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Abstract

Background: The species composition of a microbial community is rarely fixed and often experiences fluctuations
of varying degrees and at varying frequencies. These perturbations to a community’s taxonomic profile naturally also
alter the community’s functional profile-the aggregate set of genes encoded by community members—ultimately
altering the community’s overall functional capacities. The magnitude of such functional changes and the specific shift
that will occur in each function, however, are strongly dependent on how genes are distributed across community
members' genomes. This gene distribution, in turn, is determined by the taxonomic composition of the community
and would markedly differ, for example, between communities composed of species with similar genomic content vs.
communities composed of species whose genomes encode relatively distinct gene sets. Combined, these observations
suggest that community functional robustness to taxonomic perturbations could vary widely across communities with
different compositions, yet, to date, a systematic study of the inherent link between community composition and
robustness is lacking.

Results: In this study, we examined how a community’s taxonomic composition influences the robustness of that
community’s functional profile to taxonomic perturbation (here termed taxa-function robustness) across a wide
array of environments. Using a novel simulation-based computational model to quantify this taxa-function robustness in
host-associated and non-host-associated communities, we find notable differences in robustness between communities
inhabiting different body sites, including significantly higher robustness in gut communities compared to vaginal
communities that cannot be attributed solely to differences in species richness. We additionally find between-site
differences in the robustness of specific functions, some of which are potentially related to site-specific environmental
conditions. These taxa-function robustness differences are most strongly associated with differences in overall functional
redundancy, though other aspects of gene distribution also influence taxa-function robustness in certain body
environments, and are sufficient to cluster communities by environment. Further analysis revealed a correspondence
between our robustness estimates and taxonomic and functional shifts observed across human-associated communities.

Conclusions: Our analysis approach revealed intriguing taxa-function robustness variation across environments and
identified features of community and gene distribution that impact robustness. This approach could be further applied
for estimating taxa-function robustness in novel communities and for informing the design of synthetic communities
with specific robustness requirements.
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Background

The examination and characterization of microbial com-
munities have become increasingly important as their
impacts on human health, industrial processes, and the
environment have been recognized. These communities
have been studied both in terms of their taxonomic and
functional compositions, elucidating important commu-
nity features and revealing intriguing disease- and
environment-associated variation. A community’s taxo-
nomic composition is often determined via targeted 16S
rRNA sequencing [1], a technique that uses hyper-
variable regions of the 16S rRNA gene to identify the
microbes present in a given community and estimate
their relative abundances. Such taxonomic information
can provide insight into inter-microbial or host-microbe
interactions and facilitate the detection of shifts in com-
munity ecology that may be associated with host disease
[2-6]. The functional composition of a community, in
turn, can be estimated via whole metagenome shotgun
sequencing followed by gene annotation. Using such
data, gene-level analyses have provided insight into the
functional capacities of various microbial communities
[7, 8] and how those capacities change over time or vary
with altered environmental conditions [9, 10].

Indeed, these two facets of microbiome composition,
namely its taxonomic structure and its functional capaci-
ties, offer different but complementary views into micro-
bial communities. These two aspects of microbiome
organization, however, are clearly not independent as
the composition of genes in the metagenome is a direct
derivative of the genes encoded by the community mem-
bers’ genomes and the relative abundance of each mem-
ber in the community. Moreover, this link can be
represented as a simple set of linear equations wherein
the abundance of each gene in the metagenome is the
sum of that gene’s copy number in each community
member’s genome weighted by the relative abundance of
each community member (Fig. la) [11]. This inherent
link between a community’s taxonomic composition and
its functional profile, here referred to as the taxa-func-
tion relationship [12], has many practical applications in
the analysis of microbial communities. For example, this
relationship is explicitly utilized by tools such as
PICRUSt [13] and Tax4Fun [14] for predicting overall
community gene content based on the community taxo-
nomic profile and available reference genomes. Other
studies have similarly used the taxa-function relationship
to identify taxonomic drivers of disease-associated func-
tional shifts [15] or to estimate differences in community
metabolic capacities [16]. Such methods for integrated
analysis of multi-omic microbiome data offer unique,
mechanistically driven insights into how taxonomic
composition affects community function through fea-
tures such as gene abundances and metabolism.
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Conceptually, the taxa-function relationship can be
viewed as a structure-to-function landscape, whose top-
ology is determined by the distribution of genes across
community genomes. As such, it is similar to the fitness
landscape concept used in evolutionary biology [17-20],
but instead of describing how changes in genotype map
to changes in phenotype, it describes how changes in a
microbial community’s composition map to changes in
the community’s functional capacities. Characterizing
the topology of this taxa-function landscape is similarly
crucial for understanding how constraints on commu-
nity ecology restrict community function and should be
considered when designing the targeted manipulation of
community composition. One important manifestation
of the taxa-function landscape is the degree to which a
shift in a community’s taxonomic composition will im-
pact its functional capacities (a property that we refer to
here as taxa-function robustness). Specifically, depending
on the local topology of the taxa-function landscape
around a given community, changes in the abundance of
its members could result in a minor or major alteration
to the community’s functional profile [21-24] (Fig. 1b;
analogous to the impact of the fitness landscape on gen-
etic robustness [25, 26]). As noted above, the topology
of the landscape around a given community, and conse-
quently, its taxa-function robustness depends solely on
the manner in which genes are distributed among the
genomes of that community’s members (Fig. 1c). For ex-
ample, if a specific gene family (or pathway) is encoded
by a single species in the community, any perturbation
to that species’ abundance will directly translate to
changes in the abundance of this gene family in the
metagenome and ultimately in the community’s func-
tional profile. If, however, this gene family is encoded by
multiple species in the community, its abundance is less
likely to substantially change in the face of taxonomic
perturbations as a decrease in the abundance of one spe-
cies that encodes this gene family could be compensated
for by an increase in the abundance of another [21-24].
Moreover, if multiple genes tend to co-occur across the
various genomes in a community [27], then those genes
(and the functions associated with them) will shift in a
similar manner as the taxonomic composition is per-
turbed. Combined, these observations suggest that the
taxonomic composition of a community (which in turn
also determines the distribution of genes across commu-
nity members) directly impacts the taxa-function robust-
ness of that community and may therefore vary
substantially from community to community.

