59 ± 0.006 956 ± 80

Ubatuba–SP Wild UB8 40.0 98,513 1954 99 4.70 ± 0.007 2053 ± 77

Ubatuba–SP Wild UB9 41.3 76,055 1947 99 4.82 ± 0.006 2389 ± 90

Ubatuba–SP Wild UB10 44.7 61,852 598 99 3.08 ± 0.005 953 ± 67

Ubatuba–SP Wild UB11 45.0 119,273 2150 99 4.37 ± 0.008 2036 ± 93

Ubatuba–SP Wild UB12 47.0 119,764 2206 99 4.47 ± 0.008 2050 ± 81

Ubatuba–SP Wild UB13 53.3 84,889 2006 99 4.60 ± 0.008 2264 ± 79

Ubatuba–SP Wild UB14 54.2 107,097 1670 99 3.24 ± 0.009 1657 ± 71

Ubatuba–SP Wild UB15 58.3 90,582 1951 99 4.53 ± 0.007 2187 ± 90

Ubatuba–SP Wild UB16 61.4 79,361 2179 98 5.15 ± 0.006 2540 ± 83

Ubatuba–SP Captivity UB17 32.5 103,168 2284 99 4.55 ± 0.008 2355 ± 88

Ubatuba–SP Captivity UB18 34.9 121,100 1481 99 2.88 ± 0.009 1374 ± 75

Ubatuba–SP Captivity UB19 38.6 56,987 1723 99 4.85 ± 0.005 2447 ± 77

Ubatuba–SP Captivity UB20 40.0 123,937 1442 99 2.79 ± 0.009 1302 ± 71

Ubatuba–SP Captivity UB21 41.3 101,478 2436 98 4.68 ± 0.008 2549 ± 93

Ubatuba–SP Captivity UB22 53.5 99,346 2079 99 4.17 ± 0.009 2118 ± 75

Ubatuba–SP Captivity UB23 58.6 70,520 2330 98 5.38 ± 0.006 2802 ± 77

Ubatuba–SP Captivity UB24 64.7 43,980 1036 99 4.70 ± 0.001 1875 ± 34

Range 31.1–64.7 70,792–127,862 1589–2436 98–99 2.16–5.38 953–2549

Fecal samples were collected at Ubatuba and rectal samples at Praia do Forte
CCL curved carapace length, BA State of Bahia, SP State of Sao Paulo, ave average
aCalculated upon sample rarefaction at 43000 reads
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The family Clostridiaceae comprised a ribotype (OTU1)
that was predominant in almost all samples (from 1 to 8%
RA). OTU1 belongs to the unclassified Clostridiaceae 1
subfamily. Interestingly, the RA of OTU1 in the wild tur-
tles with the most dissimilar microbiome (UB7 and UB10)
was < 0.1% RA (Figs. 1 and 2). Moreover, predominant

OTUs of Lachnospiraceae and Bacteriaceae in those
anomalous turtles were present at a comparatively low
RA. On the other hand, representatives of the genus
Spirochaetes were detected in all samples, but only in
turtles from Praia do Forte this phylum appeared in sig-
nificant amounts, especially in PF3, PF4, and PF5, where

Fig. 1 Percentages of sequences from each individual turtle, fecal or rectal sample assigned at the phylogenetic level of phylum, according to
the RDP Bayesian Classifier database with a bootstrap confidence above 80%. PF1 to PF5 = wild turtles from Praia do Forte; UB6 to UB16 = wild
turtles from Ubatuba; UB17 to UB24 = captive turtles from Ubatuba. Taxa with a RA lower than 1% is grouped as “others”

Fig. 2 Percentages of sequences from each individual turtle, fecal or rectal sample assigned at the phylogenetic level of family, according to the
RDP Bayesian Classifier database with a bootstrap confidence above 80%. PF1 to PF5 = wild turtles from Praia do Forte; UB6 to UB16 = wild
turtles from Ubatuba; UB17 to UB24 = captive turtles from Ubatuba. Taxa with a RA lower than 5% is grouped as “others”
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OTU6 was predominant. This OTU was distantly related
(88% in sequence homology) to Treponema brenna-
borense and might therefore correspond to an unde-
scribed species. Furthermore, samples from Praia do
Forte had a lower abundance of representatives in the
Actinobacteria and Verrumicrobia, when compared to
the Ubatuba individuals.
Multivariate analysis (PCoA of samples’ Bray-Curtis dis-

