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Individual and household attributes
influence the dynamics of the personal skin
microbiota and its association network
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Abstract

Background: Numerous studies have thus far characterized the temporal dynamics of the skin microbiota of healthy
individuals. However, there is no information regarding the dynamics of different microbial association network
properties. Also, there is little understanding of how living conditions, specifically cohabitation and household occupancy,
may be associated with the nature and extent (or degree) of cutaneous microbiota change within individuals over time.
In this study, the dynamics of the skin microbiota, and its association networks, on the skin of urban residents over four
seasons were characterized.

Results: Similar to western cohorts, the individuals of this cohort show different extents of variations in relative abundance
of common skin colonizers, concomitant with individual- and household-associated changes in differential abundances of
bacterial taxa. Interestingly, the individualized nature of the skin microbiota extends to various aspects of microbial
association networks, including co-occurring and excluding taxa, as well as overall network structural properties.
Household occupancy is correlated with the extent of variations in relative abundance of Propionibacterium, Acinetobacter,
and Bacillus over multiple skin sites. In addition, household occupancy is also associated with the extent of temporal
changes in microbial diversity and composition within a resident’s skin.

Conclusions: This is the first study investigating the potential roles household occupancy has on the extent of change in
one’s cutaneous microbiota and its association network structures. In particular, we show that relationships between the
skin microbiota of a resident, his/her cohabitants, and those of non-cohabitants over time are highly personal and are
possibly governed by living conditions and nature of interactions between cohabitants within households over 1 year.
This study calls for increased awareness to personal and lifestyle factors that may govern relationships between the skin
microbiota of one individual and those of cohabitants, and changes in the microbial association network structures within
a person over time. The current study will act as a baseline for future assessments in comparing against temporal
dynamics of microbiota from individuals with different skin conditions and for identifying residential factors that are
beneficial in promoting the dynamics of the skin microbiota associated with health.

Background
A community of microbial life forms, constituting of
bacteria, fungi, viruses, and parasites make up the
commensal skin microbiota responsible for modulating
the host immunity responses and preventing colonization
and invasion by pathogens [1]. Various medical and aller-
gic conditions are associated with alterations in one’s
overall cutaneous microbial community and dysbiosis
between specific skin colonizers [2–4], highlighting the

importance of the microbiota in cutaneous health. Thanks
to advances in sequencing technology, the scientific
community has gained a wealth of information regarding
the skin microbiota, including the biogeography of the
skin microbiota, roles of host properties, activities, and
the environment on cutaneous microbial communities,
co-abundance and co-exclusion correlations between taxa,
and changes of microbiota associated with health and
disease [4–15].
Recent investigations have also reported on the temporal

dynamics of the cutaneous microbiota [2, 10, 16–21],
highlighting the highly personal nature of the skin
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microbiota across healthy individuals over weeks and
months. Changes in the microbiota may also be associated
with cutaneous or immunological conditions, or as
responses to clinical interventions [7, 19]. Altogether, these
studies reinforce the importance of understanding potential
relationships between the environment, host characteristics,
and microbiota variations over time, and whether micro-
biota changes over time is related to temporal variations in
disease phenotypes and prognosis [7].
As with other ecosystems, microorganisms found on

skin engage in co-abundance and exclusion relationships
[22]. While correlation does not equate causation,
microbial association networks can be analyzed to infer
potential ecological relationships between community
taxa, as well as relationships between taxa and the
environment. Recent works have performed correlation
network analyses to characterize potential relationships
between specific taxa within the skin microbiota [5, 6, 22].
However, understanding association networks at the
structural level provides additional information on how
microbial associations as a whole respond to different
human or temporal variables, potentially revealing how
this global association framework changes, and the factors
that may drive such changes over time.
Previous studies have illustrated the effects of

cohabitation on the skin microbiota within individuals.
Specifically, our previous work [5] recapitulates the
discoveries of other studies [19, 23] that the cutaneous
bacterial assemblage of cohabitants are more similar
compared to non-cohabitants. While these works comple-
ment earlier reports describing the effects of lifestyles and
living conditions on occupant skin microbiota [13, 15], no
study has extensively and directly evaluated the potential
roles of cohabitation and household occupancy in shaping
the nature and extent of changes in the skin microbiota
and its association networks within individuals over time.
Given that cohabiting individuals and their microbiota
may facilitate the transmission of microorganisms [24], a
greater insight into the potential roles of household prop-
erties such as occupancy on an individual’s skin microbiota
and its dynamics may be of clinical significance.
Therefore, following our previous skin microbiota studies

involving a single time point [5, 6], we now provide an
account of the skin microbiota (while the term microbiota
commonly encompasses all microbial domains, the term is
hereafter referred to as the total bacterial and archaeal
community) and its dynamics, of 24 individuals within
Hong Kong (HK) households over the period of 1 year.
Different aspects of the nature and extent of microbiota
dynamics, with a focus on the roles of cohabitation and
household occupancy, are described. We show that while
our observations are consistent with the individuality of
the dynamics of cutaneous microbiota shown in previous
works [10, 20], we extend this personalized property to the

dynamics of microbial association networks. At the same
time, we suggest that the extent of changes in different
characteristics of the skin microbiota may be associated
with the number of cohabitants an individual resides with.
By focusing on the changes of multiple aspects of the cuta-
neous microbiota at individual and household levels, this
study sets the stage for comparative analyses pertaining to
microbiota dynamics between healthy individuals and those
with various skin conditions, thereby potentially identifying
personal, household, and related factors associated with
healthy microbiota dynamics.

Results and discussion
In this study, we first characterize and discuss the nature
and degree of variability of various facets of the skin
microbiota within healthy individuals. This is followed
by a focus of how effects of cohabitation and residential
occupancy may play roles in shaping the observed differ-
ences in the degree of temporal variability in one’s skin
microbiota over time.