Importantly, this definition of taxa-function robustness
aims to capture an important aspect of the taxa-function
relationship and is independent of the specific variation
the community actually experiences or its natural dy-
namics (just as a fitness landscape is determined by the
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Fig. 1 An illustration of the taxa-function relationship and response curves. a The functional profile of a community is a linear combination of the
functional profile of each taxon in a community (the copy number of each gene in each taxon's genome) weighted by the abundance of each
taxon in that community. Note that here, a taxon need not be a species, but can instead represent any subpopulation of the community with
shared genomic content (such as a single strain of a particular species). b The taxa-function relationship can be modeled as a high-dimensional
landscape, linking each community composition to the corresponding functional profile. Here, we show an extremely simplified two-dimensional
abstraction of this model to illustrate the impact of this landscape on taxa-function robustness. In this illustration, each coordinate on the plane
corresponds to a specific taxonomic composition, with points close to one another corresponding to communities with similar taxonomic
compositions. The height represents the functional profile of the community (and in this simplified illustration can denote, for example, the
abundance of some function). Notably, the local topology of this landscape around a specific taxonomic composition (e.g. point 1) determines whether
minor changes in that composition (represented as small movements on this plane; black arrows) will induce small (point 1) or large (point 2) functional
shifts. ¢ Depending on the exact distribution of genes across the genomes of species in a community, changes to the taxonomic composition
of a community can produce functional shifts of varying magnitudes. For example, if the distribution of genes differs markedly between two
communities (e.g., high vs. low redundancy), similar taxonomic composition perturbations to both communities may produce drastically different functional
shifts. d To model the relationship between taxonomic perturbations and functional shifts in a given community, a taxa-function response curve is obtained
by fitting a power function to a large array of measurements of functional shifts associated with many different taxonomic perturbations of
varying magnitudes. e The taxa-function response curve can be decomposed into two factors: attenuation, which describes how quickly functional
shifts increase in magnitude as taxonomic perturbations increase, and buffering, which indicates how well functional shifts are suppressed at smaller

taxonomic perturbations

genotype-to-phenotype relationship regardless of ob-
served evolutionary trajectories). As such, it may not
necessarily correspond to conventional notions of
ecological robustness or to the resilience or stability of mi-
crobial community function. Yet, characterizing such
underlying taxa-function robustness and its determinants is
essential for gaining a profound understanding of commu-
nity dynamics and function. For example, this feature of a
community’s local taxa-function landscape could indicate
how susceptible a community’s functional capacities are to
stochastic fluctuations in the community’s composition and
can be used as a null model when studying community dy-
namics in response to environmental change. More gener-
ally, while microbiome perturbations, be they minor
stochastic fluctuations or major shifts in response to envir-
onmental modulation, are often characterized as ecological
changes, in many cases, the most important consequences
of these perturbations are shifts in overall community func-
tion. In the context of disease-associated dynamics, taxa-
function robustness will also determine whether the func-
tional capacities of a community could be maintained in
the face of ecological dysbiosis. For example, the function
of the gut microbiome is robust enough to maintain normal
function despite day-to-day fluctuations in taxonomic com-
position [28], but may become disrupted following a more
drastic perturbation as in the case of Clostridium difficile
infection [29]. Determining a community’s functional ro-
bustness can further help estimate the functional impact of
a planned targeted perturbation (e.g., via a particular pro-
biotic) or evaluate candidate synthetic communities during
the design process to gauge how susceptible they are to dis-
ruption of function.

Here, we set out to systematically characterize and
study the taxa-function robustness of communities from
diverse environments. This requires a comprehensive,
systematic, and unbiased mapping of the local topology

of the underlying taxa-function landscape around each
community composition. Unfortunately, currently avail-
able experimental data does not adequately or compre-
hensively survey functional shifts associated with small
changes to a particular taxonomic composition. We ad-
dress this challenge by using a simulation-based ap-
proach, uniformly and systematically simulating a range
of possible perturbations (including small perturbations)
to each community’s taxonomic composition. This ap-
proach, combined with the prediction of community
functional profiles associated with each such perturb-
ation, allows us to generate a large set of perturbed com-
positions relative to each original community and to
sample the taxa-function landscape around these com-
munities. Given this simulation-based approach, below,
we first define two factors that characterize a commu-
nity’s taxa-function robustness. We then present an ana-
lysis of how taxa-function robustness varies within and
between body sites in human-associated communities as
well as across several non-host-associated communities.
We extend this analysis to the robustness of individual
functions and pathways, identifying universally robust
functions and noting that environment-specific pressures
may influence robustness variation in specific functions.
Next, we investigate how the manner in which genes are
distributed across microbial genomes is associated with
a community’s taxa-function robustness and use this in-
formation to predict robustness directly from taxonomic
composition. Finally, we confirm that our robustness es-
timates are in agreement with observed taxonomic and
functional shifts measured from experimental data.

Results

Characterizing and defining taxa-function robustness
Consider the taxa-function mapping discussed above,
linking a community’s taxonomic and functional
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compositions. To rigorously characterize how this map-
ping impacts taxa-function robustness, we define the
taxa-function response curve, describing the average shift
in the functional profile of a community as a function of
the taxonomic perturbation magnitude and the stability
of a community’s functional profile when faced with
taxonomic perturbations (Fig. 1d). Response curves are
commonly used in biology to describe how the changes
in an organism vary as the magnitude of a particular
stimulus is modulated (e.g., drug dosage-dependent
physiological effects) and allow quantitative comparisons
between the response curves of different individuals
[30-33]. Interpreting a community’s taxa-function ro-
bustness via these response curves could offer insights
such as the potential impact of antibiotics on a commu-
nity’s functional capacities or the expected stability of
candidate synthetic communities. For example, a com-
munity’s taxa-function response curve could be used to
identify an antibiotics dosage threshold above which
there would be significant disruption to community
function. The specific form of the taxa-function re-
sponse curve was chosen by comparing the fit of various
functions to the relationship between taxonomic per-
turbation and functional shift magnitudes across all
communities examined (Additional file 1: Supplementary
Text; Additional file 2: Figure S1; Methods).

To provide a direct, quantitative, and interpretable
comparison of taxa-function robustness differences be-
tween communities, we will further specifically focus on
two robustness factors that can be derived from the re-
sponse curve (Fig. le): The first factor is attenuation or
how rapidly functional shift increases as perturbation
magnitude increases. Attenuation describes the slope of
the response curve and thus models the intuitive expect-
ation that larger perturbations should generate larger
functional shifts. Technically, attenuation is defined as
inversely proportional to the response curve slope, im-
plying that increased attenuation leads to smaller func-
tional shifts and thus higher robustness. The second
factor is buffering or how well functional shifts are sup-
pressed at smaller perturbation magnitudes. Buffering
determines how large a taxonomic perturbation must be
before noticeable functional shifts occur. Higher buffer-
ing thus indicates that relatively large perturbations are
required before a substantial functional shift could be
observed. This factor is especially important when con-
sidering community robustness in the absence of major
external changes, as buffering will determine whether
small fluctuations in composition due to stochastic
variation, neutral community dynamics, or minor envir-
onmental variation will significantly impact the commu-
nity’s function. Indeed, many biological systems can
completely buffer small perturbations, but may be more
susceptible when exposed to larger perturbations [34,
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35]. The precise definitions of the response curve and
the two robustness factors are further elaborated in the
“Methods” section.