tances based on OTUs incidence) (Fig. 3) showed three
major clusters in relation to the microbial community
structure of the gut microbiome from the studied turtles
(Fig. 3). The smallest and more specific group confirmed
the uniqueness of the bacterial community in the two
anomalous wild turtles described above, UB7 and UB10.
No significant segregation was observed between wild and
captive turtles, but individuals from Ubatuba displayed a
significant variability, and two major groups were appar-
ent. The minor cluster encompassed the previously de-
scribed individuals that were characterized by a relatively
high abundance of Akkermansia spp., while a second lar-
ger one also contained the samples from Praia do Forte
forming a very compact subcluster.

Discussion
Green turtles settle in the coastal habitats of the south-
western South Atlantic when they are 30–45 cm in CCL
[34, 41, 51]. The results reported here indicated that most

of the green turtles less than 45 cm CCL from Brazil ex-
hibited a fecal microbiota co-dominated by phyla Bacter-
oidetes and Firmicutes and high levels of Clostridiaceae,
Porphyromonas, Ruminococcaceae, and Lachnospiraceae
within the latter phylum. Furthermore, this was the only
microbiota profile found in wild green turtles > 45 cm
CCL and in most of the captive green turtles of any size
feeding on a macroalgae/fish mixed diet. These results
suggest a fast acquisition of a polysaccharide fermenting
gut microbiota by juvenile green turtles after settlement
into coastal habitats.
A high abundance of Proteobacteria had been previ-

ously reported from the cloaca of pelagic (range 17.1–
21.7 cm CCL) and recently settled (29.4–34.6 cm CCL)
juvenile green turtles from Florida and from the gut of
omnivorous marine fishes, but not from other groups of
herbivorous vertebrates (Table 3). A high abundance of
Proteobacteria has been observed also in two wild and
one captive green turtles from Brazil less than 45 cm
CCL (this study), but this is probably because they were
immunodepressed and not because of recent settlement.
We hypothesize that the prevalence of the Proteobacteria
phylum in those three individuals was because of lesions
from anthropogenic impacts [52]. The same is true for
Mycobacterium, from the Actinobacteria phylum, a genus
very uncommon in turtles but which includes several well-
known pathogens for reptiles and amphibians [53, 54]. Fur-
thermore, three captive and one wild turtle shared OTUs
affiliated to the Akkermansia genus (Verrumicrobiaceae
family). Akkermansia is a mucin-degrading bacterium
commonly found in the human gut and recently isolated in
reptiles [55, 56]. Several studies showed that the enrich-
ment of Akkermansia induces gut inflammation and is
associated with colonic diseases in mammals, but nothing
is known about its pathogenicity in reptiles. It is also worth
noting a small captive turtle (34.9 cm CCL) with a micro-
biota dominated by Bacteroidetes and Firmicutes but with
a high relative abundance of Fusobacteria, a group occur-
ring sporadically in carnivorous marine mammals [4].
High levels of Firmicutes are characteristic of the gut

and fecal microbiota of herbivorous vertebrates (Table 3),
as this phylum plays a critical role in the fermentation of
complex polysaccharides [3, 57]. The families Ruminococ-
caceae and Lachnospiracea are particularly relevant, as
both are obligate anaerobes with capacity to degrade
structural polysaccharides into short-chain volatile fatty
acids [3, 58–62] and occur in large numbers only in the
gut and feces of herbivorous tetrapodes [3, 8, 62, 63].
Short-chain volatile fatty acids are indeed the main prod-
uct of fermentation of plant material in the large intestine
of green turtles [39, 64], and the analysis of the green
turtle microbiota reported here revealed that Ruminococ-
caceae and Lachnospiraceae represented 3–30% of the
OTUs recovered from the rectal and fecal samples of most