Taxonomic and sub-genus overview of the skin microbiota
over time
Top genera (i.e., those with average relative abundance
of ≥ 1% across the entire dataset) are detected across all
individuals and skin sites and comprise under 60% of
the skin microbial community, reflecting the overall
taxonomic diversity of the cutaneous microbiota
(Additional file 1: Figure S1 and Additional file 2:
Table S1) [25]. The top genera include Enhydrobacter,
which has been detected in previous reports and is
considered to be enriched on skin surfaces of Chinese indi-
viduals [5, 26–28], suggesting that this genus is a prevalent
and stable skin colonizer in subjects of this cohort.
Information is currently lacking on the ecological and
physiological bases for the apparent enrichment of
Enhydrobacter in the Chinese. However, an association
between relative abundance of Enhydrobacter on skin and
facial sebum level and hydration has been reported in a
recent Asian study [28]. Further examination of genetic
and/or lifestyle factors that may affect skin physiology
(such as living conditions, environmental exposure, food
intake, and use of cosmetic and sanitary products [11, 25,
29–31]) may help elucidate the physiology of this colonizer
on skins of Chinese and other host populations.
We sought to examine the extent of change in

relative abundance of a given genus within an indi-
vidual over the four seasons. Here, the extent of
change in relative abundance for a particular genus
is expressed as its coefficient of variation (CV). Re-
gardless of skin site, each individual presents a dis-
tinctive signature of CV for each of the top genera
(Additional file 2: Table S1 and Additional file 3:
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Figure S2). Previously, it was revealed that the rela-
tive abundance and the variations (as expressed by
the standard deviation) of microbial taxa within the
skin microbiota of a western cohort exhibit a
second-order relationship, where low- and high-
abundance microbial taxa vary less than those that
are moderately abundant [10]. In contrast, our HK
cohort shows strong linear correlative relationships
across individuals (Additional file 4: Figure S3). As
no genus in our dataset represents an average of
over 45% of any individual’s microbiota, our correla-
tive relationship between relative abundance and
standard deviation over time is expected to be differ-
ent from the previous study, where the second-order
relationship observed appears to be strongly driven
by taxa detected in over 50% of a subject [10].
Differential abundance (Fig. 1 and Additional file 5:

Table S2), negative binomial mixedmodel (Additional file 5:
Table S2), and oligotype (Additional file 6: Figure S4)
analyses reveal that genera are comprised of multiple
species/strains, and specific taxa may be enriched in
different seasons, independent of household or individual
factors (for example, OTU_27 and OTU_746 in Fig. 1a, b;
mixed model results are shown in Additional file 5:
Table S2 and also oligotypes of genera in Additional file 6:
Figure S4a-d). At the same time, taxa may be enriched
in specific households/individuals within a season (for
example, OTU_27 and OTU_20 within WKS, and
OTU_24 within TK in Fig. 1a, c, d, and also oligo-
types of genera in Additional file 6: Figure S4e-g).

Cohort-wide variations in taxa distribution in different
seasons may suggest general temporal trends in the
emergence of particular species or strains on skin
[10]. However, individual- or household-specific pas-
sive exposure may contribute to certain subjects or
households carrying a particular species or strain at a
given time point. It is possible that particular taxa
may be picked up by cohabiting members via physical
contact with residential surfaces, given the overlap be-
tween occupant skin and surface microbiota within
households [21, 32, 33]. However, it is not known
how these individual- or household-specific taxa can
stably colonize the skin, as the fluctuations in relative
abundance of taxa at different time points within an
individual may also represent its poor adaptability and
competitiveness with co-colonizers [10]. Whether a
taxon presents population-wide or individual/house-
hold-associated temporal variation in abundance may
be dependent on the taxon and how it interacts with
the host, the environment, and co-colonizing mi-
crobes. As different species and strains may show var-
iations in physiologies [34, 35], future temporal
analyses of taxon-level variation in subjects may prove
valuable in linking individual, household, and tem-
poral factors with detection of taxa associated with
increased virulence and resistance. Compared to the
marker-based analyses, multi-omics strategies may
provide more detailed genomic and metabolic assess-
ments of strain variations between individuals, house-
holds, skin sites, and over time [9, 10].

Fig. 1 DeSeq2 differential abundance analysis of OTUs between pairwise seasonal comparison within individuals. OTUs showing cohort-wide differential
abundances between seasons include a OTU 27 of Acinetobacter and b OTU 746 of Caldithrix. In addition, OTUs with household-specific differential
abundance patterns include c OTU 20 of Roseomonas (household WKS) and d OTU_24 of Deinococcus (household TK). Note that despite a OTU 27
showing cohort-wide patterns, OTU 27 in occupants of WKS shows an opposite trend, showing a household-specific pattern in differential abundance.
Occupants are color-coded according to households. A full list of OTUs with strong and significant differential abundances, which is defined by DeSeq2
log-fold difference of at least three and with an adjusted p value of ≤ 0.05, is presented in Additional file 5: Table S2
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Microbial diversity variations within individuals over time
Shannon diversity, taking into account both community
richness and evenness, was calculated to determine the
nature and range of temporal variability in microbial
diversity across individuals. When all samples were
included for analysis, significant differences in Shannon
diversity are observed between individuals, seasons, and
skin sites (FDR-adjusted p ≤ 0.02 for all, Additional file 7:
Table S3). Within each season, individuals and house-
holds are the major factors explaining significant differences
in diversity. Linear mixed model also suggests that each of
these major factors is potential drivers for differences in
Shannon diversity (p < 0.001 for the three factors of season,
individuals, and households. For each test, the other two
factors, as well as sequencing batches, were considered as
random variables). Significant differences in forehead and
forearm diversities are observed between households, while
forearms also exhibit significant differences in diversity
between individuals (Additional file 7: Table S3).
To understand the personal rate of change in microbial

diversity over the course of 1 year, we calculated the CV
of Shannon diversity at a given site within an individual.
Considering all samples, the Shannon diversity CVs are
different between individuals, households, and occupancy
(Kruskal-Wallis (KW) FDR-adjusted p < 0.005 for all). In
contrast, CVs are not significantly different between
samples of different skin sites, age group, and gender
(FDR-adjusted p > 0.05, KW for skin site and age group,
and Mann-Whitney (MW) for gender). Communities on
left forearm sites varied in CVs between individuals and
households (KW FDR-adjusted p < 0.04 for both,
Additional file 8: Figure S5a-b). Shannon diversity
CVs in forearms are also significantly higher in adults
(average within-individual CV = 0.145) compared to
the elderly (CV = 0.0871, KW post hoc pairwise p < 0.05,
Additional file 8: Figure S5c).

