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Abstract

shotgun sequencing reads from complex microbiomes.

analyses.

Background: Profiling of shotgun metagenomic samples is hindered by a lack of unified microbial reference
genome databases that (i) assemble genomic information from all open access microbial genomes, (i) have
relatively small sizes, and (i) are compatible to various metagenomic read mapping tools. Moreover, computational
tools to rapidly compile and update such databases to accommodate the rapid increase in new reference genomes
do not exist. As a result, database-guided analyses often fail to profile a substantial fraction of metagenomic

Results: We report pipelines that efficiently traverse all open access microbial genomes and assemble non-
redundant genomic information. The pipelines result in two species-resolution microbial reference databases of
relatively small sizes: reprDB, which assembles microbial representative or reference genomes, and panDB, for which
we developed a novel iterative alignment algorithm to identify and assemble non-redundant genomic regions in
multiple sequenced strains. With the databases, we managed to assign taxonomic labels and genome positions to
the majority of metagenomic reads from human skin and gut microbiomes, demonstrating a significant
improvement over a previous database-guided analysis on the same datasets.

Conclusions: reprDB and panDB leverage the rapid increases in the number of open access microbial genomes to
more fully profile metagenomic samples. Additionally, the databases exclude redundant sequence information to
avoid inflated storage or memory space and indexing or analyzing time. Finally, the novel iterative alignment
algorithm significantly increases efficiency in pan-genome identification and can be useful in comparative genomic

Keywords: Reference database, Shotgun metagenomics, Pan-genome, Whole-genome alignment

Background

The microbiome field has been revolutionized by sequen-
cing technologies that enable reconstruction of microbial
community composition and function. Metagenomic whole-
genome shotgun sequencing (mWGS) samples the full
genomic complement of a community to provide a high-
resolution reconstruction of its species, strains, and even
single-nucleotide polymorphisms. With adequate sequen-
cing depth, mWGS data contain information on the scale of
billions of short reads that can be deconvoluted to
generate compositional and functional profiles of the
hundreds to thousands of microbial species existing
in a given microbiome.

* Correspondence: Julia.Oh@jax.org
'The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
Full list of author information is available at the end of the article

( ) BiolVled Central

Extracting information such as species identities from
this vast body of intrinsically complex data is of great
biological interest, yet methodologically challenging [1].
To accommodate this data type, methods to analyze
mWGS data require high sensitivity (the proportion of
data that can be interpreted), high specificity (the pro-
portion of data that are correctly interpreted), and high
speed. Commonly, mWGS data are assigned a taxo-
nomic or functional label based on their alignment to a
most plausible genome position in a reference database
containing microbial genome sequences (for example,
see [2—4]). Thus, the sensitivity, specificity, and speed of
such database-guided analyses all depend on the intrin-
sic qualities of the reference database.

For optimal utility, a reference database should have
maximal comprehensiveness, which maximizes the sensi-
tivity and specificity of sequence mapping, and minimal
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redundancy, which minimizes storage space, memory
space, and analysis time. Moreover, an ideal reference
database should have the ability to accommodate the
extensive intraspecies genetic diversity, or pan-genome [5],
that is unique to subspecies or strains within a species and
is poorly captured by current databases. To the best of
our knowledge, no microbial reference databases have
been constructed with the considerations of maximal
comprehensiveness and minimal redundancy. Conse-
quently, analyses that utilize current reference data-
bases often fail to align a substantial fraction of mWGS
reads. For example, more than 40% of human skin
mWGS reads and 60% of human stool mWGS reads
remained unmapped to any genomic positions when
analyzed against a reference database that combined
the Human Microbiome Project, and manually selected
bacterial, archaeal, and fungal genomes from the Refer-
ence Sequence (RefSeq) database that are present on
human skin [4]. Other studies have confirmed these
estimates; for example, 58 £ 2.2% of human gut species
richness was estimated to be uncharacterizable with a
different reference database composed of bacterial and
archaeal genomes [6]. Therefore, it is likely that many
database-guided analyses have significantly underestimated
sample biodiversity and, in turn, biased conclusions drawn
from comparisons of different experimental cohorts.

Current efforts to improve metagenomic profiling have
focused primarily on new indexing and searching algo-
rithms, which could synergistically benefit from reference
databases with improved comprehensiveness and minimal
redundancy. For example, bioinformatics tools such as
Kraken [7], Livermore Metagenomic Analysis Toolkit
(LMAT) [8], and CLARK [9] use k-mer-based search
algorithms to achieve rapid taxonomic classification. The
primary advantage of such approaches is that, theoretic-
ally, they can flexibly use different reference databases,
including all complete and draft microbial genomes in
GenBank, yet the usage of such massive databases strongly
inflates storage or memory space and indexing or search-
ing time. Moreover, other analytical frameworks that are
incompatible with these searching algorithms (e.g., prob-
abilistic read assignment enabled by PathoScope [10, 11])
could also benefit significantly from improved databases.
On the other hand, tools such as MetaPhlAn [12, 13] that
do emphasize database quality limit their usage to very
specific tasks (such as compositional estimation of a whole
sample) by only searching taxonomically informative gen-
ome regions and leaving the majority of the metagenomic
reads unclassified.

