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Abstract

Background: Multidrug-resistant bacteria represent a substantial global burden for human health, potentially fuelled
by migration waves: in 2015, 476,649 refugees applied for asylum in Germany mostly as a result of the Syrian crisis. In
Arabic countries, multiresistant bacteria cause significant problems for healthcare systems. Currently, no data exist
describing antibiotic resistances in healthy refugees. Here, we assess the microbial landscape and presence of antibiotic
resistance genes (ARGs) in refugees and German controls. To achieve this, a systematic study was conducted in 500
consecutive refugees, mainly from Syria, Iraq, and Afghanistan and 100 German controls. Stool samples were subjected
to PCR-based quantification of 42 most relevant ARGs, 16S ribosomal RNA gene sequencing-based microbiota analysis,
and culture-based validation of multidrug-resistant microorganisms.

Results: The fecal microbiota of refugees is substantially different from that of resident Germans. Three categories of
resistance profiles were found: (i) ARGs independent of geographic origin of individuals comprising BIL/LAT/CMA, ErmB,
and mefE; (ii) vanB with a high prevalence in Germany; and (iii) ARGs showing substantially increased prevalences in
refugees comprising CTX-M group 1, SHV, vanC1, OXA-1, and QnrB. The majority of refugees carried five or more ARGs
while the majority of German controls carried three or less ARGs, although the observed ARGs occurred independent
of signatures of potential pathogens.

Conclusions: Our results, for the first time, assess antibiotic resistance genes in refugees and demonstrate a substantially
increased prevalence for most resistances compared to German controls. The antibiotic resistome in refugees may thus
require particular attention in the healthcare system of host countries.
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Background
Multidrug-resistant organisms (MDROs) represent one
of the most serious threats for human health in the
twenty-first century as highlighted by the Word Health
Organization [1] and as outlined in the 2016 declar-
ation of the United Nations [2]. Methicillin-resistant

Staphylococcus aureus (MRSA), vancomycin-resistant
enterococci (VRE), and multidrug-resistant Gram-
negative bacteria resistant to extended-spectrum β-
lactams (ESBL) and/or carbapenems (CRE) are among
the most concerning MDROs worldwide and cause a
multitude of hospital- and community-acquired infec-
tions with limited treatment options. Infections caused
by these pathogens are associated with increased mor-
tality, duration of hospital stay, and hospital costs with
large economic impact on public health systems [3]. It
is estimated that 25,000 patients die from infections
with MDROs each year in Europe, resulting in
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healthcare-related costs to society of at least EUR 1.5
billon [4]. Without appropriate measures, the worldwide
number of deaths attributable to such antimicrobial resis-
tances may increase from 700,000 to 10 million by 2050
and the World Health Organization’s prophecy of a post-
antibiotic era may turn into reality soon [5].
Prescription and use of antibiotics in medicine and

agriculture result in regional differences in prevalences
of antibiotic resistances, as observed for differences be-
tween Northern and Southern European countries, as
well as between Europe and the Middle East or Asia [6].
At the same time, Europe is currently facing substantial
refugee movements: in 2015, 476,649 refugees applied
for asylum in Germany as a result of the civil wars in
Syria, Iraq, and Afghanistan while in 2016, already
657,855 applications were received until September [7].
The UNHCR estimates the total number of Syrian refu-
gees within the last 5 years to be more than 4.2 million
[8]. With high prevalences of MDROs, these refugees
might represent a reservoir or vehicle for MDROs when
migrating to other countries. The quality and quantity of
these resistances remain entirely unmonitored, with un-
known consequences for the public health system.
Few studies address the issue of MDRO prevalences in

Southern and Eastern Europe. Data on MDRO coloniali-
zation and prevalence in refugees is very limited, mostly
originating from hospitalized individuals [9], which are
at higher risk to carry antibiotic resistances and, thus, do
not allow to draw conclusions about a mostly healthy
refugee population. Moreover, the available data were
generated, employing culture-based methods. Conse-
quently, a relevant part of the resistome remains hidden,
as most of the bacteria colonizing the human body can-
not be cultivated and may serve themselves as a reser-
voir for transferable antibiotic resistance genes [10].
German authorities recommend preventive isolation and
MDRO screening of refugees when admitted to hospital
care [11]. However, recommendations have not been
made for MDRO screening during the initial registration
procedure, which only includes a brief medical assess-
ment of refugees.
The major objectives of this study were to overcome the