Fig. 3 PCoA biplot of the gut microbiome in Brazilian green turtles
based on the Bray-Curtis distance matrix. Wild turtles came from Praia
do Forte (PF1 to PF5) and Ubatuba (UB6 to UB16). Captive turtle came
only from Ubatuba (UB17 to UB24). The percentage of explained
variation encompassed by the two main axes has been indicated. The
main sample score clusters (dashed contours) and the more specific
subcluster from Praia do Forte (dotted contour) have been highlighted
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juvenile green turtles, thus confirming their capacity to
ferment structural polysaccharides. This suggests that
juvenile green turtles with a Firmicutes-Bacteroidetes
dominated fecal microbiota were plant-based omni-
vores or herbivores, which agrees with available dietary
information [31, 33, 34, 65–68].
Interestingly, Ruminococcaceae prevail over Lachnospir-

aceae in terrestrial herbivorous reptiles [3] but the oppos-
ite appears to be true in marine iguanas [3] and in green
turtles. Macroalgae are the staple food of both groups and
differ from seagrasses and terrestrial plants in high levels
of sulfated polysaccharides and alginic acid and low levels
of cellulose [18]. This suggests that the prevalence of
Lachnospiraceae over Ruminococcaceea in marine iguanas
and green turtles is related to the similar composition of
the polysaccharides in their diets. Nothing is known about
the microbiota of green turtles feeding on seagrasses, but
the profiles of the short-chain volatile fatty acids produced
in the large intestine of green turtles feeding on seagrasses
and those feeding on macroalgae differ [39, 64], thus sug-
gesting potential differences in their microbiota worth
exploring in further research.
Another major difference between the rectal and fecal

microbiota of green turtles and those of other herbivor-
ous vertebrates is the high abundance of Bacteroidetes in
the former, a pattern reported previously only from du-
gongs (Dugong dugong) and gopher tortoises (Gopherus
polyphemus) (Table 3). Bacteroidetes may contribute
significantly to the initial attack on both simple and
complex carbohydrates [69], and Yuan et al. (2015) spec-
ulated that the high prevalence of Bacteroidetes in
gopher tortoises might be related to the seasonally low
temperatures experienced in subtropical environments.
However, Bacteroidetes had a similar prevalence in green
turtles from tropical Praia do Forte and from subtropical
Ubatuba (this study), thus suggesting that seasonal dif-
ferences in temperature are unlikely to not induce major
changes in the relative abundance of Bacteoidetes and
Firmicutes, although samples were collected in summer
in both areas. A high abundance of Bacteroidetes is nei-
ther characteristic of the gut microbiota of herbivorous
chelonians, as they represent only 4% of the relative
abundance of bacteria in the microbiota of Galapagos
giant tortoises (Geochelone nigra) [3]. It is suggested that
the high presence of this phylum in all the samples of
green turtles from Brazil, except those of the three anom-
alous individuals, could be related to the presence of high
levels of organic matter in coastal waters, which allow
copiotrophs (such as Bacteroidetes) to thrive and domin-
ate the microbial community structure [70]. Moreover, a
recent study of gut microbiota of the loggerhead sea turtle
Caretta caretta [71] found that Firmicutes, Proteobacteria,
and Bacteroidetes were the most predominant microbial
population in turtle feces.

Spirochaetes is another group of non-cellulolytic bac-
teria associate with specific plant substrates during
digestion [72], facilitating the breakdown of cellulose by
co-occurring bacteria [73]. Within this phylum, the
Spirochaetes members exhibit enormous diversity in a
free-living or host-associated life, being pathogenic or
non-pathogenic, and aerobic or anaerobic [74]. This
phylum has also been reported to be a major compo-
nent of the microbiota of gopher tortoises, omnivorous
fishes and gorilla, but not in other herbivorous reptiles
(Table 3). OTU 6, an unidentified Spirochaetes, was
detected in all the samples, but only in the rectal sam-
ples of three individuals from Praia do Forte (PF3, PF4,
and PF5) did it represented more than 2% of the relative
abundance.
The fact that Bacteroidetes and Firmicutes were the

dominant bacteria in the feces and the rectal samples of
most juvenile green turtles less than 45 cm CCL, includ-
ing four specimens ranging 31.1–35.0 cm CCL, indicates
that they acquired a microbiota adapted to digest poly-
saccharides shortly after settlement. How this specialized
bacterial flora is acquired by settlers remains unknown,
but land and marine iguanas have been observed con-
suming conspecific excrements [17, 75], which certainly
facilitate acquiring a plant degrading microbiota. Juvenile
green turtles are not gregarious, but may form dense
aggregations [31, 76], which might facilitate feces con-
sumption and hence the quick acquisition of a bacterial
flora adapted to digest polysaccharides. Alternatively,
fermenters might be transferred through the diet, as they
can be associated with algal surfaces [77].
Algae and seaweeds are typically rich in sulfated