In general, rapid sequence classification algorithms
trade memory and storage space for speed by building a
substantially large index of the database that is easy to
search against. However, this strategy prohibits such
methods from incorporating new genomics data, which
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is problematic given the exponential increase in the num-
ber of genomes sequenced in recent years. For instance,
LMAT created a 500 GB k-mer index of less than 5000
microbial species in 2011 [8]; however, at the time of the
drafting of this manuscript, GenBank had accumulated
genome assemblies of over 80,000 microbial strains from
over 20,000 species. The dramatic growth in draft micro-
bial genomes challenges our ability to compile and update
reference genome databases in a manner that maintains
their compatibility to various bioinformatics tools and
utility to the metagenomic community.

To address these limitations, we sought to assemble
high-quality genome databases that are compatible with
various indexing, searching, and analytical algorithms.
Here, we describe two new pipelines that each efficiently
compiles distinct non-redundant, species-resolution ref-
erence databases comprising all open access microbial
genomes: database reprDB is compiled from microbial
representative or reference genome sequences, and data-
base panDB consists of the pan-genome sequences of
known microbial species, for which we developed an
iterative alignment algorithm that efficiently extracts the
pan-genomic sequences from a set of conspecific strain
genomes. We demonstrate that these databases have the
following advantages: they (1) can be re-compiled automat-
ically and efficiently, (2) provide species-level resolution
while including strain information, (3) are limited in size,
and (4) are able to assign taxonomic labels to the majority
of genomic sequence data from human microbiomes.

Results
Properties of reprDB and panDB
To more effectively leverage the rich knowledge base of
sequenced genomes without excessive analysis time and
space requirements, scalable algorithms are required to
compress the redundant sequence information in a given
database. In particular, conspecific microbial strains con-
tain very similar genomic regions that can be compressed
into one representative sequence to greatly reduce the size
of the database. For reprDB, intraspecific redundancy is
removed by including the representative and reference
genomes for each microbial species while discarding the
rest of the strain genomes of that species. Therefore,
reprDB retains species-level resolution and has minimal
size, including 7018 bacterial, 339 archaeal, 790 fungal,
and 7035 viral species totaling 57 GB in plain text format.
While reprDB has minimal size and retains species-level
resolution, it does not capture intraspecific diversity, which
often contains a significant fraction of genetic information
in microbial communities. To complement reprDB, we
developed panDB with the goal of incorporating sequence
information from all conspecific strains, but in a non-
redundant fashion. However, identification of non-
redundant genomic regions among conspecific strains
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conventionally requires multiple whole-genome alignment
(Fig. 1la) that relies on polynomial-time algorithms to
compare all aligned genomes and identify collinear gen-
omic regions, which is excessively time-consuming to
cover all available microbial species. Therefore, we de-
signed iterative alignment (Fig. 1b), a new and scalable
algorithm suitable to extract non-redundant pan-genome
information from a set of closely related genome se-
quences. Iterative alignment efficiently assembled panDB
comprising pan-genome sequences of 13,485 bacteria, 676
archaea, 864 fungi, and 5578 viruses with a total size of
87 GB in plain text format.

Iterative alignment

Our iterative alignment algorithm traverses a list of strain
genomes to identify and concatenate non-redundant gen-
omic regions (Fig. 1b). It purposefully avoids the computa-
tionally expensive multiple whole-genome alignments and
extracts more contiguous pan-genome sequences than
whole-genome alignments. Iterative alignment dramatically
increased the efficiency of pan-genome sequence extraction
compared to multiple whole-genome alignment (Table 1).
Iterative alignment has an empirical time complexity that
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scales approximately linearly with the number of genomes
with a theoretical worst-case complexity of O(r) when
there is completely no alignable region between any pair of
genomes, which is significantly more efficient than the
polynomial-time multiple whole-genome alignment when
the number of genomes is large (Fig. 1c). In addition to the
remarkable increase in speed, iterative alignment only adds
contigs of genomic regions to the growing reference
sequence but does not segment the contigs that are already
added to the reference sequence. This property of iterative
alignment results in significantly longer contigs for a less-
fragmented pan-genome per species (3524 versus 1238 bp
per contig on average for Bacteroides fragilis) (Fig. 1d) than
conventional multiple whole-genome alignment, while
retaining very similar pan-genome sizes (39.9 versus
39.5 Mbp for B. fragilis).

Identification of assemblies with exogenous genomic
sequences

Microbial genome assemblies in GenBank could contain
exogenous sequences, due to either lateral transfer or
sample contamination. To account for this possibility, we
have included a pipeline in our GitHub repository that
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Table 1 Alignment time of strain genomes using MWGA and
iterative alignment

Species Number of Alignment time
aligned strains e hy frerative
alignment (h)
Staphylococcus epidermidis 50 4.5 3
Enterobacter cloacae 50 53 7
Agrobacterium tumefaciens 25 19.5 2
Burkholderia mallei 50 38 55
Gilliamella apicola 48 3 2
Bacteroides fragilis 50 215 4
Mycobacterium abscessus 50 155 4
Clostridium botulinum 50 28 4

Comparison of the alignment time of randomly selected species with different
numbers of strain genomes

detects potentially exogenous contigs in the pan-genome
sequences in panDB. To demonstrate the usage of the
pipeline, we searched for pan-genomes in panDB that
contain Escherichia coli-like sequences by aligning a set of
81 E. coli-specific marker genes extracted from the
MetaPhlAn database to panDB [12, 13]. Cutoff values of
alignment summary statistics, such as sequence identifies,
e-values, and coverage of the aligned region, are adjustable
by the user. For demonstration, a total of 273 species pan-
genomes align to at least one E. coli-specific marker gene
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with sequence identities over 0.9 and e-values less
than 107°. Most of these pan-genomes contain only
one fragmental alignment to the marker genes (i.e.,
the aligned region covers less than 50% of the marker gene
sequence), which could have resulted from true homology
of gene motifs instead of exogenous E. coli sequences.
Sixty-eight of the 273 pan-genomes have contigs that
either align to at least two marker genes or align to at least
one marker gene while the aligned region covers more
than 50% of the marker gene sequence. Among the 68
pan-genomes, the majority (73%) are from the genera
Escherichia and Shigella (Fig. 2), which are phylogenetically
close to E. coli. The rest of the species pan-genomes are
evolutionarily distant from E. coli yet still contain genomic
regions highly similar to the E. coli marker genes. These
pan-genomes likely contain contaminated or laterally
transferred E. coli sequences, while they constitute less
than 0.1% of all pan-genomes in panDB.