current lack of information on the antibiotic resistome in
refugees by (i) quantifying major antibiotic resistance
genes in stool samples originating from a consecutive
examination of refugees from Syria, Afghanistan, Iraq, and
neighboring countries and (ii) comparing the obtained
data to a random control group of healthy German indi-
viduals. Employing microfluidic PCR, next-generation
sequencing, and culture-based methods, these observa-
tions will, for the first time, enable a quantitative compa-
rison of antibiotic resistance gene prevalences in refugees
and German individuals. The findings should raise the
attention for antibiotic resistances in general and for

antibiotic resistances in refugees in particular and lead
to further systematic examinations of the admixture of
the refugee resistome into the microbiota of the host
country’s population.

Methods
Recruitment of participants and sample collection
Refugees participating in this study were recruited during
their initial registration for asylum seekers in Neumünster,
Germany, in November 2015. In addition to their rou-
tine medical examination, samples from 506 sequential,
unselected refugees with reported health status were
obtained. Registration and sampling was conducted
within 7 days after arrival of the refugees in Germany.
The sampling procedure included a swab sample from
each individual (nasal, oral, and groin) and, if available,
a stool sample, routinely collected for the detection of
intestinal pathogens. In parallel, epidemiological data
was collected, followed by data anonymization. The
control group of 100 German individuals comprised
age- and gender-matched samples from the population
representative PopGen Biobank [12] (FoCus Cohort).
For an overview on sampling sites and individuals re-
cruited, see Fig. 1 and Table 1. All participants gave in-
formed consent, and the study protocol was approved
by the local ethical committee (D537/15; D501/14).
All stool samples originating from refugees were deliv-

ered to the microbiology laboratory of the University
Medical Centre Schleswig-Holstein, Kiel, within 24 h of
collection for routine intestinal pathogen screening. The
remaining parts of the samples were stored at − 80 °C
until DNA extraction was carried out. Stool samples of
German healthy controls were shipped on dried ice from
PopGen 2.0 Network (P2N) Biobank and stored at − 80 °C.
All swab tips from one individual were placed together

in one sterile tube (Greiner Bio-One, Frickenhausen,
Germany), containing 2 ml of sterile sodium chloride
0.85% solution. The swab specimen was stored at 4 °C
and further processed up to 14 h.
For further details on processing of swab and stool

samples, please refer to Additional file 1: supplemental
methods.

Culture-based detection of MDROs
For the isolation of MDROs, 100 μl of undiluted swab
suspension was plated onto the selective media agar
plates; for media details, please refer to Additional file 1:
Table S1. All resulting colonies were identified on spe-
cies level by matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (Bruker, Bremen,
Germany). The respective resistograms were determined
using the semi-automated VITEK 2 system (bioMér-
ieux). MRSA isolates were further confirmed by testing
for the clumping factor and protein A (Pastorex Staph
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Plus; Bio-Rad, Munich, Germany) and for the
penicillin-binding protein 2a (PBP2a Culture Colony;
Alere, Cologne, Germany). The microbiological proce-
dures were performed according to DIN ISO EN
15189/2014 and to the EUCAST guidelines.

DNA extraction from stool and swab samples
Swab-derived sample suspensions were subjected to a
rapid heat lysis protocol, without further purification of
the sample. Briefly, this procedure consists of a centri-
fugation, followed by denaturation in lysis buffer, a heat
lysis step (11 min at 99 °C), and stored until further
processing at − 80 °C. Stool samples of approximately
0.2 g were extracted, employing the Mo Bio PowerSoil®

DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad,
USA), and stored until further processing at − 80 °C.

For further details, please refer to Additional file 1:
Supplemental material.

Selection of antibiotic resistance genes to be included in
the test system employed
Individual bacterial antibiotic resistance genes were in-
cluded in the setup by an expert selection of the board
of the Institute of Infection Medicine, University Clinic
of Schleswig-Holstein, while taking the literature on
antibiotic resistance genes in the refugee’s countries
into account [6, 9, 11, 13–15]. In addition to the 42
resistance genes, three species-specific genes and two
endogenous controls were included (see Table 2). Fur-
ther details (assay IDs, detection limits, and cor-
responding context sequences) are listed in Additional
file 1: Table S2.