Microbial compositional variations within individuals over
time
We analyzed variations in microbial community composi-
tions between subjects, households, and within individuals
over time using weighted UniFrac distances, taking into
account both the presence and abundance of OTUs. Skin
microbiota significantly cluster by season, individual,
household, and age groups overall, as well as within
separate skin sites, as shown by both analysis of similar-
ities (ANOSIM) and permutational multivariate analysis
of variance (PERMANOVA) analyses (Additional file 9:
Table S4). Microbiota do not appear to cluster strongly by
skin sites within each season in our cohort (and only mar-
ginally in summer).
Within an individual, the microbiota of forearm and

palms are more similar within than between seasons
(Additional file 9: Table S4 and Additional file 10:

Figure S6. Forehead sites were not analyzed, as there
is only one forehead sample per individual per sea-
son). Also, within an individual, the extent of micro-
biota dissimilarity on a skin site between any two
time points is significantly and positively correlated
with that of another skin site (Table 1), consistent
with the work of Flores et al. [20]. Furthermore, ex-
tremity sites within individuals with greater extent of
temporal change in microbial diversity also vary greater in
the change in community composition over the year
(Additional file 11: Figure S7). While correlations between
temporal community variation and average community di-
versity (i.e., beta-diversity versus alpha-diversity) within an
individual over time have been reported previously
[10, 20], here, we demonstrate that the extent of changes
in the two community properties (beta-diversity versus
CV of alpha-diversity) are also correlated.
As with previous investigations [10, 17], the microbiota

of the same site within some individuals between seasons
closer together are more similar, as suggested by the
significantly negative time-decay relationships
(Additional file 9: Table S4). As samples for this study
were collected within a single year, it is currently not
known whether the decay relationships observed will
persist for longer time frames as in other ecosystems
[36], or whether an annual or seasonal cyclical
pattern will emerge over longer periods of time, as
seen in the gut microbiota of different mammals [37] and
potentially in humans [38]. A greater understanding of
time-decay relationships of cutaneous microbiota has
forensic implications, where the identifiability of a person’s
microbiota on a surface may decrease over time [21].
Given that time-decay relationships are more likely to be a
personal trait rather than one shared by members of a
cohort or household level (based on our results here and
those reported previously [20]), additional works will be
required to understand why some subjects present time-
decay relationships and some do not, and how inter-indi-
vidual time-decay variability affects the feasibility of using
microbiota data in forensic applications.
Overall, our observations are congruent with previous

western studies looking at the temporal dynamics of the
skin microbiota [10, 17, 20]: (1) individuals experience
ranges in the extents of temporal changes in relative

Table 1 Spearman’s correlation based on pairwise weighted
UniFrac distance within individual over time

Forehead Left
forearm

Right
forearm

Left
palm

Right
palm

Foreheada 0.479 0.268 0.314 0.372

Left forearm 0.611 0.542 0.454

Right forearm 0.525 0.467

Left palm 0.539
aAll correlations statistically significant (FDR-adjusted p < 0.001)
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abundance of genera and overall microbial diversity and
community composition, (2) time-decay relationships in
microbiota are present but not a ubiquitous property on
skin, and (3) within the same individual, multiple skin sites
present significant correlations in the extent of microbiota
variations at any two time points, and (4) there exists sig-
nificant correlations between the extent of temporal varia-
tions between different skin sites. Therefore, despite
known differences in microbial community compositions
across continental populations [5, 11, 13–15, 30], some
temporal properties of cutaneous microbiota may be more
universal. Such knowledge regarding the behaviors of mi-
crobial communities within and between individuals over
time may provide fundamental basis for subsequent and
more focused microbiota analyses in special populations
around the globe, such as those adopting different lifestyles
and are living in drastically different environments [13].

Dynamics of microbial networks are individualized in
associating taxa and overall network structure
While the dynamics of microbial diversity and community
composition within individuals have been examined above
and in previous works [7, 10, 17, 20], little information is
currently available on the temporal properties of microbial

correlative association networks. As correlative association
may represent ecologically significant relationships between
microbial constituents, tracking correlations over time in
each individual will allow the assessment on the factors
governing network structure property at a personal level.
Here, insights into SParse InversE Covariance Estimation
for Ecological Association Inference (SPIEC-EASI) [39]
were used to (1) identify co-abundance and co-exclusion
relationships between specific taxa within individuals and
(2) determine whether within-individual network structure
dynamics can potentially be explained by individual, house-
hold, or temporal factors.
Within an association network for each individual

over the course of 1 year (networks of individuals in
WKS are presented as examples in Fig. 2; networks
of remaining individuals in cohort are presented in
Additional file 12: Figure S8, and Additional file 13:
Table S5), positive correlations represent an average
of 82.2% (71.0–92.2% for 24 individuals) of all associ-
ations, consistent with previous works demonstrating
that the majority of significant correlations between
skin sites are positive [22, 40]. Intra-genus correla-
tions OTU pairs are more likely to be positive,
whereas OTUs of different genera may be involved in

Fig. 2 Microbial association network for individuals of household WKS over the period of 1 year. Significant correlative associations between OTUs
(represented by nodes) within each individual determined based on the SPIEC-EASI pipeline. Correlations between OTUs can be positive (represented
by blue edges) or negative (represented by red edges). SPIEC-EASI correlations with magnitude of < 0.05 are not represented in figure. OTUs belonging
to one of top 20 taxonomic families are color-coded, whereas OTUs of other families are grouped into “ minor/unclassified” group, represented by dark
gray nodes. Networks of individuals within WKS presented here as a visual example of the differences in network structures. Network representations
of remaining individuals are included in Additional file 12: Figure S8, and a full list of significant correlative associations is presented in Additional file 13:
Table S5
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both positive and negative correlative associations
(Fig. 2, Additional file 12: Figure S8, Additional file 13:
Table S5, and Additional file 14: Figure S9). A taxo-
nomically diverse collection of OTUs are involved in sig-
nificantly strong associations, suggested by the large
number of OTU nodes classified as “minor/unclassified.”
Moreover, most of the highly connected nodes (i.e., key
hub OTUs) are not necessarily the most abundant taxa
(Additional file 13: Table S5). Relatively minor and rare
microbial members within the microbiota have been ap-
preciated as possibly important drivers of community
composition dynamics [41]. Here, we complement our
previous works demonstrating that these rare taxa are not
merely present on skin [5], but may engage in correlative
relationships with other microbial members, and are po-
tentially central members in the maintenance of associ-
ation network structure [42]. Individuals within a
residential unit do not share similar hub OTUs, suggesting
that microbial members central to association structures
are not strongly influenced by household factors.
While strong positive associations are detected within