Read classification of in silico synthetic communities

To test the ability of reprDB and panDB to classify meta-
genomic reads at different taxonomic resolutions, from
communities of common and uncommon species, and
from communities of different levels of complexity, we
classified sequencing reads sampled from three types of
synthetic communities using a short read aligner (Bowtie
2 [14]) and a read classifier (PathoScope 2.0 [10]).
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We first classified sequencing reads simulated from three
classes of low-complexity in silico synthetic communities:
(1) communities consisting of 5, 10, or 20 strains from the
same species (either Staphylococcus epidermidis or Bacter-
oides fragilis), (2) communities consisting of five species
from the same genus (either Staphylococcus or Bacter-
oides), and (3) communities consisting of five species
representing five different phyla (Additional file 1). Because
our databases treat species as the lowest taxonomic unit,
the synthetic communities composed of conspecific strains
were only used to test mapping sensitivity. ReprDB and
panDB were able to classify the majority (over 80% for
reprDB and over 98% for panDB) of reads from the com-
munities consisting of different numbers of S. epidermidis
or B. fragilis strains (Fig. 3a). The phylum-level read classi-
fication is highly accurate: over 97 and 99.9% of all reads
were classified to the correct phylum by reprDB and
panDB, respectively (Fig. 3b). Species-level read classi-
fication is also considerably accurate: reprDB correctly
classified 86 and 98%, while panDB correctly classified
92 and 77% of the simulated reads from Bacteroides
and Staphylococcus species, respectively (Fig. 3b). The
majority of the incorrectly assigned Staphylococcus
reads were mapped to Staphylococcus haemolyticus
(20.5% of total reads were assigned to S. haemolyticus
after PathoScope re-assignment and 13.9% before
PathoScope re-assignment). As S. haemolyticus is not
present in the synthetic community but has a very large
pan-genome (22 Mbp), this skews the estimated param-
eter values in the Bayesian read assignment model of
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PathoScope 2.0. The sensitivity and specificity of read as-
signment is robust to the number of simulated reads
(Fig. 3b) which represents the difference in sequencing
depth (1.6-3.9x coverage for 500,000 reads and approxi-
mately 3.3—-7.7x coverage for 1,000,000 reads).

Next, to test the ability of reprDB and panDB to classify
reads from a low-complexity community composed of
common bacterial species, we analyzed a mock metagen-
ome community composed of 21 evenly mixed bacterial
strains from “mockrobiota,” originally contributed by
Bokulich et al. [15] and Kozich et al. [16]. Both reprDB and
panDB can classify 96.0% of the total reads (Fig. 4a, b).
Based on reprDB, 92.9% of the reads were mapped to one
of the 21 species that constitute the community (Fig. 4a)
and 93.1% of the reads were mapped to one of the 18
genera in the community (Fig. 4b). As anticipated, the 21
species have approximately even abundances based on
reprDB (Pielou’s evenness index = 0.83). However, for
panDB, a significantly fewer proportion of reads (53.5%)
were correctly mapped to the 21 species, and the estimated
relative abundances are less even (Pielou’s evenness
index = 0.525) (Fig. 4a). Based on the fact that panDB
correctly assigned a relatively high proportion of reads
(87.5%) to the 18 genera that constitute the community
(Fig. 4b), it can be deduced that panDB mistakenly
assigned a subset of reads to a closely related species pan-
genome in the same genus, similar to what was observed
when assigning the Staphylococcus reads in the previous
analyses. The results suggest that reprDB can accurately
profile communities composed of common bacteria, while
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panDB is less accurate at species-level profiling due to the
presence of closely related species pan-genomes that
results in ambiguous alignment of reads.

Finally, to demonstrate that including more species pan-
genome information in the database could improve profil-
ing of unknown and high-complexity communities, we
tested the performance reprDB and panDB using five data-
sets from Critical Assessment of Metagenome Interpret-
ation (CAMI) [17], which contain over 700 predominantly
unpublished isolate genomes, including multiple strains per
species, microdiversity, and non-chromosomal elements
[17]. Because most of the genomic sequences lack taxo-
nomic typing, we compared our results to the gold stand-
ard profiling which was generated based on the RefSeq and
National Center for Biotechnology Information (NCBI)
bacterial genome databases and can be downloaded from
CAML ReprDB and panDB were able to characterize an
average of 49.7 and 75.1% of all reads in the datasets—a
significant increase from the gold standard profiling in
which only 28.6% of the reads were classified (Fig. 5a, c).
Moreover, although reprDB and panDB characterized a
much larger subset of the data, the estimated abundances
of the taxa still significantly and positively correlate to the
gold standard (Fig. 5b, c, average Pearson correlation
coefficient = 0.62 between the gold standard and reprDB
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estimates, and average Pearson correlation coefficient =
0.70 between the gold standard and panDB estimates). In
addition, the RefSeq database used to generate the gold
standard profiling contains not only bacteria genomes but
also plasmid and gene sequences and is much larger in size
(37.6 GB of bacterial genome sequences and 482.8 GB of
non-genome sequences) than reprDB and panDB, but it
only classified a much smaller subset of reads in the data-
sets compared to reprDB and panDB (Fig. 5a, c). The
results suggest that reprDB and panDB are informative and
compact, while panDB is especially powerful when charac-
terizing highly complex communities with strain-level
diversity and potentially unknown microbial species.