Detection of antibiotic resistance genes via microfluidic
real-time PCR
To detect the 42 of the most common resistance deter-
minants in MRSA, VRE, ESBL, and CRE, a microfluidic
real-time PCR system, based on the TaqMan platform
(Thermo Fisher, USA), was employed according to the
manufacturer’s guidelines and carried out on a ViiA 7
system (Thermo Fisher, USA), supplemented by en-
dogenous and exogenous control assays. Briefly, 54.5 μl
of 2× TaqMan® Fast Universal Master Mix (Thermo
Fisher, USA) was added to 54.5 μl of lysed swab suspen-
sions and 16.4 μl of stool sample extracts, respectively.
Each reaction mix was spiked with 1.0 μl 20× exogenous
internal positive control DNA and subsequently loaded

Table 1 Participants overview

Origin
(country)

Number of
individuals

Gender
(f/m)

Age
(median; range)

Germany 100 14/86 33; 19–71

Syria 236 33/203 26; 0–75

Iraq 115 13/102 25; 18–57

Afghanistan 95 13/82 23; 17–70

Eritrea 20 1/19 23; 18–43

Iran 20 4/16 32; 6–49

Others1 20 7/13 23; 17–60

Total 606 85/521 25; 0–75
1Others: refugees from Albania, Armenia, Chechnya, India, Kosovo, Lebanon,
Somalia, Turkey, and Yemen
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Fig. 1 Cohort composition. a The number of individuals included in the study from different countries; countries with less than 20 individuals
participating are not shown. b Different body sites sampled as part of the study. c Age distribution of the individuals included in the study, color
coded by country. For better visualization, values were binned with 2 years per bin
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on the microfluidic card following the manufacturer’s
guidelines. Thermocycling conditions employed were
95 °C for 20 s, followed by 45 cycles of 95 °C for 1 s and
60 °C for 20 s. Real-time PCR data was analyzed with
ViiA™ 7 RUO software based on the delta-delta CT
method as previously described [16]. Initial performance
tests to determine specificity and sensitivity were carried
out using bacterial reference samples. All assays with
corresponding detection limits are listed in Additional
file 1: Table S2. Quantification of antibiotic resistance
genes was carried out based on a standard curve derived
from dilutions of these reference strains (Additional
file 1: Table S3). The system was further validated using
73 clinical samples (Additional file 1: Table S4) with
positive MDRO content. For further details, please refer
to Additional file 1: Supplemental material.

Microbiota profiling using 16S ribosomal RNA gene
sequencing
In order to investigate microbial communities in feces
or swab samples, the 16S ribosomal RNA (rRNA) gene
variable regions V3–V4 were amplified using dual-
barcoded specific primers [17]. Libraries were generated
by pooling an equal amount of barcoded amplicons and
sequenced on an Illumina MiSeq platform (Illumina; San
Diego, CA, USA). Obtained paired reads were processed
using mothur as described [18]. After quality control, se-
quences were mapped to the taxonomical hierarchy
using mothur-curated greengene reference training sets
(version 13_8_99) with an 80% confidence threshold and
binned in label 1 phylotypes corresponding to genus/
species. Diversity index as well as indicator analysis was
performed in mothur. For further details on microbiota

profiling, including the classification procedure for sig-
natures of potential human pathogens (Additional file 1:
Table S5), please refer to Additional file 1: Supplemental
material.

Results
Prevalences of antibiotic resistance genes in stool
samples from refugees and German control individuals
A primary finding of the TaqMan-based quantification of
antibiotic resistance genes was that mefA and ermB genes
were present in all but one refugee stool sample (preva-
lence = 99.7%). High prevalence rates in refugees were ob-
served for beta-lactamase genes, including blaTEM (88.1%),
blaCTX-M group 1 (43.6%), blaSHV (35.0%), blaBIL/LAT/CMY

(23.3%), blaOXA-1 (19.4%), ampC (15.6%), the quinolone
resistance determinant qnrB (28.9%), as well as the glyco-
peptide resistance gene variant vanC1 (15.3%).
In German controls, mefE, ermB, TEM, SHV, BIL/