OTUs of Enhydrobacter across individuals of different
households (QB3z and SW3z), this genus is also involved
in positive associations with OTUs of other genera (OTU_4
of Enhydrobacter with OTUs of Chryseobacterium and
Acinetobacter within households of STW and TMb,
respectively Additional file 14: Figure S9). Consistent with
our previous work [5], Enhydrobacter is negatively associ-
ated with OTUs of Streptococcus (HFC3z, Additional file 14:
Figure S9). OTUs of Enhydrobacter and Corynebacterium
can be involved in both positive and negative associations
(within individual TMb3x), demonstrating that species and
strains of Enhydrobacter and other genera deserve further
analyses in not only its physiology on skin but also their
potential interactions within the skin microbiota.
With the exception of individual MOS3x, most of the as-

sociations between OTUs of Propionibacterium and
Staphylococcus are positive correlations. Propionibacterium
acnes and Staphylococcus epidermidis (the dominant
Staphylococcal species on skin) can be mutually inhibitory,
but genetic variations between strains influence the extents
to which one species affect the physiology and survival of
the other [43]. Previous species-level analysis of
Staphylococcus in our cohort reveals that as detected in
some healthy individuals in the western world [18], most
OTUs of this genus are in fact Staphylococcus aureus [5].
Intriguingly, S. aureus has been shown to respond to mole-
cules secreted by P. acnes at particular conditions [44].
While correlation analyses act as gateways for identifying
interactive relationships between microbial members, it
provides no information on the environmental and strain
physiological states necessary for such interactions to
occur. Coupled with the recent identification of separate
evolutionary patterns between continental strains of S.

aureus [45], the results here again beckon the need for
shotgun metagenomics sequencing to examine microbial
associations at higher resolution, not only to understand
species- and strain-level patterns in microbial associative
relationships but also the metabolic and physiological bases
for such relationships [10].
Following the description of taxa within association net-

works, we assessed the dynamics of association network
structures within individuals over the four seasons by gen-
erating a network for each season within every individual.
Graphlet correlation distance information between network
pairs was used to visualize similarities in graphlet proper-
ties between association networks in a multidimensional
scaling (MDS) plot (Fig. 3). Graphlet MDS ordination sug-
gests that the dynamics of the association networks are
highly personal and do not appear to be governed by sea-
sonal or household factors considered in the study. Simi-
larly, the dynamics of the association network structure, as
measured by node degree distribution (Additional file 15:
Figure S10a) and natural connectivity (Additional file 15:
Figure S10b-c), also appear to be individualized. Microbial
association network structures have been analyzed and
compared between different natural and human ecosys-
tems [5, 22, 39, 40, 46], but not between individuals, nor
over multiple time points within individuals. Here, we sur-
mise that the temporally personal nature of the human skin
microbiota is not merely limited to its community diversity
and composition [10, 20] but extends to the potential eco-
logical interactions within its members within this micro-
biota. Whether these personal differences in association
network dynamics play roles in differences in susceptibil-
ities to conditions associated with skin microbiota dysbiosis
is unclear, but our association network findings here neces-
sitate a more individual and egocentric approach in the
future by linking personal attributes to microbial associa-
tions, and whether the nature of changes in association net-
works over time can act as indicators or predictors for
cutaneous health and disease. Our observations here also
raise the question of, despite the diversity observed across
individuals and over time, whether a core microbial associ-
ation network for the skin microbiota exist across healthy
individuals at a time and across time within an individual
[22], and how this core network is affected by the over-
growth of opportunistic pathogens associated with disease
onsets [18]. These valuable questions should be addressed
in future large-scale skin microbiota investigations.

Roles of cohabitation on microbiota changes within
individuals over time
Microbiota within individuals are more similar than those
between non-cohabitants regardless of season (Fig. 4 and
Additional file 16: Table S6), which is similar to our
previous study [5] based on a single time point and
conglomerating all subjects as a unit. However, depending
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on the individual and/or time point, the similarity in
microbiota between a resident and his/her cohabitant may
not be significantly greater than that between that resident
and non-cohabiting individuals (by post hoc test indicating
no significant differences in average pairwise weighted
UniFrac distances between cohabitants and between
households for a particular individual, Additional file 16:
Table S6). Conversely, in other instances, the microbial
assemblage within a resident is not significantly more
similar than that between his/her cohabitants (by post hoc
test indicating no significant differences in average pairwise
weighted UniFrac distances between within individual and
between cohabitants, Additional file 16: Table S6).
Therefore, the effects of cohabitation on microbiota
similarities between individuals may be more personal and
complicated than previously appreciated. Song et al. [23]
report that cohabiting couples share more similar
microbiota compared to between parents and their
children and that dogs may be a factor in homogenizing
skin microbiota between cohabitants. In contrast, a more
recent study shows lack of microbiota differences between
cohabitants of different relationships [19]. Our cohort do
not present enough individuals to assess how particular

relationships between household members affect individual
microbiota over time, and how domesticated animals
contribute to the overlapping of microbiota between
cohabitants over time. Nonetheless, given the lack of
consistency over seasons in how more or less similar
cohabitants’ microbiota are between different individuals
and households in our cohort, we hypothesize that similar-
ity between microbiota of cohabitants is more complex
than the cohabitants’ relationships alone. Alternatively, spe-
cific interactions between cohabitants, differences in skin
physiologies, and lifestyle [23, 25] between different occu-
pants within a household likely play more prominent roles
in determining each occupant’s microbiota, how variable
the microbiota is within the occupant, how similar the
microbiota of his/her cohabitants are, and whether such
similarities change over time.
The contribution of cohabitants’ skin microbiomes as

potential sources of an individual’s microbial assemblage
in each season was assessed using Bayesian SourceTracker
analysis [47]. For individuals with cohabitants (i.e.,
excluding households ADMa, FH, HFC, and HHa
where no cohabitant microbiota data is available), the pro-
portions of each subject’s microbiome coming from

Fig. 3 Multidimensional scaling plot (MDS) of graphlet correlation distances between microbial association networks of individuals over four
seasons. Network structures (each network represented by a data point) in each season that are closer together along the MDS axes have more
similar association graphlet structures. The MDS result is separated into four plots for visual ease, and MDS axes are identical in the four plots, as
ordination was performed with data points from all four plots included for analysis. Points are color-coded by household and shaped according
to individuals within the households
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cohabitants range from 7.0% (SW3y sink in winter) to
94.2% (WKS3x sink in summer) (Fig. 5). No one season
appears to be associated with an increased sourcing of in-
dividuals’ microbiomes from cohabitants across house-
holds, suggesting that the potential effects of cohabitants
in sourcing one’s skin microbiome has minimal temporal
effect within the year of sampling. In contrast, the overall
proportions and dynamics of cohabitants’ microbiome as
potential sources of each individual’s skin microbial com-
munity are personal in nature. In addition, there is an
overall significant and positive correlation between
the proportion of one’s skin microbiome potentially
sourced from cohabitants and the number of cohabitants
that sink subject is living with (Kendall’s τ = 0.210, p = 0.01).
However, this can merely be due to the increased number
of cohabitant samples as sources available for analysis.
Nonetheless, in all households, the proportion of unknown
sources is low (average proportion of 3.3% within an indi-
vidual at a given time point). This suggests that the micro-
bial assemblages across our subjects overall are relatively
similar, and any individual- and household-based differ-
ences may be due to microbial taxa that are low in
abundances. Given that this cohort is a relatively small col-
lection of cohorts within a single city, a similar analysis can
be performed in cohorts across continents to test
whether global skin microbiota, which are known to
present community differences [5, 11, 13–15, 30],
present similar extents of source overlap over time,
so as to potentially infer the size of the global skin
pan-microbiota [5, 48].