Compatibility with Kraken

To show that reprDB and panDB are compatible with
read classification tools other than PathoScope 2.0, we
used Kraken to classify sequencing reads based on
reprDB, panDB, and the standard Kraken library [7]. In
contrast to PathoScope 2.0, which assigns each read to a
single genome, Kraken assigns each read to its lowest
taxonomic level [7]. Using the in silico communities syn-
thesized in this study, we assessed the total proportion
of reads classified based on the databases. A similar pro-
portion of reads sampled from the S. epidermidis strains
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were classified based on reprDB, panDB, and the stand-
ard Kraken database, while panDB classified more reads
sampled from B. fragilis strains than reprDB or the
standard Kraken database (Fig. 6a). The results were
consistent to the observation when reads were classified
using PathoScope 2.0 (Fig. 3a). Next, we assessed the
consistency between the genome from which a read was
sampled and the taxonomic node to which the read was
assigned to. PanDB exhibits the highest consistency in
read classification (Fig. 6b). Twenty-five percent of the
reads generated from the community composed of five
Bacteroides species were not correctly assigned using
reprDB, and an even larger amount (34%) failed to be
correctly assigned using the standard Kraken database
(Fig. 6b). These observations were consistent to the
results generated using PathoScope 2.0 (Fig. 3b). While
PathoScope 2.0 incorrectly assigned a significant propor-
tion of multi-mapped Staphylococcus reads to S. haemo-
lyticus based on panDB (Fig. 3b), Kraken did not exhibit
this problem for it classifies multi-mapped reads to the
lowest common ancestral node [7].

Read classification of the skin and stool mWGS samples
We then re-analyzed the mWGS data from over 800
human skin and stool microbiome samples described in
Oh et al. [4] to determine if these databases could provide
new insights into the species composition of metagenomic
samples. ReprDB characterized 66.0+18% of the skin
mWGS reads (Fig. 7a, left panel) and 73.3 £ 9% of stool
mWGS reads (Fig. 7a, right panel), in comparison to
58.8 + 24 and 33.8 + 14%, respectively, in the initial pub-
lication [4]. PanDB, with its inclusion of as many non-
redundant genome regions as possible, classified an even
larger fraction of reads (71.6 + 18 and 80 + 10%, respect-
ively) (Fig. 7a). Consistent with previous reports [4], Propi-
onibacterium, Corynebacterium, and Staphylococcus were
observed as the most abundant bacteria genera in the skin
samples (Fig. 7b, upper panel), while Bacteroides was
observed as the most abundant in the stool samples
(Fig. 7b, lower panel). A substantial amount of reads was
mapped to uncultured species—species that have no
axenic culture for formal description—based on the
panDB, especially in the stool samples (Fig. 7b).
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To assess how well these databases capture the within-
species diversity observed in the skin and stool samples,
we compared the fraction of reads that aligned to the
representative genome, the pan-genome sequence, and all
strain genomes of a given species that are aligned to derive
the pan-genome sequence. For this purpose, we randomly
chose five microbial species that have multiple sequenced
strain genomes and are relatively abundant in skin or stool
samples, respectively (Table 2). Many species contain sig-
nificant within-species diversity that was not characterized
by the representative sequences; in an extreme case, the
representative genomes of Bacteroides vulgatus captured
less than 5% of all reads mappable to the species pan-
genome (Fig. 7c, upper panel). Overall, the pan-genome
sequences alone were able to profile a similar fraction of
reads with the unaligned strain genomes combined, while
having a significantly reduced size (Table 2).

Consistency in read assignments based on the two
databases

To compare the performances of each database, we
compared the taxonomic classification of skin and stool
mWGS reads using reprDB and panDB. The fractions of
reads assigned to the same microbial genus were gener-
ally comparable based on reprDB and panDB, with an
average Pearson correlation coefficient of 0.943 for skin
samples and 0.958 for stool samples (Fig. 7d). However,

inconsistency in read assignment increased at the species
level, resulting in an average correlation coefficient of
0.323 for skin samples and 0.720 for stool samples (Fig. 7d,
left panel). Many reads were mapped to species that are
present in panDB, but are not included in reprDB because
the species have no designated representative genomes
(for example, the species data points in the orange square
in the upper left panel of Fig. 7d). In addition, panDB was
able to recruit additional reads to the pan-genome regions
of many species compared to reprDB (for example, the
species data points in the blue square in the upper left
panel of Fig. 7d). Moreover, reads that initially mapped to
a reprDB species may align to a different genomic region
in panDB, consequently decreasing the observed abun-
dance of the species which the reads originally mapped to
(for example, the species data points in the green square
in the upper left panel of Fig. 7d). While reprDB is smaller
and more balanced in that it does not overrepresent
species that have more sequenced strain genomes, panDB
provides a more comprehensive classification that incor-
porates intraspecific diversity.