Taxa-function robustness varies within and between
environments

To comprehensively characterize taxa-function robust-
ness across the human microbiome and certain non-
host-associated ecosystems, we obtained taxonomic
compositions from previously assayed communities
representing several distinct environments. Specifically,
we considered four sites from the human microbiome,
including 128 gut communities, 1141 oral communities
(pooled from 9 subsites), 285 skin communities (pooled
from 3 subsites), and 209 vaginal communities (pooled
from 3 subsites), all obtained as part of the Human
Microbiome Project [36]. Additionally, to extend our
study beyond host-associated communities, we included
132 aquatic communities (pooled from 3 subsites) and
199 soil communities (from 4 subsites), collected in as-
sociation with the Earth Microbiome Project [37]. For
each community, we generated 4500 perturbed taxo-
nomic compositions at varying magnitudes (using the
weighted UniFrac distance between the original and per-
turbed community to measure the magnitude of per-
turbation). Compositional perturbations were simulated
by randomly modifying the abundances of individual
taxa in the original community such that the expected
magnitude of change in each taxon’s abundance was
proportional to its original abundance. We further fil-
tered the obtained perturbations to uniformly sample
perturbation at a range of taxonomic distances, resulting
in an average of 933 + 186 perturbations per community
and a total of 1,954,447 perturbations (see “Methods” for
complete details). To determine the functional profiles
of both the original and perturbed compositions, we
used PICRUSt [13], a computational framework for in-
ferring the functional profile of a given community
based on its taxonomic composition as described above.
Using these inferred functional profiles, we measured
the functional shift associated with each taxonomic per-
turbation and obtained a taxa-function response curve
for each community as described in the previous section.
We further calculated the associated attenuation and
buffering values based on the response curve of each
community (“Methods”). With this approach, we were
able to compare response curves and robustness factors
between communities and examine how taxa-function
robustness varied within and between environments.

To gain an intuition of how perturbation magni-
tudes affect the degree of functional shift, we first
examined the taxa-function response curve of a single
human vaginal community. As expected, the degree
of the functional shift generally increased with the
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Fig. 2 Examples of taxonomic perturbations, their corresponding functional shifts, and the associated response curves. The taxonomic perturbation
and functional shift magnitudes generated for a single vaginal (@) and a single gut (b) community. Each point represents a single perturbation. The
red lines indicate the taxa-function response curve fit to these points. The response curves for all vaginal (c) and gut (d) communities are overlaid to
compare general body site trends. Green and blue lines represent the mean response curve for all vaginal and gut communities respectively. The
robustness factor distributions associated with these response curves are shown as violin plots with inlaid boxplots for attenuation (e) and buffering (f).
The width of the violin plot indicates the density of robustness factor values, the middle of the box displays the median robustness factor value, the
upper and lower edges of the box represent the 75th and 25th percentiles, respectively, and the whiskers extend to 1.5 times the inner quartile range
(range between the 75th and 25th percentiles) past either end of the box. Outliers are shown as individual black circles

magnitude of the taxonomic perturbation (Fig. 2a).
Notably, we observed some variation in the extent of
functional shifts associated with taxonomic perturba-
tions of a similar magnitude. Interestingly, comparing
this response curve to the response curve for a commu-
nity from a different environment—the gut-revealed
marked differences, with the gut community displaying
noticeably smaller functional shifts at similar
taxonomic perturbation magnitudes (Fig. 2b). These
differences are also apparent in the corresponding
robustness factors, with the vaginal community having
lower attenuation (1.57 compared to 3.487 in the gut)
and comparable buffering (2.06 compared to 2.03).
Moreover, the vaginal community also displayed more
drastic deviations from its taxa-robustness response
curve.

To examine whether the differences in robustness
between vaginal and gut communities extended beyond
these two specific examples, we compared the taxa-
function response curves for all communities from these
two body sites. This confirmed that vaginal communities
indeed exhibited larger functional shifts on average com-
pared to gut communities for similar taxonomic
perturbation magnitudes (Fig. 2c, d). The gut communi-
ties also appeared to have more similar response curves
across communities, whereas vaginal community re-
sponse curves were more diverse. Examining the robust-
ness factors of these communities further revealed a
clear difference between these two body sites, with gut
communities having significantly higher attenuation
compared to vaginal communities (Fig. 2e; p <107
Wilcoxon rank-sum test). Interestingly, however, we
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found only slightly higher buffering values in gut com-
munities (Fig. 2f; p < 0.01; Wilcoxon rank-sum test). We
further examined whether this marked difference in
robustness between the vaginal and gut microbiomes
can be attributed solely to the substantially lower diver-
sity of vaginal microbiomes. To this end, we subsampled
all communities from the vagina and gut to obtain com-
munities with comparable diversity (“Methods”). We
found that, in these subsampled communities, attenu-
ation was still significantly higher in the gut compare to
the vagina, which suggested that the difference in
robustness could be attributed, at least partly, to some
environment-specific features that go beyond commu-
nity diversity (Additional file 3: Figure S2; p<1075
Wilcoxon rank-sum test).

To extend this analysis beyond vaginal and gut com-
munities, we next examined the robustness factors of
every community from all environments we analyzed.
For this analysis, we also separated HMP communities
by subsite to determine how between-subsite robustness
differences compared to differences between more dis-
tantly related environments. Our analysis revealed
substantial variation in attenuation between environ-
ments, potentially suggesting different pressures to
maintain robust functional profiles under different envir-
onmental conditions (Fig. 3). Notably, communities from
all three vaginal subsites appear to have the lowest
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attenuation, with communities from other body sites
exhibiting higher (and more comparable) attenuation. In
contrast, communities from two of the three skin
subsites appear to be among the most robust body site
communities. Soil communities tend to have the highest
attenuation, whereas marine communities have inter-
mediate attenuation values. Interestingly, subsites from
the same environment tend to cluster by attenuation
and buffering, suggesting that spatially distinct subsites
(such as different locations in the mouth) still exhibit
similar taxa-function robustness factors, potentially
reflecting shared environment-specific  conditions.
Buffering similarly exhibited some variation between en-
vironments but not as extreme as the variation seen
in attenuation values; in the analyses below, we there-
fore focus mainly on attenuation to examine differ-
ences in robustness.