Roles of occupancy on degree of microbiota changes
within individuals over time
Members within a household do not appear to share
similar signatures of CV in relative abundance of specific
genera, depending on the genus and skin site. However,
significant correlations can be observed between CVs of
relative abundance and household occupancy. Specifically,
individuals within households of higher occupancy are as-
sociated with greater CVs of Propionibacterium and
Acinetobacter over the period of the year (Additional file 17:
Figure S11a-c). Conversely, a significantly negative correl-
ation, as shown for Bacillus on palms, suggests that indi-
viduals with fewer cohabitants tend to have greater rates
of changes in relative abundance of this genus
(Additional file 17: Figure S11d). In addition to changes in
relative abundance of specific genera, individuals residing
in households with higher occupancy also present higher
CVs of Shannon diversity on left forearm but not for the
right forearm and other sites (Additional file 17: Figure
S11e). The significance on the left forearm is intriguing
and may perhaps be related to the combined effects of
handedness (since all but one individual in this study are
right-handed) and environmental exposure. However, this
is speculative, and additional investigations in controlled
settings will be required to assess the roles of these effects,
and with a focus on how cohabitation, handedness, and
environmental exposure affect the temporal dynamics of
skin microbiota. Thus, it is currently not known
whether the different correlation trends in different
skin sites are ecologically significant. Metagenomic

Fig. 4 Density plots of pairwise UniFrac distances between samples of the same individuals (green), between cohabitants (orange), and between
non-cohabitants (purple) across seasons. Density plots are faceted by household and season. Households with data from only one occupant
(ADMa, FH, HFC, HHa) do not have cohabitant curves
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shotgun sequencing may prove beneficial in
explaining any potential ecological and physiological
rationale for the correlative observations here.
To examine whether the number of cohabitants within

a household is also associated with variations in commu-
nity composition of the skin microbiota of each occupant
and site, Kendall τ correlation was performed between the
mean UniFrac distances for a particular site within an
individual between any two seasons, and the number of
occupants present in his/her household. Forehead and left
forearm sites from individuals living in residences of
higher occupancy show more temporally variable micro-
bial communities over the course of the year
(Additional file 17: Figure S11f).
Overall, the number of residents within a household ap-

pears to be associated with changes in the dynamics of the
personal skin microbiota over 1 year at multiple levels: (1)
the extent of variation in the relative abundance of specific
colonizers (CVs of Propionibacterium, Acinetobacter, and

Bacillus relative abundance across multiple skin sites), (2)
the variation in community diversity (as determined by
CVs of Shannon diversity within each individual on fore-
arm sites), and (3) the variation in community structure
(through average weighted UniFrac distances between
forehead and left forearm sites of the same individuals
over seasons). Our households are limited to a maximum
number of six occupants, and it is currently not known
how residences with more individuals, or other built en-
vironment settings (such as workplaces and other public
spaces of higher occupancy) would affect one’s skin micro-
biota and its dynamics.
However, it is unlikely that occupancy directly shapes

microbiota changes within occupants, as individuals living
in different households of the same occupancy still have
different microbiota and variable CVs. Instead, we propose
that the number of residents within a household indirectly
affects an occupant’s microbiota dynamics by how an
occupant interacts with the cohabitants and their

Fig. 5 Estimated proportions of cohabitants’ skin microbiota as potential sources of an individual’s skin microbiota. Source prediction are grouped
by individual and season. For a given individual, a microbiota source can be from cohabitants (red) or from non-cohabitants (green). Individuals
from households ADMa, FH, HFC, and HHa either live alone or do not have cohabitant microbiota data. Microbiota that cannot be sourced with
confidence are indicated as “Unknown Sources” (blue). Source proportion estimated using the Bayesian SourceTracker analytic tool [47]
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microbiota. A household with more people may facilitate
increased contact, which may facilitate direct transfer of
personal skin taxa and potentially pathogenic microorgan-
isms [12, 24]. Alternatively, occupants may release
personal microbiota into the residential air and onto
surfaces, and microbial members may subsequently be
picked up by its cohabitants through passive exposure or
active surface touching [21, 32]. We suggest that over single
or multiple time points, the relationships between one’s
own microbiota and that of its cohabitants and others (that
is, how similar or different their microbiota are, Fig. 4 and
Additional file 16: Table S6) depend on the biogeographical
(across skin sites within a time point) and temporal (within
a site over multiple time points) variability of a person’s
microbiota (which is in itself now known to be highly
personal [10, 20]) and the nature of interactions between
the person and his/her cohabitants. Individual factors, in
addition to household occupancy and cohabitation, may as
a result influence the temporal stability of one’s baseline
microbiota over time, which is consistent with our pairwise
UniFrac (Additional file 16: Table S6) and SourceTracker
(Fig. 5) observations. Therefore, occupancy and cohabit-
ation represent part of a collection of household properties,
along with living conditions and lifestyles [15] that may
influence the nature and the extent of change in one’s skin
microbiota over time. In addition, given that population
density in HK is among the highest in the world, it is
currently not known how household properties that take
into account the crowdedness of households (such as
occupant density or privacy indexes as defined previously
for microbiota of residences [49]) will influence skin
microbiota of residents. We believe that separating these
household properties, perhaps via controlled chamber and
inoculation experiments [7, 17], will be crucial in specifying
the relative proportion of contribution of each household
factor in shaping an individual’s microbiota dynamics.