LAT/CMY, ampC, DHA, ACC, vanB, and vanC2-C3-2
were the most common genotypes. OXA-1 and qnrB,
which were not detected in German controls, were
found in refugees of all origins (Fig. 2a; please refer to
Additional file 1: Table S6 for a list of all prevalences ob-
served and to supporting materials 02 and 03 for copy
numbers/genome equivalents of ARGs in each sample).
The majority of all German participants carried three or
less antibiotic resistance genes, while the majority of ref-
ugees from Syria, Iraq, and Afghanistan carried five or
more antibiotic resistance genes (Fig. 2b). A connection
between age and the number of antibiotic resistance
genes detected could not be observed: Spearman’s rho
values for the correlation between the number of resis-
tances and the age ranged from − 0.20 to 0.22 (Germany,
0.14; Syria, 0.22; Iraq, 0.17; Afghanistan, 0.20).

Prevalences of signatures of potential pathogens in stool
samples from refugees and German control individuals
Klebsiella pneumonia, Haemophilus influenzae, and Shi-
gella sonnei, while present in eight refugees, could not
be found in any German sample (Fig. 3a) based on 16S
rRNA gene sequencing (see supporting materials 04 and
05 for quantitative 16S rRNA gene sequencing data for
each individual). Several other potential pathogenic taxa
were identified in refugees and German individuals. Oc-
currences of signatures of potential pathogens did not
show any correlation to antibiotic resistance genes ob-
served. For further details on these results, please refer
to Additional file 1: Table S7. The majority of German
individuals carried one or more such species, while in all
refugee groups, the majority of individuals did not carry
any signatures of potential pathogens (Fig. 3b). A con-
nection between age and the number of signatures of
potential pathogens detected could not be observed:
Spearman’s rho values for the correlation between the

Table 2 Selected target genes

Category Target

ampC resistances ACC; ACT/MIR; ampC; BIL/LAT/CMY; DHA;
FOX; MOX/CMY

Carbapenem resistance IMP-1 group; IMP-16; IMP-2 group; IMP-7;
KPC; NDM; OXA-23; OXA-40; OXA-48;
OXA-58; OXA-72; VIM

Extended-spectrum
beta-lactamase

CTX-M group 1; CTX-M group 2; CTX-M
group 8/25; CTX-M group 9; GES; OXA-1;
PER-1; PER-2; SHV; TEM; VEB

Macrolide resistance ErmA; ErmB, mefE

Quinolone and
fluoroquinolone resistance

QnrA; QnrB

Vancomycin resistance vanA1; vanA2; vanB; vanC1; vanC2-C3-1;
vanC2-C3-2

Endogenous control 16S (bacterial); GAPDH (human)

Inhibition control,
exogenous

exoIPC

Species-specific genes ACICU_00593 (Acinetobacter baumannii);
femA SA (Staphylococcus aureus); femA SE
(Staphylococcus epidermidis)
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number of potential pathogens and the age ranged from
− 0.04 to 0.18 (Germany, − 0.04; Syria, 0.18; Iraq, 0.17;
Afghanistan, 0.11).
Comparison of prevalence data and estimated copy

numbers for antibiotic resistance genes showed that
gene copy numbers were relatively stable across different
countries, yet the prevalences oftentimes differed sub-
stantially (Additional file 1: Figure S1).

Regional microbiota differences based on 16S rRNA gene
sequence analysis
16S rRNA gene sequences were dominated by known gut
bacterial phyla Firmicutes, Bacteroidetes, Proteobacteria,
and Actinobacteria (Fig. 4a). The gut microbiota of
German control individuals contained significantly higher

abundances of Firmicutes and Actinobacteria, whereas
Bacteroidetes and Proteobacteria were significantly
more abundant in refugee groups (for p values, refer to
Additional file 1: Table S8). However, alpha diversity in-
dices in all populations were comparable (Additional
file 1: Figure S2). A subsequent correlation analysis be-
tween microbial taxa and antibiotic resistance genes
showed that (i) selected bacterial taxa exhibiting a negative
correlation to ARGs in German individuals show par-
tially opposite correlations in refugees (Additional file 1:
Figure S3A) and (ii) the distribution of correlations of
all bacterial taxa was shifted towards negative values in
German individuals, when compared to refugees on the
level of individual ARGs (Additional file 1: Figure S3B).
In a next step, all refugee profiles were combined and