Function-specific robustness reflects environmental
conditions

Given the variation in overall taxa-function robustness
observed above, we next set out to examine whether ro-
bustness also varied across different functions and
whether such function-specific robustness is consistent
across environments. To this end, we calculated
function-specific response curves that described the
average magnitude of the relative shift in a particular
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function’s abundance due to a taxonomic perturbation
(see “Methods”). The resulting function-specific re-
sponse curves can be analyzed as described above to ob-
tain function-specific attenuation measurements.

Examining function-specific attenuation at the super-
pathway level, we found marked variation in the robust-
ness of different functions. Perhaps not surprisingly,
superpathways associated with universal housekeeping
activities, such as translation, nucleotide metabolism,
and cell growth, were among the most robust functions,
likely reflecting high redundancy in these functions
across genomes in all communities and environments
(Fig. 4a). In contrast, functions associated with a more
specialized lifestyle, such as cell motility, transport, sec-
ondary metabolite biosynthesis, and glycan metabolism
were generally less robust.

To further characterize differences in function-specific
robustness across environments, we next compared the
attenuation of each function between environments, this
time analyzing functions at the pathway level. This ana-
lysis revealed similarly intriguing between-environment
differences. Notably, the difference observed in a function’s
robustness between environments often does not seem to
be associated with the difference in function abundance
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between environments (Fig. 4b, Additional file 4: Figure
S3). This finding suggests that the abundance and robust-
ness of a given function may be driven by different pres-
sures. Put differently, some functions may be beneficial at
high capacity but can tolerate variation in their abundance,
hence exhibiting high abundance but low robustness. In
contrast, other functions may be advantageous at a more
stable capacity, even though they are required at a relatively
low capacity, and will hence exhibit high robustness but
low abundance. For example, while cysteine and methio-
nine metabolism occurs at low abundance in gut communi-
ties (1.5% median relative abundance; Additional file 5:
Table S1), it is one of the most robust functions specifically
in the gut (243 median attenuation; 7th most robust gut
function; Fig. 4b, Additional file 6: Table S2). Indeed, cyst-
eine and methionine deficiencies are associated with mal-
nutrition and can be influenced in part by the gut
microbiome [38], and accordingly, maintaining a stable
capacity of genes from this pathway in the gut microbiome
may be beneficial. Similarly, novobiocin biosynthesis had
high robustness specifically in skin communities (2.23 me-
dian attenuation; 10th most robust skin function) and its
high robustness could be related to novobiocin’s antibiotic
activity against Staphylococcus  epidermidis [39]. D-
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glutamine and D-glutamate metabolism also had high ro-
bustness in skin communities (3.28 median attenuation; 5th
most robust skin function) while being very low in abun-
dance (0.3% median relative abundance). Enrichment for
D-glutamine and D-glutamate metabolism in skin commu-
nities has been linked to individuals prone to atopic derma-
titis [40]. This may suggest that rather than having high
robustness to maintain baseline capacity, D-glutamine and
D-glutamate metabolism could have high robustness to
prevent dramatic increases in abundance.

We finally investigated which functions displayed no-
ticeably higher robustness in one or more environments
compared to the others (see “Methods”). This analysis
revealed many pathways that had significantly higher ro-
bustness in specific environments (Additional file 7:
Figure S4), including biosynthesis of unsaturated fatty
acids, primary and secondary bile acid biosynthesis, and
starch and sucrose metabolism, which were all more ro-
bust in the gut than any other environment (Fig. 4c) and
potentially reflected the increased occurrence of metabo-
lites related to these functions in the gut compared to
the other environments. In contrast, glycine, serine, and
threonine metabolism was most robust in oral commu-
nities and could be related to the role of these amino
acids in pH recovery in the oral environment after mi-
crobial fermentation of carbohydrates [41]. Interestingly,
nitrogen metabolism had higher robustness in soil com-
munities compared to the various body site communities
and may reflect the role that these communities play in
the nitrogen cycle.

Gene distribution impacts taxa-function robustness across
body sites

As discussed above, the observed variation in taxa-
function robustness between and within environments
likely reflects differences in the way various genes/func-
tions are distributed across community members in each
environment. To characterize how the distribution of
functions contributes to robustness variation, we formu-
lated a set of gene distribution features (GDFs), includ-
ing average functional redundancy, average functional
similarity, average genome size, genome size variability,
and unique function abundance, to describe particular
aspects of this distribution (see “Methods”). Functional
redundancy, defined here as the redundancy of each
function weighted by the relative abundance of that
function, has been proposed as an important contributor
to the robustness of a community’s functional capacities
[21-24]. Functional similarity, defined here as the pair-
wise similarity in genomic content between species,
captures the interchangeability of microbes and the po-
tential for a change in the abundance of one species to
be compensated for by an opposite change in the abun-
dance of another. Genome size, measured here as the

Page 9 of 19

number of genes in a genome, accounts for the possibil-
ity that abundance changes in species with larger
genomes will produce larger functional shifts. Genome
size variability measured the presence of microbes with
significantly different genome sizes, which could poten-
tially decrease robustness due to the inability for such
microbes to compensate for abundance changes in one
another. Finally, unique function abundance measures
the total abundance of functions that are encoded by a
single species, aiming to capture the prevalence of func-
tions with no redundancy (and hence with no potential
for compensatory changes). Notably, while some of these
GDFs are correlated with each other, these correlation
magnitudes are <0.5, suggesting that they indeed
capture different aspect of functional distribution
(Additional file 8: Figure S5). A precise mathematical
definition of these features can be found in the
“Methods” section. Importantly, though previous work
has found some association between robustness and spe-
cies diversity [42, 43], here, we wish to focus on the im-
pact of functional distribution and hence exclude species
diversity as a feature in this analysis.

We calculated these GDFs for each community and
examined how they correlate with robustness both
within and across environments, aiming to identify uni-
versal or environment-specific relationships with robust-
ness. As expected, we found that functional redundancy
positively correlates with attenuation both when
communities from all environments are pooled together
(r=0.38; p<10~ 7% and within each environment indi-
vidually (Fig. 5a). Additionally, functional similarity
among community members appears to be positively as-
sociated with attenuation when environments are pooled
together (r=0.24; p< 10~ 29, as well as in several indi-
vidual environments (e.g., the gut). Genome size vari-
ability, which we hypothesized may negatively impact
robustness, does exhibit a negative association with ro-
bustness when pooling communities from all environ-
ments together, and both genome size and genome size
variability also have negative associations in specific en-
vironments (i.e., the gut or vagina). Interestingly, how-
ever, these associations are not consistent across all
environments and may indicate that the relationship be-
tween these GDFs and robustness are in part influenced
by other features of the community.