Conclusion
While our findings corroborate previous western studies
in identifying the personalized properties of skin micro-
biota dynamics, we have highlighted in this study pos-
sible associations between occupancy to multiple aspects
of microbiota dynamics within individuals, including for
the first time, the changes of microbial association net-
work structures within every individual over 1 year. Our
findings underscore the need for close examination on
individual physiological and lifestyle properties in
explaining changes in cutaneous microbiota but also an
in-depth assessment of the person’s living environment,
including number of cohabitants and their interactions
over time. Also, while a daunting task, a more individu-
alistic approach may therefore be beneficial to determine
factors governing changes in microbial association net-
work structures within an individual, thereby gaining

understanding on properties associated with network dy-
namics associated with adverse skin conditions.
Finally, there is little information regarding whether

individuals suffering from cutaneous ailments present
different temporal patterns on their skin microbiota
from that of healthy individuals, in ways similar to how
gut microbiomes of individuals suffering from various
gut conditions have distinctive microbiota temporal
traits [50]. Data presented here therefore can act as
community-level baseline in understanding how the
microbiota dynamics of healthy individuals compare
with those with various skin conditions. Future longitu-
dinal and comparative microbiota works will potentially
provide perspectives on whether disease onset, progres-
sion, and recovery are related to changes in microbiota-
host relationships over time and identify host and other
factors that may be associated with these changes.

Methods
Cohort characteristics and sampling
A total of 480 skin samples from this study are part of a
larger seasonal analysis of skin, air, and surface micro-
biomes of Hong Kong residences [21], and a continuation
of previous single-season skin microbiota works [5, 6].
Ethics approval for subject sampling was granted by the
City University of Hong Kong Ethics Committee
(reference number 3-2-201,312 (H000334)). After
being informed about the nature of the study, as well
as their roles and responsibilities as subjects, written
informed consent was given by all individuals.
From 24 healthy individuals (coded one of 3u to 3z) of

11 households (ADMa, FH, HFC, HHa, MOS, QB, STW,
SW, TK, TMb, WKS), samples were collected in January
(winter), April/May (spring), August (summer), and
November/December (autumn) of 2014 (Additional file 18:
Table S7). All samples were collected between 19:00 and
20:00, as individuals were most likely to be at home during
those times and to minimize the disruption caused to the
individuals due to sampling. For each individual, five skin
samples (forehead, left/right forearm, left/right palm) were
collected at his/her residence by samplers wearing gloves
sterilized with 70% ethanol to minimize contamination or
skin taxa transfer between sampler and the subject. All
subjects included this study are ethnically Chinese and are
long-term residents of Hong Kong. Subjects of this study
had not taken antibiotics and antifungals at least 3 months
prior to each sampling episode. The individuals in this
study were living in households throughout rural and
urban areas of Hong Kong to cover a broad local
geographical scope. Individuals and households were
selected to cover a range of age and lifestyle choices such
as smoking, pet ownership, and allergies. All households
involved in this study did not use pesticide or have
purchased new furniture during the course of the

Leung et al. Microbiome  (2018) 6:26 Page 10 of 15



sampling periods. While antibiotic ingestion may or may
not have an effect on skin microbiota dynamics [19, 20],
we note that all subjects had not taken antibiotics 1 month
prior and after each sampling period. Subjects were
instructed to not wash their hands or shower immediately
prior to sampling. Samples were collected as previously
described [5]. Briefly, skin samples were collected using
sterile cotton swabs moistened with 100 μL swab solution
(0.15 M NaCl and 0.1% Tween 20) [25], and each sample
was collected using a back-and-forth swabbing motion for
15 s. Samples were stored in − 80 C within 1 h of sampling
and were stored until genomic DNA (gDNA) extraction.

Genomic DNA extraction, 16S rRNA gene amplification
and sequencing
Following sampling, gDNA was extracted using the
PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc., Carlsbad, CA, USA), with modifications as
described previously [5]. Sterile cotton swabs not
exposed to skin surfaces were included in the extraction
process as negative controls to account for possible con-
tamination. Purified gDNA samples, including negative
controls, were sent to Health Genetech Corporation
(Taoyuan City, Taiwan) for PCR, library preparation, and
sequencing. PCR, library preparation, and Illumina
MiSeq sequencing were prepared as described [5, 51].
Briefly, the 515f/806r primer pair was used to target and
amplify the V4 hypervariable region of the 16S rRNA
gene [29]. PCR amplification was performed in a 20-μL
reaction volume containing 10 μl 2× Phusion HF master
mix (New England BioLabs, Ipswich, MA, USA), 0.5 μM
each forward and reverse primer, consisting of customized
barcodes present on both primers for multiplex sequen-
cing, and 50 to 150 ng DNA template. The PCR condi-
tions consisted of an initial of 98 °C for 30 s, followed by
30 cycles of 98 °C for 10 s, 54 °C for 30 s, and 72 °C for
30 s, as well as a final extension of 72 °C for 5 min. Positive
amplification was verified by agarose gel electrophoresis.
Amplicons in triplicates were pooled and purified using
AMPure XP beads (Agencourt, Brea, CA, USA) and quan-
tified using a Qubit double-stranded DNA HS assay kit on
a Qubit fluorometer (Invitrogen, Carlsbad, CA, USA), all
according to the respective manufacturers’ instructions.
For library preparation, Illumina adapters were attached to
amplicons using the Illumina TruSeq DNA sample
preparation kit v2. Purified libraries were applied for
cluster generation and sequencing on the MiSeq platform
using paired-end 150-bp reads.

Sequence analysis
A total of 12,212,096 forward sequences in .fastq format
underwent quality filtering using the “fastq_filter” com-
mand in USEARCH [52], based on a maximum expected
error of 1 error/read, reads trimmed to a length of

139 bp and shorter reads removed. Eighty percent of reads
(9,792,397 reads) were of acceptable quality. Filtered reads
were then de-multiplexed and binned into OTUs using
UPARSE with 97% sequence identity threshold [53].
OTUs were provided with taxonomic information using
the “assign_taxonomy.py” command in QIIME [54] based
on the Greengenes reference database (May 2013 version,
99,322 sequences). Chimeras were detected in UCHIME2
(high-confidence mode) against the Greengenes database
to minimize risk of identifying false-positive chimera
OTUs [55]. OTU lineages present in an average of > 5% of
reads in negative controls (each control averages 20,000
reads and 600 OTUs) were considered contaminants and
were removed from all samples. OTUs classified as chlo-
roplasts and mitochondria were also removed. Following
read filtering and OTU removal, a total of 8,093,026 reads
are retained for community analyses described below. Fol-
lowing quality control and OTU taxonomic classification,
archaeal OTUs represent ~ 0.3% of reads detected.