compared to German control individuals, aiming to
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Fig. 2 Antibiotic resistances in stool samples from refugees and German control individuals. a Prevalences; bar heights represent prevalences
relative to German control individuals, color coded by resistance gene. Genes were grouped in three categories: bottom group (BIL/LAT/CMY,
ErmB, and mefE), present in similar amounts in refugees and German control individuals; middle group (vanB), present in higher amount in
German controls; and upper group (QnrB, OXA-1, vanC1, SHV, CTX-M group 1, TEM), present in higher amounts in refugees, while two resistance
genes (QnrB and OXA-1) were not found in German control individuals and scaled separately for visualization purposes. b The number of antibiotic
resistance genes observed per individual, illustrated by the proportion of individuals per nation with a given number of different resistances. Others:
refugees from Albania, Armenia, Chechnya, India, Kosovo, Lebanon, Somalia, Turkey, and Yemen

Häsler et al. Microbiome  (2018) 6:37 Page 5 of 11



identify indicator bacterial phylotypes. This analysis
identified 68 and 67 indicator phylotypes (p < 0.05) in
German and refugee populations, respectively (Fig. 4b).
Top five indicator phylotypes in German controls were
from Firmicutes (Blautia, Streptococcus, Coprococcus,
Clostridium clostridioforme) and Actinobacteria (Adler-
creutzia), whereas in refugees, the top indicators were
from the phyla Proteobacteria (Sutterella) and from
Bacteroidetes (Prevotella copri, Bacteroides) and Firmi-
cutes (Oscillospira, Roseburia).
An unsupervised principal coordinate analysis on the

Bray-Curtis and Jaccard distance matrices resulted in lar-
gest differences when comparing refugees to German
control individuals, while regional differences between
the microbiota of refugees are less prominent (Fig. 5).
The permutational multivariate analysis of variance
(PERMANOVA) test further validated the observation
that German and refugee populations differ significantly
in microbial composition and structure (Jaccard dis-
tances: p = 0.00021, Bray-Curtis: p = 0.00021; for details,
please refer to Additional file 1: Table S9).

Culture-based results on MDROs in swab samples from
refugees
Overall, 506 screening swab specimens were inoculated
on selective screening media for microbiological investi-
gations. Of the 506 refugees screened, 6.3% (n = 32) and
1.6% (n = 8) were found to be colonized with MRSA and
ESBL, respectively, by standard culture methods. CRE or
VRE was not observed. Hence, the overall MDRO preva-
lence was 7.9%. Among the ESBL-producing Enterobac-
teriaceae, Escherichia coli (n = 3), Klebsiella pneumoniae
(n = 3), and Proteus mirabilis (n = 2) were identified.
Furthermore, one isolate of Escherichia coli was found
to be additionally resistant to quinolones (see Additional
file 1: Table S10 for prevalences and supporting material
01 for MDRO findings in each individual).

Discussion
Interconnection of emerging antibiotic resistances and
migration events
In September 2016, the United Nations released a dec-
laration on antibiotic resistances, stating that infections
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Fig. 4 Stool microbiota composition differences between refugees and German control individuals. a Relative abundances of major bacterial phyla in
German control individuals and refugees. Fecal bacterial profiles were generated by 16S rRNA gene amplicon sequencing. b Heatmap of top 10 selected
indicator phylotypes, which are more abundant in German control individuals (upper half) and in refugees (lower half), color coded by abundance, which
was z-score normalized for better visualization
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with antibiotic-resistant pathogens are one of the biggest
known threats to humanity today [2]. This declaration is
based on the recent Wellcome Trust report on antibiotic
resistances [19], which is in agreement with the WHO
and supports predictions of a post-antibiotic era in which
even surgical standard procedures like cesarean section
may become too dangerous to perform [5]. The develop-
ment of antibiotic resistances is highly dependent on pat-
terns of antibiotics use: countries where antibiotics are
freely available (e.g., Arabian countries, large parts of the
developing world) show larger problems than those with
prescription restrictions [14].
Massive migration events have the potential to reshape

the global distribution of antibiotic resistance genes. As
a result of the Syrian crisis, more than 4.2 million refu-
gees from Syria left the country [8]. More than 3.7 mil-
lion refugees mainly from Syria, Afghanistan, and Iraq
applied for asylum in Germany in the last 5 years [7].
With a steep north-south gradient for antibiotic resist-
ance prevalences in Europe [6], migration of refugees
may become an important factor for emerging antibiotic
resistances in the Western world and may require
employing rapid diagnostic methods upon contact with
the healthcare system. While antibiotic resistance genes
imported by single tourists are usually lost upon contact
with the large remaining normal population, it is unclear
how the massive import of complex resistomes changes
the host country’s population microbiota.