Obviously, the impact of each of the GDFs described
above on robustness is not independent of the impact of
other GDFs, and thus, their individual associations with
robustness may not reflect how the combination of all
five GDFs contributes to robustness. To examine how
variation in attenuation is associated with the major axes
of variation separating communities based on all GDFs
simultaneously, we performed a principal component
analysis (PCA) of the five GDFs described above (Fig. 5b).
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Remarkably, we found that the first two principal com-
ponents of these GDFs clearly separate communities by
environment, even though they are based on only five
simple summary metrics of gene distribution without dir-
ectly accounting for the presence or absence of specific
microbes or functions. This finding indicates a strong
environment-specific signature of gene distribution. We
further found a significant positive correlation between at-
tenuation and both the first and second principal compo-
nents (Fig. 5b; r=044; p<10~°° and r=0.09; p<10~*
respectively), confirming that the variation in the combin-
ation of these GDFs is inherently associated with variation
in community robustness. Given these findings, we
additionally examined whether GDFs can be used to pre-
dict the robustness of each community, using both the set
of 5 GDFs above, as well as an expanded set of 45 GDFs
(Additional file 9: Table S3A-B). This analysis again dem-
onstrated the strong association between gene distribution
profiles and taxa-function robustness (though predictive

power varied markedly between environments) and
highlighted the importance of functional redundancy in
determining robustness (Additional file 1: Supplementary
Text, Additional file 10: Figure S6; Additional file 11:
Figure S7, Additional file 12: Table S4).

Taxa-function robustness estimations are in agreement
with observed functional shifts

The above results rely on simulated taxonomic perturba-
tions and predicted functional profiles (via PICRUSt) ra-
ther than on observed taxonomic shifts and shotgun
metagenomic-based functional profiling. Clearly, there
are caveats involved in both simulated perturbations
(which may not reliably capture natural community fluc-
tuations) and prediction accuracy. Yet, as described in
the “Background” section, this simulation-based ap-
proach is crucial for comprehensively mapping the local
taxa-function landscape. Specifically, this approach al-
lows us to survey a large set of perturbed community
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compositions uniformly distributed around each com-
munity and sampled across a range of weighted UniFrac
dissimilarities (ranging from 0.001 to 0.4)—-a challen-
ging task using available metagenomic data. Nonetheless,
to confirm that our simulation-based estimates of ro-
bustness are biologically meaningful, here, we further
examine whether they agree with observed shifts in
communities’ taxonomic and functional profiles. To this
end, we examined functional profiles that are based dir-
ectly on shotgun metagenomic sequencing for a subset
of the HMP communities used in our above analyses.
Specifically, considering the HMP communities for
which both a shotgun metagenome was available and
the 16S rRNA data passed our quality filtering process
(see “Methods” section), we were able to obtain 94 HMP
communities from 5 different subsites with both taxo-
nomic and metagenome-based functional profiles.
Below, we use these communities to assess the agree-
ment between predicted and metagenome-based func-
tional profiles and between simulation-based robustness
estimates and measured functional shifts. For the func-
tional shift comparisons described below, communities
from the same subsite were paired (resulting in 47 pairs),
providing independent observations of functional shifts
within each environment. Additionally, we were able to
consider longitudinal shifts for a small number of com-
munities (including 8 communities with 16S rRNA and
metagenomic profiles sampled at two time points).

Using these data, we first verified that the composi-
tions of the predicted functional profiles used in our
analysis recapitulate metagenome-based functional pro-
files. To this end, we compared the dissimilarity between
each predicted functional profile and its corresponding
metagenome-based functional profile to the dissimilarity
between each predicted functional profile and a differ-
ent, randomly chosen metagenome-based functional
profile from the same subsite. We found that indeed the
median cosine dissimilarity between the corresponding
predicted and metagenome-based functional profiles (at
the pathway level) was significantly lower compared to
the dissimilarity between predicted functional profiles
and other metagenome-based profiles from the same
subsite (p =0.001, Wilcoxon rank-sum test). A Procrus-
tes analysis [44] of the first two principal components of
the functional profiles further demonstrated a significant
fit between predicted and metagenome-based profiles
(Procrustes measure of fit 0.89; p = 0.00001).

Next, we set out to examine the degree to which our
simulation-based robustness estimates agree with ob-
served functional shifts. In lieu of perturbed community
compositions (and comparing the original and perturbed
community compositions), we used pairs of communi-
ties (from the same subsite), considering one community
as representing the original community and the other as
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representing a perturbed version of that original com-
munity. We then measured (for each pair of communi-
ties) the ratio between the dissimilarity in their
functional profiles and the dissimilarity in their taxo-
nomic profiles. This ratio is expected to be lower for
more robust communities since taxonomic perturbations
of similar magnitude should produce relatively smaller
functional shifts in communities with higher taxa-
function robustness. The findings of this analysis
confirm our expectation above, demonstrating a noticeably
lower robustness in vaginal communities (larger functional
shifts relative to taxonomic perturbation magnitudes) com-
pared to gut and oral communities (Fig. 6a, b). This
suggests that the differences in attenuation values estimated
from simulated perturbations reflect an inherent difference
in how taxonomic changes induce functional shifts in com-
munities from different environments.

Notably, as also discussed above, the taxonomic
dissimilarities between different communities are sub-
stantially higher than the range of local taxonomic per-
turbations that are the focus of our study. Given this,
the analysis above, using pairs of communities to repre-
sent original and perturbed communities may fail to
capture more subtle properties of the local landscape of
functional shifts around a community. To address this
potential shortcoming and examine the impact of small
taxonomic differences that are still rooted in
metagenome-based functional profiles, we used a
community-mixing approach. Specifically, given a pair of
communities, a perturbed community composition at a
specific (and small) taxonomic distance from the first
community can be generated by identifying a mixing
fraction and “replacing” this fraction of the first commu-
nity’s taxonomic and functional profiles with a corre-
sponding fraction of the second community’s taxonomic
and functional profiles, respectively. This community-
mixing approach allowed us to generate a set of per-
turbed community compositions at varying weighted
UniFrac dissimilarities with metagenome-based func-
tional profiles. We used this set of multiple perturbed
compositions for each community to estimate the ro-
bustness of the first community using the same ap-
proach described in Fig. le. We found that these
community-mixing  metagenome-based  attenuation
values recapitulated the robustness trends identified
using simulation-based attenuation estimates, with
vaginal communities exhibiting significantly lower
robustness than gut or oral communities, further
supporting the agreement between simulation-based and
metagenome-based robustness estimates (Fig. 6¢).