polysaccharides that are absent in terrestrial plants.
Hence, microbiota from the phylosphere of seaweeds
are characterized by high copy numbers of sulfatases
in their genomes [78]. A recent study suggested that
traditional sushi food, which is largely composed of
seaweeds, significantly affected the gut microbiome of
the Japanese population [79, 80]. It was then observed
that carbohydrate-active enzymes (CAZymes) in the
gut microbiome, which are absent in the human gen-
ome, were acquired by horizontal gene transfer (HGT)
from the marine bacteria associated with seaweeds.
Moreover, [81], reviewed several studies on the HGT
phenomena between environmental and gut bacteria
within the phyla of Bacteroidetes and Firmicutes in
different organisms, including the grazer surgeonfish.
Hence, it is well possible that the seaweed-based diet
of turtles could similarly affect their gut microbiota by
gene acquisition, considering that CAZymes and sulfatases
are required for efficient seaweed degradation [82]. This
topic merits further research taking advantage of the exist-
ing programs on captive breeding of green turtles by per-
forming gut metagenomics analysis.
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In any case, the fast acquisition after settlement in
coastal areas of a microbiota adapted to ferment polysac-
charides should enable green turtles to adopt an herbiv-
orous diet soon after recruitment. This is the pattern
reported from tropical areas [25, 83], but in warm tem-
perate and subtropical regions, juvenile green turtles are
best described as plant-based omnivore and only adults
are primarily herbivores [19–21, 23, 33, 34, 37, 84, 85].
The results presented here indicate an increase in the
taxonomic richness of the gut microbiome as turtles
grow, but this is an unlikely explanation by the progres-
sive ontogenetic dietary shift, because even small turtles
had a high abundance of Ruminococcaceae and Lachnos-
piraceae. Consumption of animal material results into a
slight and statistically significant increase in the relative
abundance of Proteobacteria, as revealed by the differ-
ences between captive and wild healthy turtles, but the
abundance of Ruminococcaceae and Lachnospiraceae
remains high anyway. This suggests that omnivore is un-
likely to reduce the capacity of green turtles to digest
plant material.
Digestibility of plant material in green turtles increases

with temperature [13] and the body temperature of
juvenile green turtles inhabiting subtropical regions is
close to that of water during winter months [86]. Con-
versely, the body temperatures of inactive adult green
turtles can be 2 °C above water temperature thanks to
gigantothermy [36], which explains why the digestibility
of plant material by green turtles increases with body
size even in tropical settings [13]. Interestingly, the
apparent digestibility of plant material does not increase
with body size in marine iguanas [86], because even
very small individuals can rise significantly their body
temperature through basking in black lava [17]. Green
turtles bask regularly in the beaches of Hawaii and
Galapagos [87, 88] and this behavior has been sug-
gested to improve digestion, but beach basking has
never been reported in other areas to our knowledge.
If green turtles inhabiting subtropical and warm temperate
regions do not bask in winter, the digestibility of plant ma-
terial by small individuals can be compromised during
winter, even if they support a specialized microbiota rich
in Ruminococcaceae and Lachnospiraceae, which may
explain the progressive dietary shift as they grow.

Conclusions
This study revealed that juvenile green turtles from the
coastal waters of Brazil had the same general microbiota
profile, regardless of size and origin (wild vs. captive;
subtropical Ubatuba vs. tropical Praia do Forte). This in-
dicates a fast acquisition of a microbiota with capacity to
ferment structural polysaccharides soon after settlement
in the coastal waters of Brazil and that the regular con-
sumption of animal prey does not significantly reduce

the presence of Ruminococcaceae and Lachnospiraceae
and, hence, does not impair the capacity to ferment
structural polysaccharides. However, subtropical speci-
mens displayed a larger variability in the gut microbial
community structure, which in the most extreme cases
was clearly related to poor physical condition. In sum-
mary, there is no reason for a delayed ontogenetic diet-
ary shift after settlement, unless low winter temperature
reduces their capacity to digest plant material.
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