Bioinformatics analyses
The coefficient of variation (CV) of relative abundance
for top genera for each individual over the four seasons
is calculated by the standard deviation of the genera
within that individual, divided by the mean of the relative
abundance of that genera in the individual. A low CV rep-
resents a relatively stable relative abundance for that given
genus on a given individual, and high CV represents less
stable relative abundance. Total Shannon (alpha-) diversity
for each sample was estimated using the “breakaway”
package (version 4) in R available from CRAN [56].
Shannon diversity values presented in Additional file 7:
Table S3 are average values following 999 reiterations.
Similar to previous skin microbiota works [10, 20], the CV
for Shannon diversity within each individual, representing
the change of within-sample microbial diversity of an indi-
vidual over the four seasons, is calculated by the standard
deviation of the Shannon diversity values for that individ-
ual, divided by the mean of the Shannon diversity of the
same individual. Weighted UniFrac distances were com-
puted using the QIIME script “beta_diversity.py.” Analyses
of similarities (ANOSIM) were computed on based on
β-diversity data using “vegan” package in R. The
PERMANOVA pseudo-F statistic and significance were
calculated using QIIME’s “compare_categories.py” script
(with 999 permutations) based on the weighted UniFrac
distance matrix generated from QIIME. Differential
abundance of OTUs between sample groups were
performed with DeSeq2 using the QIIME script
“differential_abundance.py,” performed separately for
each individual and each season pair. OTUs that showed
significant DeSeq2 results in more than half of the individ-
uals for a given season pair were included for negative
binomial and zero-inflated negative binomial mixed model
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analyses (“glmmADMB” package in R) to confirm signifi-
cant differences in abundance for these OTUs, using
season as a fixed effect and count data as response variable.
Variations between individuals, skin sites, and sequencing
batches were considered as random effects. OTUs that ap-
pear in less than 20% of samples, and OTUs with less than
100 reads were not included for the analysis. OTUs of top
genera that were detected at an average of ≥ 1% relative
abundance and were present across all samples were sub-
jected to oligotyping (version 2.1 from http://merenlab
.org/software/oligotyping/) [57]. To remove oligotypes
with low read counts, a minimum substantive abundance
(M) of 10 was adopted. A linear mixed effects model using
the R package “lme4” was used to determine whether
Shannon diversity differences can possibly be driven by
seasonal, individual, and household factors, with individ-
ual, site, household, and/or sequencing batch differences
as random effects when not considered as a predictor ef-
fect. The analysis of variance (ANOVA) on the hypothe-
sized and null models was performed to determine
statistical significance in Shannon diversity differences for
each predictor factor.

Microbial source-tracking analysis
To examine the roles of cohabitants as potential microbial
sources of an occupant’s skin in each residence and time
point, Bayesian SourceTracker [47] analysis was used to
estimate the proportional contribution of the cohabitants’
skin microbiome to the individual microbiome at the
given season. OTUs present in less than 10% of the
samples were excluded for the analysis. SourceTracker
predictions were generated for each individual across four
seasons, with the skin samples of each individual in one
season as the sinks, and the skin samples of the remaining
individuals in the same season as potential sources. The
results were presented as the source proportions from
cohabitants, non-cohabitants, and unknown sources based
on whether the sink and source communities can be
sourced from the same household.

Microbial association network analysis
SParse InversE Covariance Estimation for Ecological
Association Inference (SPIEC-EASI) was used to assess
potential ecological associations between microbial taxa.
SPIEC-EASI has been recently applied to other microbiota
investigations [58, 59] and is currently one of the preferred
methods for association network analysis, as it is robust to
issues of compositional bias, conditional independence,
and dimensionality, all properties commonly encountered
in microbiota data [39]. Two sets of association network
analyses were performed, where (1) microbiota data for all
seasons within an individual was combined (to assess for
overall microbial associations within an individual, set of
24 networks), and (2) where microbiota data for each

season within each individual was analyzed separately (to
assess for dynamics of association networks within indi-
viduals, set of 96 networks). For each group, abundance
data over different samples underwent centered-log ratio
transformation. OTUs with less than 150 and 10 reads
were not included in the first and second analysis, respect-
ively. Based on transformed data, the Stability Approach
to Regularization Selection (StARS) method [60], suitable
for high-dimensional data, was used to infer the network
structure, employing the node-based neighborhood selec-
tion procedure, with a minimum lambda ratio of 0.01 and
reiteration of 50 times as recommended [39]. Networks as
shown in Fig. 2 were constructed with Cytoscape
(version 3.4.0) [61].
Using SPIEC-EASI, general network structural attributes,

including degree distribution (distribution of the number
of significant associations (i.e., edges) per each OTU (i.e.,
node), and natural connectivity (a proxy for network
stability and robustness to targeted node removal, by
assessing the extent of alternative paths present between
any two nodes) for each network were also determined.
Natural connectivity for network within each individual
and season was assessed based on node removal of either
decreasing node betweenness centrality, which is a
measure of the paths between a node to all other nodes,
or decrease node degree, which is a measure of the number
of edges a particular node contains. Natural connectivity is
presented as the proportion of the total network size, and a
higher natural connectivity represents a more stable and
robust association network upon node removal. Graphlet
correlation distance approach as described by Yaveroğlu
and colleagues [62] was also performed on the set of 96
networks to compare the roles of season, household, and
individuals in shaping association network structure.
Briefly, each network was broken down into subgraphs
(graphlets), each consisting of up to four nodes, and per-
formed the graphlet frequency distribution of each node
across networks. A graphlet correlation matrix was
generated for each of the 96 networks based on pairwise
Spearman correlations of the 11 non-redundant orbits of
all nodes. This matrix is then used to calculate the graphlet
correlation distances, and relationships between networks
which were then visualized into multidimensional scaling
plots constructed using R. Each network is represented by
a position on the plot, and networks that are closer to each
other in the MDS plot space are considered to be more
similar in network structure.

Statistical analyses
The nonparametric Mann-Whitney (MW) and Kruskal-
Wallis (KW) tests were employed to determine signifi-
cance when comparing between two or more
comparison groups, respectively. p values were adjusted
for multiple comparisons using the false-discovery rate
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(FDR) algorithm in R. Potential batch effect between se-
quencing runs were considered as a possible confound-
ing factor when performing multiple comparisons
throughout the study (Additional file 19: Table S8) and
have been treated as an extra sample variable along with
other sample variables for FDR-multiple comparison
using “p.adjust” in R. Where indicated in the main text,
post-hoc KW pairwise comparison tests for significance
between individual groups were performed using the
kruskalmc function in R package pgirmess (http://
cran.r-project.org/web/packages/pgirmess/index.html),
following significant KW observations (adjusted p ≤ 0.05).
Spearman’s and Kendall’s τ ranked correlations were
computed using the “cor.test” function in R.