Consistency in taxonomic profiles generated based on
16S ribosomal RNA and mWGS data

Finally, we compared the taxonomic profiles generated
based on reprDB and panDB to the genus-level taxo-
nomic profile generated based on 16S ribosomal RNA
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(rRNA) sequencing for 57 stool samples that have both
mWGS and 16S rRNA sequencing data (Additional file 2)
[18]. 16S rRNA sequencing identified 118 + 47 microbial
genera, out of which 70 £ 8% were not identified using
either reprDB or panDB based on the paired mWGS
data, partly because no whole-genome sequences are
available in GenBank or RefSeq database for some of
these genera. On the other hand, 59 + 4% of the 77 + 12
genera identified using either reprDB or panDB were
not identified by 16S rRNA sequencing. Note that these
genera specifically identified in 16S rRNA or mWGS
data represent rare microbes, which have collective rela-
tive abundances of 0.09 £ 0.06 and 0.07 + 0.08 based on
16S rRNA and mWGS data, respectively. The 32+5
genera that are robustly identified by both sequencing

methods represent abundant microbes in the communi-
ties (total relative abundance of 0.9 +0.06 and 0.84 +
0.12 based on 16S rRNA and mWGS data, respectively).
These abundant genera show highly consistent relative
abundance estimates, with an average Pearson correl-
ation coefficient of 0.90 between 16S rRNA and reprDB
and 0.88 between 16S RNA and panDB.

Discussion

Ideally, reference databases for characterizing metage-
nomic data should be comprehensive but non-redundant
to accurately classify as many sequencing reads as possible
with maximum efficiency and minimum computational
cost. In this study, we described methods to efficiently and
automatically compile two microbial genome databases,
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Table 2 Compact species representation in reprDB and panDB
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Total size of strain
genomes (kbp)

Size in panDB (kbp)

Species Size in reprDB (kbp)
Bacteroides vulgatus 5163
Parabacteroides distasonis 4811
Bacteroides ovatus 6791
Prevotella buccalis 6010
Clostridium bolteae 5432
Staphylococcus aureus 14,177
Staphylococcus epidermidis 5209
Streptococcus mitis 2147
Corynebacterium kroppenstedtii 2447
Actinomyces oris 2949

9954 41,523
9486 53,014
14,112 69,311
3886 8854
9349 45,990
12,080 239,676
17,271 153,889
11,132 112,321
2715 10,197
3421 8957

Sizes of reprDB species representative genomes, panDB species pan-genomes, and the total size of sequenced strain genomes used to generate the

species pan-genome

reprDB and panDB, both of which have manageable sizes
and are suitable for analyzing mWGS data. The reference
databases we compiled significantly promoted microbial
species identification in human-associated microbial com-
munities. For many of the stool and skin microbiome
samples tested in this study, close to 100% of the reads
were classified using either of the two databases and with
high consistency in taxonomic classification, representing
a significant improvement over previous analyses [4].

For some samples, however, only a tiny fraction of
reads were classified, despite the comprehensive nature
of reprDB and panDB. This suggests the presence of mi-
crobial clades that have no available genome sequences
to date, perhaps owing to generally low prevalence or
conditional abundance. Similarly, some of the clades
identified by 16S rRNA sequencing were not identified
in the shotgun metagenome dataset because no genome
sequences were available for these clades, underscoring
the need for continued microbial genome discovery and
database integration. Alternatively, their lack of representa-
tion could result from systematic bias in microbial isolation
or sequencing methods. For example, bacteria from the
Prevotella genus are harder to culture than Bacteroides bac-
teria, which results in significantly more sequenced Bacter-
oides genomes than Prevotella. Consequently, significantly
fewer Prevotella reads can be classified using standard
reference databases. A similar bias was also exposed in our
simulation study, where a significant number of reads were
incorrectly assigned to highly represented and closely re-
lated species in the database (Figs. 3b and 4a). In general,
public sequence databases such as GenBank contain more
data for microbial species of clinical, biological, or technical
importance, as well as species that are easier to isolate and
culture. It therefore follows that databases curated from
these sources will propagate this skewing and potentially
bias the alignment-based characterization of microbial
communities. Therefore, the addition of genome sequences

of underrepresented yet ecologically important species will
make the reference databases not only more informative
but also more balanced and robust for read classification
purposes. Given that isolation and sequencing of such
species could be technically challenging, this underscores
the value of phylogeny-driven sequencing efforts such
as GEBA [19-21] as well as innovations in culturomics
[22, 23] and single-cell sequencing [24] to improve
species representation in reference databases.

ReprDB selectively uses representative or reference
genome sequences to minimize its size while providing
species-level resolution. Representative or reference
genomes are selected from the NCBI RefSeq database
based on community consensus, assembly and annota-
tion quality, as well as consideration of species-level
taxonomic classification, and then manually curated for
their metadata by PATRIC. In addition to being compact
and high in quality, sequence information in reprDB is
more balanced across microbial species, in the sense that
the database only includes the representative or refer-
ence genomes of a given species, regardless of how many
strains have been sequenced for the species. Under circum-
stances where the closely related species in a community
are sparse or skewed, reprDB could serve as an important
complement to panDB or even outperform panDB in terms
of read classification accuracy especially for commonly
observed bacterial species (Figs. 3b and 4a, b).