Increased prevalence of antibiotic resistance genes in
refugees
Comparing antibiotic resistance gene prevalences in ref-
ugees from Syria, Afghanistan, Iraq, and neighboring
countries to German control individuals, we observed
three major categories of differences: (i) antibiotic resist-
ance genes which show a high prevalence (> 90%) in all
countries, including Germany, such as ermB, which was
previously reported to be very frequent, independent of
location [10, 20]; (ii) vanB, an antibiotic resistance gene
exhibiting a higher prevalence in Germany when com-
pared to refugees, which can be explained by its broad
application in German agriculture and healthcare [21];
and (iii) a large number of antibiotic resistances which ei-
ther show a drastically increased prevalence when com-
pared to Germany or are not present at all in German
control individuals. The first two categories of differences
support the validity of or approach by confirming previous
observations, while the third category—the increased
prevalence in refugees—was expected due to considerable
differences in consumption of and access to antibiotics: in
Germany, the estimated percentage of antibiotics obtained
without prescription was reported to be 0–3% [22]. These
numbers increase drastically when moving southeast,
starting in Greece with 10–15% [22], to Turkey with 44%

[23], while data from Iran estimates rates of antibiotics
obtained without prescription to be up to 58% [13]. Al-
though no data on antibiotics obtained without prescrip-
tion is available for most other countries as part of this
study, one can assume rates to be in a range comparable
to Iran, providing a plausible explanation for the increased
prevalences we observed. At the same time, this is in line
with our observation that the majority of Germans carry
three or less antibiotic resistance genes, while Syrians
carry mostly five or more antibiotic resistance genes per
individual.
It is unclear which consequences the migration of indi-

viduals with higher antibiotic resistance gene prevalence
may have on the local population, yet a few studies indi-
cate potential risks: US military and civilian personnel
serving in Iraq and Afghanistan between 2003 and 2005
suffered from infections with Acinetobacter strains, har-
boring OXA-23 and OXA-58 carbapenemases, which are
uncommon in the USA [24]. Similarly, traveling to coun-
tries with higher antibiotic resistance prevalence may rep-
resent a risk to acquire resistances present in these
countries, as shown for UK citizens that recently traveled
India and Pakistan and can also introduce new antibiotic
resistances which were previously not present in the coun-
try [25]. In contrast to that, resistance genes with similar
prevalences in both countries, for example ermB, are not
affected: they remain stable before and after travel [26],
which matches our observation on the distribution of
ermB. Interestingly, we observed that copy numbers of
antibiotic resistance genes remained relatively stable
across individuals of different origins, yet the correspon-
ding prevalences did not exhibit such a stability. This
could indicate an underlying, gene-specific mechanism,
which has not been examined before.
In this context, it is important to take the heteroge-

neous nature of the cohort into account: different social
and ethnic influences, different migration histories, and
different exposures to adverse conditions are examples
of factors potentially influencing the microbiome and
the resistome. While these factors cannot be controlled
in such a study design, the primary observations of
prevalence differences are independent of individual
outliers.