Finally, we examined whether our robustness estimates
agree with temporal changes in community composition.
To this end, we used 8 HMP communities with taxonomic
and metagenomic data available at two time points to
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measure longitudinal taxonomic and functional shifts
(notably, relatively few HMP communities have both 16S
rRNA and metagenome data available at two time points).
As above, given a pair of communities from the same
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subsite from an individual obtained at two time points, we
use the dissimilarity ratio between their functional and
taxonomic profiles as a measure of observed taxa-function
robustness, with the expectation that this ratio will
decrease as robustness increases. Indeed, we found
that attenuation was negatively correlated with this
ratio (r=-0.75). Furthermore, for each individual, we
used the simulation-based robustness curve obtained for
the community composition at the first time point, the
metagenome-based functional profile of that community,
and the observed taxonomic dissimilarly between the two
time points to predict the expected metagenome-based
functional shift between the two time points. Reassuringly,
our expected functional shifts were positively correlated
with the observed functional shifts (r=0.86, p=0.006),
suggesting that these robustness curves are predictive of
the relationship between the taxonomic perturbations and
functional shifts that might be expected to occur over
time in microbial communities.

Discussion

Microbial communities are recognized as important com-
ponents of various systems including human health, envir-
onmental resource cycling, and industrial processes.
Given these varied and significant roles, improving our
understanding of these systems requires a better compre-
hension of how these communities are structured
taxonomically, how they function, how they react to
change, and the relationships between these features.
Previous work using the inherent link between taxonomic
structure and function in microbial communities has
already led to intriguing results and powerful tools for
analyzing microbiome data [13-16]. However, a crucial
property that has not yet been comprehensively studied is
how a community’s underlying taxonomic structure mod-
ulates functional robustness in response to taxonomic
perturbation. This taxa-function robustness is a direct de-
rivative of community composition and of the distribution
of genes across genomes, and while it may not correspond
directly to conventional concepts of microbial community
resilience and stability, it allows us to quantify an inherent
component of the structure-function relationship between
taxonomic and functional profiles.

Our analysis of robustness across various environ-
ments revealed intriguing differences between communi-
ties from different body sites. One of the more marked
differences was between gut and vaginal communities,
and while robustness to taxonomic perturbation has not
been directly compared between gut and vaginal com-
munities experimentally, there may be some evidence
that supports vaginal communities being more suscep-
tible to disrupted function than gut communities [16,
45]. We also observed that skin communities from two
subsites were among the most robust host-associated
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communities. This functional robustness to taxonomic
perturbation is especially intriguing given recent obser-
vations concerning the taxonomic stability of the skin
microbiome despite virtually continuous perturbation
[46]. Indeed, the link between ecological stability and
taxa-function robustness is likely complex and multi-
faceted since on the one hand high taxonomic stability
may render taxa-function robustness unnecessary for
maintaining community function, but on the other high
taxa-function robustness may promote taxonomic stabil-
ity via maintenance of the community niche.

We further found that functional redundancy was
strongly associated with taxa-function robustness, in
agreement with previously suggested hypotheses regard-
ing the role of functional redundancy in microbial com-
munities [21-24]. Other GDFs also showed some
associations with robustness, but these associations were
inconsistent across environments and may point to
between-GDF interactions in determining robustness
that masks a more consistent association with robust-
ness. Notably, however, the five GDFs we examined ap-
pear to separate environments along different principal
components, suggesting that they capture key informa-
tion about environment-specific differences in commu-
nity structure. This is even more striking when
considering that these GDFs do not directly mirror the
presence or absence of certain taxa or functions. This
GDF-based separation may therefore suggest that com-
munities inhabiting different environments substantially
differ in the way community members contribute to
overall community functional capacities. For example,
the higher functional redundancy and functional similar-
ity in gut communities might indicate that many com-
munity members in the gut are performing similar
functions with relatively few specialized roles, whereas
the increased presence of pathways unique to specific
microbes and lower function redundancy in vaginal
communities could point to a more well-defined and
distinct functional niche in this environment.

To some extent, the extreme variation observed above
in taxa-function robustness across environments may
not be surprising. Some of this variation, for example,
can be attributed to stochastic aspects of community as-
sembly, such as priority effects or the pool of species
from which community founders could originate. Such
stochastic factors could lead to marked variation in com-
munity composition, and consequently to variation in
taxa-function robustness. However, the similarity in ro-
bustness within a similar environment or subsite com-
pared to between-environment robustness differences
suggests that some of this observed variation may be se-
lected for and that selection for robustness varies across
environments. Selective pressure for robustness could
vary based on the relative needs for consistency versus
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plasticity in community function when communities re-
spond to changing environmental conditions or based
on how consistent the environment might be. Indeed,
community-level functional plasticity could be driven by
changes in the metabolism or behavior of individual mi-
crobes in response to environmental changes, but could
also be achieved by shifts in community composition
that modulate the community functional profile in a
desired direction. Indeed, noticeable alterations to taxo-
nomic composition often accompany large environmen-
tal changes, such as in the gut microbiota following diet
switches [47], in skin communities during and after
atopic dermatitis flares [48], or in the vaginal micro-
biome during pregnancy [49], and in certain cases these
composition alterations have also been associated with
changes in community functional capacities [50, 51]. In
such cases, lower taxa-function robustness may be se-
lected to enable plasticity in community function,
thereby allowing community function to adapt to a
changing environment.

Notably, there are a few caveats to our taxa-function
robustness estimation approach. First, the simulation-
based perturbation method we used was fairly simple
and restricted perturbations to only modify the abun-
dances of present microbes without considering the pos-
sible addition of novel microbes, e.g., via migration. In
reality, the underlying taxa-function landscape depends
not only on the taxa that are present in a community
but also on the taxa that could be introduced to the
community from an environmental reservoir or trans-
ferred from some other source. Yet, the correspondence
between our robustness estimates and the observed
taxonomic and functional shifts in real communities
suggests that the local topology of the taxa-function
landscape around a community may be relatively similar
when considering the possible influx of new taxa.
Beyond the simulation-based perturbation method, our
robustness calculations also depend on community func-
tional profile prediction via a database of annotated mi-
crobial genomes. These predicted functional profiles
may not accurately reflect the true functional profile of
the community or variation between communities. For
example, our analyses above have considered community
members at the species level, ignoring potential strain-
level variation [52]. While our taxa-function mapping
representation and our approach for robustness estima-
tion can be applied, in principle, at higher taxonomic
resolution (e.g., profiling communities at the strain level
and associating each strain with a corresponding distinct
genome) when such data is available, failing to do so
may introduce inaccuracies to the predicted functional
profiles and subsequently to our robustness estimates.
More generally, robustness estimates can be inflated if
rarer functions (that are likely less redundant) are left
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unannotated or deflated if certain functions are actually
highly redundant but missing from some genome anno-
tations. It is worth noting, however, that despite these
caveats, our robustness estimates were shown to agree
with differences in taxonomic and functional profiles be-
tween naturally occurring community compositions,
both across communities and over time.