On the other hand, panDB purposefully includes as
much non-redundant information as possible for each
known microbial species in order to classify as many mi-
crobial reads as possible. It is moderately larger in size
than reprDB and correspondingly classifies a larger frac-
tion of mWGS data. However, this increase is biologically
significant because many species possess considerable
strain-level diversity within their human-associated habi-
tats, which can only be characterized by accounting for in-
traspecific diversity in the reference database (Fig. 7c, d).
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Moreover, intraspecific genetic variation can differ mark-
edly between species (e.g., 20% of gene families are
variable in commensal S. epidermidis [25], while 70% are
variable in Salmonella enterica [26]), requiring an ap-
proach that can accommodate large numbers of strains.
We show that panDB is especially valuable in characteriz-
ing communities of high complexity, with strain-level
diversity and with previously unknown species (Fig. 5a, c),
because panDB more comprehensively explores the se-
quence space that are accessible to each microbial species
by accounting for all sequenced strains of that species.
Additionally, reads that map to one genome location in
reprDB may find a different alignment in panDB. Such
relocated reads are not rare, and they can substantially
influence read assignment among species. This is because
read assignment is commonly inferred under a Bayesian
framework in software such as PathoScope [10] where the
assignment of one read influences the probability of the
assignment of other reads. It is important to note that we
found that read assignments are more precise with
panDB, which contains more information than
reprDB, but not definitively more accurate due to the
abovementioned bias in representation among species
(Figs. 3b and 4a). Accuracy of panDB-based read
assignment could be further improved by balancing
species representation or introducing read assignment
models that explicitly correct for the variation in spe-
cies representation. Another factor that could influ-
ence the accuracy of panDB is the presence of
exogenous sequences in genome assemblies, due to
either contamination or lateral transfer. Although we
show that the proportion of contaminated assemblies
is likely small (Fig. 2), assemblies containing laterally
transferred element are hard to identify computationally
based on only the genome sequence. However, when
analyzing mWGS datasets, it is possible to minimize the
influence of laterally transferred element by combining
database-based profiling with de novo approaches such as
coverage-based binning (for example, see [27]).

The importance of species pan-genomes in analyzing
compositional or functional aspects of metagenomic data-
sets has received much attention. Most methods, however,
characterize pan-genomes on the resolution of gene fam-
ilies, ignoring non-coding regions or unannotated coding
sequences [28, 29]. This limitation likely arises from both
the high computational cost of multiple whole-genome
alignment and the lack of alternative algorithms that can
efficiently identify pan-genomes based on full-genome
sequences. Thus, we based panDB on an iterative align-
ment algorithm which allows rapid extraction of the pan-
genome sequence from a set of conspecific strain genomes
independent of annotated coding sequences. Iterative
alignment is a greedy algorithm, as empirical computation
time scales approximately linearly with the number of

Page 11 of 15

strain genomes that are aligned (Fig. 1c). In addition to
superior speed, iterative alignment has two advantages for
database compilation. First, the algorithm results in less-
segmented pan-genome sequences than conventional
multiple whole-genome alignment (Fig. 1d). During itera-
tive alignment, the reference sequence will only be
extended but never trimmed or rearranged. Therefore, the
order of bases observed in the reference sequence at any
given time, including those bases in the blocks that are
appended to the reference sequence, will be preserved
throughout the database compilation (Fig. 1b). A less-
segmented pan-genome sequence can reduce the loss of
mappable reads that align to the breakpoints between
contigs. Second, databases constructed using iterative
alignment can be easily updated: each newly added gen-
ome can be incorporated into the present pan-genome
sequence by conducting one alignment using the pan-
genome sequence as the reference and the newly added
genome as the query. Thus, panDB can be repeatedly
expanded without fully recompiling the database.

Finally, reference databases that provide high-quality a
priori knowledge can aid other analytical methods. For ex-
ample, reprDB and panDB can disentangle mWGS data
by partitioning reads according to their species of origin,
facilitating fast and accurate assembly of species’ genomes.
Comprehensive databases can also improve analysis of
genetic polymorphisms in microbial populations by pro-
viding more precise alignments for variant base calling. In
addition, these databases can be extended to include
contextual or sequence-associated information, such as
functional annotation of the genome sequences, to reveal
new insights of microbial communities with functional
relevance. Apart from alignment-based analyses, reprDB
and panDB can serve as the benchmark or training set for
the construction of predictive models based on sequence
features.

Conclusion

Current microbial reference databases often fail to
characterize a large proportion of shotgun metage-
nomic data from complex microbiomes. We developed
efficient algorithms to compile two species-resolution ref-
erence databases, reprDB and panDB, that significantly
outperform current databases. ReprDB has minimal size
and balances species representation by including reference
or representative microbial genomes, while panDB uses a
novel algorithm to identify and assemble as much non-
redundant sequence information as possible to more fully
capture intraspecific genetic diversity. Both databases
demonstrate high sensitivity in classifying sequence reads.
ReprDB classifies reads from common microbial species
with high accuracy, while panDB is especially powerful in
classifying reads from high-complexity communities con-
taining multiple conspecific strains and even unknown
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microbial species. Both databases can profile the majority
of metagenomic data from human skin or stool micro-
biomes, with panDB also exhibiting significant sensitivity
in characterizing intraspecific diversity. These database
compilation pipelines can improve database-guided ana-
lyses of complex microbial communities by efficiently
leveraging the rapidly expanding genome sequence data
available in public databases.

Methods

Compilation of the representative genome database
(reprDB)

To construct reprDB, we gathered genomes that maximize
the representation of phylogenetically diverse microbes to
reduce within-species redundancy. Representative and ref-
erence genomes, as curated and designated by PATRIC
[30], were included in the database for each archaeal and
bacterial species. Due to the heterogeneity of viruses, all
viral genomes from NCBI'’s accession list were included in
the database [31]. Finally, fungal species were included from
NCBI'’s eukaryote genome browser.