Additional files

Additional file 1: Figure S1. Heat maps based on relative abundance
(RA) of top genera across four seasons within each individual, grouped
by anatomical site. Top genera with average RA of ≥1% in the dataset
are represented. Note the different relative abundance ranges provided
for each genus. Individuals are color-coded on the y-axis according to
their households. (PDF 6992 kb)

Additional file 2: Table S1. Relative abundance and coefficients of
variations of top genera. Top genera with average relative abundance of
≥1% across the dataset are represented. For each genus, individual, and
skin site, the CV is represented by the standard deviation of the relative
abundance of that genus divided by its mean relative abundance over
the four seasons. (XLSX 322 kb)

Additional file 3: Figure S2. Coefficient of variation (CV) measurements
based on relative abundance (RA) of top genera on a) forehead, b) left
and c) right forearm, and d) left and e) right palm sites for each
individual. CV is indicated by color gradient, and RA for each individual,
site, and genus indicated by point size. Top genera are those with
average RA of ≥1% in the dataset. Individuals are color-coded according
to households. (PDF 7184 kb)

Additional file 4: Figure S3. Correlation between standard deviation
and average relative abundance of genera grouped by individuals.
Standard deviation and average relative abundance of the 100 most
abundant genera are plotted, with Spearman’s ρ correlation significant
for all individuals (adjusted-p < 0.05 for all). Each point represents a
particular genus found on either forehead (red), forearm (green), or palm
(blue) sites within each individual. Spearman’s correlation and linear
regression line calculated and constructed in R. (PDF 2767 kb)

Additional file 5: Table S2. Deseq2 and negative binomial mixed
model analyses of OTUs showing differential abundance between season
pairs. (XLSX 203 kb)

Additional file 6: Figure S4. Cohort-wide seasonal differences in relative
proportions of oligotypes for top genera. Oligotypes 2, 1, 1, and 1 of a)
Sphingomonas, b) Bacillus, c) Propionibacterium, and d) Staphylococcus,
respectively, show cohort-wide differences in relative abundance of different
oligotypes at specific seasons across cohort and skin sites. At the same time,
oligotypes 3 and 4, 9, and 5 of e) Enhydrobacter, f) Sphingomonas, and g)
Chryseobacterium, respectively, show household-specific differences in
relative abundance of different oligotypes at different seasons across cohort
and skin sites. All relative abundance comparisons statistically significant
between seasons or households (KW p < 0.05 for all oligotypes focused).
(PDF 7042 kb)

Additional file 7: Table S3. Shannon diversity across sites, seasons, and
individuals, and diversity comparison between sample groups. Shannon
diversity calculated based on “breakaway” package in R [56]. (XLSX 51 kb)

Additional file 8: Figure S5. Coefficient of variation (CV) of Shannon
diversity between a) individuals, b) households, and c) age groups,

grouped by anatomical sites. The Shannon diversity CV of particular skin
microbiota is represented by sizes of circles. For a) individuals are
color-coded to represent the households as shown in b). (PDF 1863 kb)

Additional file 9: Table S4. Community composition, seasonal, and
time-decay analyses. (XLSX 35 kb)

Additional file 10: Figure S6. Density plots of pairwise weighted
UniFrac distances between samples of the same (red) and different (blue)
seasons. Density plots faceted according to each individual. Only
within-individual pairwise comparisons were included in analysis. (PDF
3915 kb)

Additional file 11: Figure S7. Correlations between the pairwise
weighted UniFrac within-site distances and Shannon diversity CV of skin sites
over time within individuals. Spearman’s correlation and linear regression
determined and constructed in R. P-values adjusted using false-discovery rate
method. (PDF 2015 kb)

Additional file 12: Figure S8. Microbial association network for each
individual over the period of one year. Significant correlative associations
between OTUs (represented by nodes) within each individual determined
based on the SPIEC-EASI pipeline. Correlations between OTUs can be
positive (represented by blue edges) or negative (represented by red edges).
SPIEC-EASI correlations with magnitude of < 0.05 are not represented
in figure. OTUs belonging to one of top 20 taxonomic families are
color-coded, whereas OTUs of other families are grouped into
“Minor/Unclassified” group, represented by dark gray nodes. (PDF
5774 kb)

Additional file 13: Table S5. Significant SPIEC-EASI correlations between
pairs of OTUs and taxonomic information of hub OTUs. Absolute
correlations of ≥0.05 are included in the table. (XLSX 232 kb)

Additional file 14: Figure S9. SPEIC-EASI density plot of positive and
negative correlations involving OTUs of the same (orange shade) or
different (purple shade) genera, and heatmap plots of pairwise significant
correlations of OTUs of the top genera within each individual. Only
significant correlations with an absolute SPIEC-EASI correlation magnitude
of ≥0.05 are included. (PDF 6984 kb)

Additional file 15: Figure S10. Network structure properties per
individual over four seasons. a) Node degree distribution is plotted for
each individual for winter (blue), spring (green), summer (red), and
autumn (black). In households with multiple occupants, distributions from
each individual are combined into single plots. b-c) Natural connectivity
of microbial association network of each individual in winter (blue),
spring (green), summer (red), and autumn (black) upon sequential node
removal in order of decreasing b) node betweenness centrality (i.e. nodes
having the shortest paths to other nodes removed first) and c) node
degree (i.e. nodes having the highest number of edges to other nodes
removed first). Natural connectivity, as a measure of a network’s robustness
and stability to node removal, is plotted against removal of up to 80% of
nodes of a given network. Natural connectivity is expressed as the relative
proportion of the size of the original network prior to node removal. (PDF
6137 kb)

Additional file 16: Table S6. Pairwise weighted UniFrac distances
between samples from the same individual, cohabitants, and
non-cohabitants. (XLSX 49 kb)

Additional file 17: Figure S11. Effect of household occupancy on the
extents of changes in skin microbiota within individuals over time.
Kendall’s correlation between household occupancy and CVs of relative
abundance for a) Propionibacterium and b) Acinetobacter on forehead, c)
Acinetobacter on forearm, and d) Bacillus on palm within an individual.
Correlation between household occupancy and e) Shannon diversity CV
and f) pairwise weighted UniFrac distances between communities on the
same individual and site over any two seasons. Kendall’s correlation and
linear regression determined and constructed in R. Significant correlations
following false-discovery rate adjustment are in bold (adjusted-p < 0.05).
(PDF 4782 kb)

Additional file 18: Table S7. Sample metadata. (XLSX 73 kb)

Additional file 19: Table S8. Weighted UniFrac distance Global R
analysis for effect of sequencing batch on microbial community
composition within a season. (DOCX 43 kb)
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