Conclusions
Our analysis of simulated community perturbations indi-
cates that taxa-function robustness of microbial commu-
nities varies by environment, though subsites from
within a given environment tend to share similar taxa-
function robustness signatures. Furthermore, function-
specific robustness at the pathway level is associated
with the universality of the pathway, with microbial
housekeeping pathways displaying higher robustness
than pathways associated with more specialized
lifestyles. Interestingly, the variation in the robustness of
a pathway across communities was not associated with
differences in pathway abundance. We also found that
environment-specific characteristics of gene distribution
across community member genomes account for
between-environment  differences in taxa-function
robustness and suggest potential drivers for functional ro-
bustness. Finally, a comparison between simulation-based
robustness estimates and metagenome-based taxonomic
and functional shifts suggested that our robustness esti-
mates agree with observed community dynamics.
Importantly, the applications for computational ro-
bustness estimation could extend beyond the analyses
and results presented here. Function-specific robustness
estimation, for example, could inform the analysis of
novel communities from a particular environment,
highlighting functions whose capacities are more or less
robust than expected. Taxa-function robustness estima-
tion could also be incorporated into the construction of
synthetic microbial communities to inform the design of
more resilient community compositions. As we further
explore and analyze the temporal dynamics of microbial
community structure and function, being able to deter-
mine how and why robustness varies will continue to be
of interest.

Methods
Samples and data processing
The samples were obtained from the Human

Microbiome Project [36] and the Earth Microbiome
Project [37]. 16S rRNA-based operational taxonomic
unit (OTU) tables and metadata files were downloaded
from the QIITA website (http://qiita.microbio.me),
which provides OTU tables generated with the QIIME
workflow [53] using Greengenes OTUs [54]. OTU tables
were filtered to remove read counts mapped to plant
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chloroplasts. To improve quality and comparability be-
tween taxonomic profiles, taxonomic profiles with fewer
than 10 OTUs or fewer than 5000 reads were removed
and the remaining taxonomic profiles were rarefied to
5000 reads. When analyzing body subsites, left and right
bilaterally symmetric body subsites (antecubital fossa or
retroauricular crease) were pooled together. For each
subsite, communities were selected from different hosts.
The resulting number of communities after each step in
the filtering process and the final set of communities
can be found in Additional file 13: Table S5.

Functional profile prediction

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
[55, 56] was used to define orthologous gene functions
in terms of KEGG Orthology (KO) groups. KO abun-
dances were predicted using PICRUSt [13] tables to first
normalize each OTU’ relative abundance by its 16S
rRNA copy number and then infer KO abundance from
the genomic content of each OTU. KO abundances were
then normalized using inter-sample MUSICC. Pathway-
level functional summaries, as defined by the KEGG
BRITE hierarchy [57], were obtained by evenly distribut-
ing each KO’s average copy number across all pathways
that contain that KO. Both KO and pathway tables were
filtered to remove non-bacterial orthologs.

Taxonomic composition perturbation

Community taxonomic composition perturbations were
designed to simulate stochastic OTU relative abundance
fluctuations (assuming no migration or introduction of
OTUs absent in the original community). Perturbation
size for each OTU was proportional to the abundance of
that OTU. Formally, for a given community with N
OTUs with non-zero relative abundances, a;Viel, 2, ...,
N, perturbation multipliers m;Vie 1, 2, ..., N were sam-
pled from a uniform distribution over the interval (0,
M], M being the maximum perturbation magnitude, and
perturbation directions d; were chosen such that d;e
{-1,1}Viel, 2, ..., N with an equal chance of either dir-
ection. Given these values, the perturbed taxonomic
composition OTU abundances p;Viel, 2, ..., N were
calculated as

_ di
p; = a; X m;

and then renormalized such that "Yp, = 1. Using this
method, each community was perturbed at 45 maximum
perturbation magnitudes, M, evenly spaced between 1.2
and 10 inclusive with 100 perturbations at each max-
imum perturbation magnitude.
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Perturbation magnitude calculations

Changes in taxonomic composition between an original
community composition and a perturbed composition
were measured using the weighted UniFrac metric [58],
a common, phylogeny-aware metric for estimating dis-
similarity between microbial community compositions.
The shift in a community’s functional profile was defined
as the cosine dissimilarity between the original and per-
turbed functional profiles, as done in [59]. Specifically,
given an original community and perturbed community
with N unique pathways with average copy number ;¥
j€l,2,..,Nand b;Vjel, 2, .., N, respectively, the co-
sine dissimilarity between the two functional profiles is

S Yab;

N N2
Y a3

Robustness metric definition and fitting

For this study, the taxa-function robustness of a micro-
bial community is defined as the average shift in the
functional profile given a perturbation to the commu-
nity’s taxonomic composition. To allow quantitative ro-
bustness comparisons between communities, we assume
that the relationship between taxonomic perturbation
magnitude and functional profile shift behaves as

1-

1

f= e—ath
where ¢ denotes the magnitude of the taxonomic per-
turbation, f denotes the expected shift in functional pro-
file, and a and b are community-specific coefficients.
We term this function the taxa-function response curve.
We further term the coefficient a attenuation since it
describes the expected rate at which increases in the
taxonomic perturbation magnitude are expected to in-
crease functional profile shifts. We similarly term the ex-
ponent b buffering since it indicates how large a
perturbation must be before a functional profile shift be-
comes noticeable and approaches the expected shift
magnitude defined by attenuation. Other models to
describe the relationship were tested, but the model pre-
sented here provided the best explanation of the taxo-
nomic and functional dissimilarity relationship across all
communities (Additional file 1: Supplementary Text;
Additional file 2: Figure S1; Additional file 14: Table S6).
Function-specific robustness was defined in a similar
manner to taxa-function robustness except that instead
of the cosine dissimilarity between the original and per-
turbed functional profiles, the functional shift of a single
function was measured as the relative change in the
abundance of that function.
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Attenuation and buffering were fit by first transform-
ing weighted UniFrac and cosine dissimilarities to the
natural log scale to reduce heteroscedasticity observed
in the simulated perturbation data (variance of cosine
dissimilarity increased as weighted UniFrac distance in-
creased). A uniform sampling of simulated perturbations
across weighted UniFrac dissimilarities was obtained by
subsampling perturbations across 50 non-overlapping
windows evenly spaced on the natural log scale between
minimum and maximum distances. For each commu-
nity, in each window, perturbations were subsampled to
50 when > 50 perturbations were present and all pertur-
bations were kept when <50 were present. The trans-
formation to the natural log scale also transformed the
proposed taxa-function robustness curve function to the
following form:

In(f) =-a+b In(t)

which was then fit using the linear least-squares best fit
to calculate attenuation and buffering.