UNIX shell scripts were developed to streamline data-
base compilation. For each target organism, the FASTA
file containing the genome sequence and a GenBank flat
file containing the taxonomy of the organism were fetched
using NCBI's UNIX-compatible download tool E-utilities
[32]. The FASTA file was then reformatted to encode the
taxonomy and the genome size information in the header
of the genome sequences. Genome sequences and their
informative headers were concatenated into larger files of
about 2.8 GB, a convenient size for indexing by aligners
such as Bowtie 2 [14]. The pipeline is especially suitable
for parallel processing on a Portable Batch System. The
pipeline is exceptionally user-friendly; the only required
user inputs are (1) the name of the file that contains the
target organisms, (2) the file format type (chosen from a
provided list of compatible formats), and (3) the desired
number of jobs generated by the script.

Iterative whole-genome alignment

Briefly, in each iteration, a query genome is chosen and
aligned to a standing reference genome (Fig. 1b). The
genome regions, or blocks, that are only present in the
query genome but absent in the reference genome are
identified and appended to the reference genome. In the
next iteration, the updated reference genome is aligned
with a different query genome to identify query-
exclusive blocks, which are appended to the updated
reference genome. The iteration continues until all strain
genome sequences have been considered, either as a
query genome or as the starting reference genome in the
first iteration. Finally, the progressively updated refer-
ence genome sequence represents the species pan-
genome sequence, which covers genomic regions in all
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strains. In the present study, the representative genome
of a species was used as the reference genome in the
first iteration. If a species does not have a designated
representative genome, the genome with the greatest
size was selected as the reference genome in the first
iteration. The rest of the conspecific strain genomes
were aligned iteratively to the reference genome in
descending size order. We used Mugsy with default pa-
rameters for the alignment of conspecific strain genomes
because Mugsy is especially suitable for closely related
genome sequences [33].

Compilation of the pan-genome database (panDB)
Automated panDB compilation was implemented in
UNIX bash and C++, embedded in a UNIX shell wrapper,
suitable for parallel processing on a Portable Batch
System. All bacterial, fungal, archaeal, and viral genome
assemblies were downloaded from GenBank and grouped
by species, according to the species taxonomy ID provided
by the assembly summary files [34]. The majority of
microbial species only have one sequenced genome
(Fig. 8a, left panel), while the majority of sequenced
genomes belong to species with multiple sequenced
strains (Fig. 8a, right panel). Within each species, genome
sequences of different strains were aligned iteratively to
identify the species pan-genome sequence. Some medic-
ally important species have hundreds or even thousands
of sequenced genomes. In this study, to shorten the com-
pilation time, only the representative genome and the 49
largest strain genomes were aligned for bacterial, archaeal,
and viral species that have more than 50 sequenced strain
genomes. For fungal species that have more than 20 se-
quenced strain genomes, only the representative genome
and the 19 largest strain genomes were used for the
alignment. The maximum number of strain genomes
used to compile the pan-genome sequence can be ad-
justed by the users. In this study, all contigs shorter
than 1000 bp, which constitute over 10% of the con-
tigs (Fig. 8b, left panel) but less than 1% of the bases
in the database (Fig. 8b, right panel), were removed
from the final pan-genome sequences to further con-
dense the database. Short contigs do not significantly
improve read mapping due to poor contiguity but can
inflate space usage especially when long FASTA
headers are used. Users can specify the minimum
contig length to keep when compiling panDB.

Detecting exogenous genomic sequences

We included a pipeline in the GitHub repository that de-
tects potentially exogenous contigs from the pan-genome
sequences in panDB. The pipeline extracts species- or
strain-specific marker genes from the MetaPhlAn data-
base [12] and searches the marker gene sequences against
all pan-genome sequences in panDB using usearch local
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[35]. The pipeline reports contigs that match any marker
genes with sequence identities and e-values passing user-
specified thresholds. The pipeline also reports the subset
of contigs that either align to at least two marker genes or
align to at least one marker gene while the aligned region
covering more than x% of the marker gene sequence, with
the value of x specified by the users. In the present
study, we used phyloT to visualize the species clado-
gram (http://phylot.biobyte.de/).

Synthetic communities

To evaluate the sensitivity and specificity of the data-
bases for read classification, we first used reprDB and
panDB to analyze reads simulated from low-complexity
in silico synthetic communities. To assess the sensitivity
of the databases in recognizing multiple strains from the
same species, synthetic communities were created with
5, 10, or 20 strain genomes of either S. epidermidis or B.
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fragilis. Next, the databases were tested for their sensi-
tivity and specificity of species-level and phylum-level
classification using synthetic communities created using
representative genomes of five Bacteroides species (B.
fragilis, B. uniformis, B. vulgatus, B. ovatus, and B.
dorei), five Staphylococcus species (S. aureus, S. epider-
midis, S. warneri, S. lugdunensis, and S. capitis), or five
species representing five major bacterial phyla (B. fragi-
lis, S. epidermidis, Pseudomonas aeruginosa, Micrococcus
luteus, and Borrelia burgdorferi). Assembly accession
numbers of the genomes are available in Additional file 1.
Five hundred thousand or one million Illumina reads
were sampled from each of the nine synthetic communi-
ties using Mason [36] with arguments —sq (simulating
qualities), —i (include read information), —hs 0 (do not
simulate haplotype snps), —hi 0 (do not simulate haplotype
indels), and —n 100 (100 bp read length). Read classifica-
tion was conducted using Bowtie 2 [14] and PathoScope
2.0 [10] as described below.