Microbiota differences reflect different prevalences of
antibiotic resistance genes
The uncontrolled access to antibiotics in developing coun-
tries is known to have an impact on the resistome of
each individual, even without consuming antibiotics
personally [27]. Together with the different lifestyles
[28, 29], this may be the strongest factors shaping the
microbiota including the resistome [14]. This is in line
with our observation that the largest differences are found
when comparing the microbiota between German control
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individuals and refugees, which was paralleled by our
findings on the resistome. In this context, we found
Firmicutes and Actinobacteria to be significantly more
abundant in the German population, both of which are
known to play an important role in the normal gut physi-
ology [30]. In contrast to that, Bacteroidetes, a known
pathobiont [31], was found to be increased in refugees. At
the same time, Bacteroidetes represents a strong link to
the antibiotic consumption since it has been previously re-
ported to increase in response to antibiotic treatment [32].
The most prominent finding, however, is the significantly
elevated load of Proteobacteria in refugees from Syria,
Iraq, and Afghanistan. This group consists of many known
human pathogens, for example Klebsiella pneumoniae,
Haemophilus influenzae, and Shigella sonnei, which we
found in refugees exclusively. It is important to note that
out of the 67 refugee-associated indicator phylotypes iden-
tified, only seven could be categorized as signatures of
potential pathogens. Anthropogenic use of antibiotics en-
riches the antibiotic resistance gene repertoire; however,
the healthy human gut commensal microbiota is intrinsic-
ally loaded with antibiotic resistance genes. Functional
metagenomic studies identified diverse antibiotic resist-
ance genes in healthy adults [10] and children [33]. While
we want to point out that most studies reflect the use of
antibiotics in the US healthcare, data from Germany cre-
ates a different picture: here, only 12% of children up to
the age of 4 years received two or more antibiotic treat-
ments [34]—in contrast to the USA, where children of
similar age receive, on average, at least one treatment pear
year [35]. Likewise, antibiotic-naïve healthy infants within
the first 2 months of age harbor antibiotic resistance genes
[36]. In fact, we detected three antibiotic resistances genes
in the stool of the only study participant younger than
1 year. While age has a substantial impact on the micro-
biota and the resistance profile [37], our study setup does
not allow to draw conclusions about age-resistome inter-
actions, since the cohort presented here consists of indi-
viduals with a median age of 25 years with only three
children below the age of 10 (0, 6, and 9 years). Conside-
ring that the microbiome and the resistome are closely
interconnected and keeping in mind that antibiotic resis-
tances are present in antibiotic-naïve populations [38], it
remains speculative whether the ARGs observed were ori-
ginally acquired from pathogens or were intrinsic to
commensals.

Antibiotic resistance genes occur independent of
signatures of potential pathogens
Antibiotic resistance genes did not correlate to potential
pathogens identified. In contrast to that, we observed
that bacterial taxa, which are associated to a decreased
ARG load in German individuals, do not exhibit this ef-
fect in refugees. In this context, it is important to take

the different nature of the results of culture-based and
culture-independent methods into consideration. This
lack of correlation is consistent with the observation that
antibiotic resistance genes often occur independent of
potentially pathogenic species but may also be found in
the native commensal microbiota, which can serve as a
reservoir for ARGs. Naturally, to confirm pathogenicity,
further characterization would be required. The high
prevalences of antibiotic resistance genes observed in
refugees might represent a relevant reservoir for poten-
tial horizontal gene transfer, especially since the human
intestinal microbiota, which is partially represented in
the stool samples employed here, is known to be one of
the most complex microbial communities in humans,
where horizontal gene transfer can occur frequently
[39]. Metagenomic approaches [40, 41] are often used to
profile gut resistomes in infants [42] and adults [43, 44].
Culture-based approaches coupled with genome sequen-
cing have identified ARGs in Bifidobacteria [45] and
Lactobacillus [46] groups, both of which are common
residents of the adult and infant gut and widely used as
probiotics. In silico analysis on Bifidobacterial genomes
predicted a substantial number of antibiotic resistance
genes in the vicinity of mobile elements, enabling hori-
zontal gene transfer in commensal gut microbiota. In
the current study, we have implemented a culture-
independent method to detect relevant antibiotic resist-
ance genes irrespective of their host. As we did not
monitor genes or mobile elements in the vicinity of
ARGs, our data does not allow to draw conclusions
about events like horizontal gene transfer, yet we believe
that further assessment of this effect is urgently needed.

Conclusions
Taken together, the data presented for the first time enables
a quantitative comparison of antibiotic resistance genes and
microbiota in refugees from Syria, Iraq, Afghanistan, and
neighboring countries to individuals from Central Europe.
The salient findings are the high prevalence of antibiotic
resistance genes in refugees, large differences in the micro-
biota, and the observation that antibiotic resistance genes
occur independent of potential pathogens. The potential
consequences for healthcare systems of host countries war-
rant a careful and systematic evaluation of the natural
course and impact of resistomes in the clinical and out-
patient setting.
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