Due to the asymmetric distributions of attenuation
and buffering, the pseudomedian was used rather than
the median and pseudomedian attenuation and buffering
estimates were calculated using the Hodges-Lehmann
statistic [60]. The 95% confidence interval for a pseudo-
median estimate was calculated as the range of values
for which the Wilcoxon statistic (given the observed at-
tenuation or buffering values) was between the 0.025
and 0.975 quantiles of the standard normal distribution.

Function-specific most robust environment determination
A function was determined to be most robust in a par-
ticular environment (or environments) by comparing the
median attenuation of that function across all environ-
ments using Mood’s Median test. Specifically, a function
was defined as most robust in a set of environments if,
for each environment in that set, the median attenuation
of the function in that environment was both signifi-
cantly higher than its median attenuation in all of the
environments not in the set and not significantly differ-
ent than its median attenuation in any of the other envi-
ronments in the set.

OTU subsampling procedure

To determine the relationship between diversity and ro-
bustness when comparing vaginal and gut communities,
we subsampled communities from each environment to
obtain similar species richness and repeated our analysis
of between-environment robustness differences. Specific-
ally, each community was randomly subsampled to 10
OTUs such that the probability of an OTU remaining in
the subsampled community was proportional to its rela-
tive abundance in the original community. This
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subsampling procedure aimed to achieve a similar distri-
bution of relative abundance among community members
between the original and subsampled communities. Once
subsampled, OTU abundances were renormalized.

Gene distribution feature (GDF) definitions
As noted above, the five main gene distribution features
(GDFs) used in the correlation and PCA analysis were
average functional redundancy, average functional simi-
larity, average genome size, genome size variability, and
unique function abundance. Each GDF captures a differ-
ent, though potentially related, aspect of the distribution
of genes across the genomes of species in a community.
The functional redundancy of a given function was de-
fined here as the evenness (Shannon’s diversity index) of
the abundances of each species that encodes that func-
tion weighted by the copy number of the function in
each species’ genome respectively:

N

=) [(siei) In(sici)]

i=1

where N species encode a function, s; is the abundance
of species i that encodes that function, and ¢; is the copy
number of that function in species i’s genome. This def-
inition aims to capture how evenly species contribute to
a function’s abundance, such that a function should be
considered less redundant if one species contributes the
majority of that function’s abundance while it will be
more redundant if many species all contribute similarly
to its abundance. The average functional redundancy of
a community was then defined as the average of all func-
tions present in a community, weighted by the relative
abundance of each function in the community’s func-
tional profile.

The functional similarity between two microbes aimed
to capture how well two different species could compen-
sate functionally for one another, and thus was defined
as the cosine similarity between the functional profiles
of two species:

Z?iﬂibi

\/ Z?ﬁl“% \/ Z?ilbiz

where M is the number of functions encoded by at least
one of the species, 4; is the copy number of function i in
species a, and b; is the copy number of function i in spe-
cies b. The average functional similarity within a com-
munity was then defined as the unweighted average of
all pairwise functional similarities between species
present in the community.

Genome size for a given species was defined as the
total abundance of functions encoded by the species (i.e.,
the sum of the copy number of each function in that
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species genome). Average genome size was calculated as
the unweighted average of each species’ genome size and
genome size variability was calculated as the coefficient
of variation of species genome size.

Unique function abundance was defined as the total
abundance of functions in a community’s functional profile
that are each encoded by a single species (though each
unique function need not be encoded by the same species).

Metagenome-based data and functional shifts

Shotgun metagenome-based KO profiles for 94 communi-
ties were obtained from HMP. KO profiles were corrected
using inter-sample MUSICC [61] and summarized to the
pathway level using the same protocol used for predicted
profiles. To obtain shotgun metagenome-based functional
profile differences, 47 random community pairs were
assigned from the 94 communities with both 16S rRNA
and shotgun metagenome profiles. Pairs were restricted to
contain two communities from the same subsite.
Between-community taxonomic and functional dissimilar-
ities were calculated (as described above) between the
communities in each pair.

Mixed community perturbations

Community mixing was performed using the same com-
munity pairs as for metagenome-based functional shift
measurements. For each pair, one community was desig-
nated the original community and the other the mixing
community. For a taxon i with abundance a; in the ori-
ginal community and abundance b; in the mixing com-
munity, taxon i’s abundance in the mixed community
perturbation (relative to the original community) with
mixing fraction m was [a,(1 — m)] + [bym]. Similarly, for a
function j with average copy number ¢; in the original
community and average copy number d; in the mixing
community, function ;s abundance in the mixed com-
munity perturbation (relative to the original community)
with mixing fraction m was [c(1 - m)] + [djm]. Mixed
community perturbations were generated at specific
weighted UniFrac dissimilarities by using a binary search
to identify the mixing fraction that achieved a mixed
community perturbation with the desired weighted Uni-
Frac dissimilarity from the original community within a
tolerance of 10™°. To fit robustness curves for the ori-
ginal communities, mixed community perturbations
were generated at weighted UniFrac distances of 0.01 to
0.1 in intervals of 0.01 for each community pair (except
for 1 community pair, which could not achieve a
weighted UniFrac distance of 0.1 through community
mixing). Robustness curves were then fit to the resulting
perturbation taxonomic and functional dissimilarities as
described above.
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Longitudinal functional shift calculations

Longitudinal data with 16S rRNA and shotgun metage-
nomic profiles collected at two time points were obtained
for 8 HMP communities. Taxonomic and functional dis-
similarities between the community compositions at each
time point were calculated as above. Expected functional
shifts based on robustness estimates were calculated using
the robustness curve formula defined above, the estimated
attenuation and buffering values for the community, and
the weighted UniFrac distance between the community
compositions at the two time points.
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