Next, to test the ability of the databases to classify
reads from common bacterial species, we analyzed the
mock metagenome community downloaded from mock-
robiota (mock community 17) [15, 16], which is the only
shotgun metagenome dataset in mockrobiota and con-
tains 21 evenly mixed bacterial strains. Low-quality bases
were first trimmed using sickle with default parameters.
The trimmed reads were then classified using Bowtie 2
[14] and PathoScope 2.0 [10] as described below. Pielou’s
evenness index [37] was computed using

Pielou s evenness index =
max
where H is Shannon’s diversity index and H,,, is the
maximum possible value of H

S
H= —ZP;' X Inp;
=1

H gt | ! 1
max = —;;x n—= lIns
where p; is the relative abundance of the ith species, out
of a total of s species.

Finally, to test the ability of the databases to classify reads
from unknown and high-complexity communities, we ana-
lyzed five high-complexity synthetic communities down-
loaded from CAMI (CAMI_high) [17] that were previously
used in the first CAMI challenge. The datasets consist of
five HiSeq samples of 15 Gbp each with small insert sizes
sampled from complex synthetic communities containing
over 700 predominantly unpublished isolate genomes. Read
classification was conducted as described below, but due to
the large size of the datasets, the reads aligned using Bowtie
2 [14] were not re-assigned using PathoScope 2.0 [10].


http://phylot.biobyte.de
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Instead, the number of reads mapped to each genome was
directly counted using SAMtools 1.5 [38].

Construction of the Kraken databases and Kraken read
classification

ReprDB and panDB were first formatted to include the
NCBI taxID in their FASTA headers according to the
requirement by Kraken [7]. The databases were then
built with hash sizes of 10,000 M. We limited the max-
imum database sizes to be 256 GB in order to fit the
available memory space on our computer cluster. When
a read can be mapped to multiple genomes, Kraken
assigns the read to the lowest common ancestor of the
genomes [7]. As a result, the more similar genomes a
database contain, the more likely a read will map to
multiple genomes and be assigned to a higher taxonomic
level. Therefore, Kraken classification based on different
databases cannot be compared on a single taxonomic
level. Consequently, we compared the consistency be-
tween the taxonomic node a read is assigned to and the
species genome from which the read is sampled—if the
read is either assigned to the correct species or assigned
to an ancestral node of the species, we conclude that the
classification is consistent. We compared read assign-
ment using three in silico synthetic communities gener-
ated in this study (communities with five Bacteroides
species, five Staphylococcus species, and five species
representing five bacterial phyla, as described above) for
which the species of origin of each simulated read is
known. In addition, we assessed the sensitivity of read
classification when multiple strains of the same species
are present in a community. We did this by compar-
ing the proportion of classifiable reads sampled from
communities consisting of 5, 10, or 20 S. epidermidis
or B. fragilis strains based on reprDB, panDB, and
the standard Kraken library.

mWGS datasets

Using reprDB and panDB, we classified reads from 692
skin and 144 stool mWGS samples. The skin samples, as
described previously in [4], were collected from 12 indi-
viduals from 17 defined anatomical skin sites (broadly
classified as “moist,” “dry,” “sebaceous,” and “foot”) over
three time points. The stool samples, collected from 103
healthy adults, were acquired from the Human Micro-
biome Project (HMP) [18, 39].

» o«

Read classification

The skin and stool mWGS datasets were first purged of
low-quality reads and reads that mapped to the hgl9 human
reference as described [4]. The filtered reads were aligned to
reprDB and panDB using Bowtie 2 (version 2.2.9) under
very sensitive mode [14]. We rendered the aligner to look
for at most 10 matches for each read in order to reduce
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computational time. Reads that align to more than one gen-
ome location were assigned to the most likely alignment
using the PathoID module of PathoScope 2.0 [10]. For taxo-
nomic grouping, microbial species were grouped by their
lowest taxonomic level at or above the genus level. Tentative
classifications and misplaced classifications that are waiting
for revisions were shown in square brackets according to
the convention of the NCBI Taxonomy database [40].
Uncultured species—species that have no axenic culture for
formal description [41]—were classified as an independent
group. Taxonomic profiling of the stool samples based on
16S rRNA sequencing data using RDP classifier was down-
loaded directly from the HMP (https://www.hmpdacc.org/
hmp/HM16STR, Additional file 2).

Data availability

All reference genomes and simulated sequence reads from
the in silico synthetic communities supporting the conclu-
sions of this article are available upon request. The mockro-
biota metagenome dataset is available from mockrobiota
(https://github.com/caporaso-lab/mockrobiota/tree/master/
data/mock-17). The five CAMI high-complexity datasets,
the gold standard profiling, as well as the database used to
generate the gold standard profiling are available from the
first CAMI challenge (https://data.cami-challenge.org/par-
ticipate). All human stool shotgun metagenomic data and
16S rRNA sequencing data supporting the conclusions of
this article are available from HMP (http://hmpdac-
c.org/HMASM/) [18, 39]. All human skin shotgun
metagenomic data supporting the conclusions of this
article are available in the NCBI Sequence Read
Archive (bioproject 46333) [4, 42].

Additional files

Additional file 1: Title of data: Assembly accession numbers of
genomes used to generate the in silico synthetic community. Description
of data: a list of assembly accession numbers of genomes used to
generate the in silico synthetic community. (TXT 1 kb)

Additional file 2: Title of data: 16S RNA data downloaded from HMP
and the variable regions sequenced. Description of data: a list of the 57
samples (SRS) downloaded from HMP, and the variable regions
sequenced for each sample. (TXT 1 kb)
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