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Abstract

Background: Crohn’s disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a
dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been
confounded with patients’ ongoing treatments. Additionally, most analyses of CD patients’ microbiomes have focused
on microbes in stool samples, which yield different insights than profiling biopsy samples.

Results: We sequenced the 165 rRNA gene (165) and carried out shotgun metagenomics (MGS) from the intestinal
biopsies of 20 treatment-naive CD and 20 control pediatric patients. We identified the abundances of microbial taxa
and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS
data. We then used a machine learning approach to determine the classification accuracy when these datasets,
collapsed to different hierarchical groupings, were used independently to classify patients by disease state and
by CD patients’ response to treatment. We found that 16S-identified microbes could classify patients with higher
accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions
were best for predicting disease state and response to treatment, including several previously identified markers.
By combining the top features from all significant models into a single model, we could compare the relative
importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD
state whereas MGS-identified markers perform best for classifying treatment response.

Conclusions: We demonstrate for the first time that useful predictors of CD treatment response can be produced
from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host
DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for
CD and treatment response based on sufferers’ microbiome in the future.
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Background

Crohn’s disease (CD) is an inflammatory bowel disease
(IBD) classically characterized by abdominal pain, rectal
bleeding and weight loss. Recurring flares of IBD cause
lifelong, far-reaching consequences for patients that can
affect lifestyle and overall health [1, 2]. CD differs from
the other form of IBD—ulcerative colitis—in that CD
can affect any part of the gastrointestinal tract, can be
discontinuous, and can involve granulomatous inflam-
mation [3]. There is a growing need to understand the
etiology of CD due to the worldwide increase in annual
incidence [4], particularly in children [5].

Although the etiology of CD is unclear [6], there is
growing evidence for the dysbiosis hypothesis. This
model postulates that a shift in the balance between
commensal and pathogenic intestinal microbes interact-
ing with the host’s immune system contributes to CD
onset. In support of this model, large-scale differences in
bacterial abundances have long been associated with CD
[7]. The most reproducible finding has been a decrease
in alpha-diversity in CD patients compared to controls
[8-10]. Several particular changes in taxonomic abun-
dances have been linked to this dysbiotic state; for
instance, Firmicutes tend to be at lower proportion and
Gammaproteobacteria at higher proportion in CD
patients [11]. Most taxonomic profiles of CD patients
have been based on stool samples, which yield drastically
different insights into CD pathogenesis when compared
with mucosal washing of the mucosal-luminal interface
(MLI) and intestinal biopsy samples [8]. Irrespective of
body site, it is unclear whether these shifts in microbiota
are a cause or a symptom of the disease. However, there
is reason to believe that the microbiome contributes to
CD etiology due to several observations. Firstly, children
that are exposed to antibiotics in the first year of life are
more likely to develop IBD [12], which could be related
to acquiring a dysbiotic state. Also, many CD risk loci
are linked to pattern recognition receptors (PRRs) and
cytokines that regulate the host immune system [13].

PRRs generate responses against pathogenic bacteria
while identifying commensal bacteria within the human
microbiome. The best-known example of a PRR linked
to CD is the nucleotide-binding oligomerization domain
containing protein 2 (NOD2) gene that codes for an
intracellular PRR. Loss of function mutations in the
gene lead to increased inflammation due to impaired
clearance of intestinal bacteria that are harmful to the
gut [14]. Despite these reproducible links to CD, risk
mutations account for <14% of disease variance
across patients [15]. However, the concordance rate of
CD between monozygotic twins ranges from 20 to
50%, which is higher than several other complex dis-
eases [16]. Nonetheless, risk loci alone do not explain
CD onset and the relative importance of the
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microbiome in the onset of this disease is not well
understood.

Here, we compare the relative importance of genetic
risk loci and microbiota identified from intestinal biopsy
samples for classifying treatment-naive pediatric patients
by disease state. We also demonstrate that CD patients’
treatment response status can be classified by microbial
features with high accuracy. Taxonomic and functional
profiles discussed in this study are based on both 16S
sequencing and metagenomics (MGS) sequencing of the
same intestinal biopsy samples. To our knowledge, this
is the first report of shotgun MGS of CD intestinal
biopsy samples.

Methods

Sequenced samples

Intestinal biopsies were previously taken from 20
Crohn’s disease (CD) and 20 normal colon control
patients as part of the “Bacteria in Inflammatory bowel
disease in Scottish Children Undergoing Investigation
before Treatment” (BISCUIT) cohort [9, 17]. We did not
perform a power test to predict what effect sizes could
be detected with this sample size, but instead chose this
sample size due to sequencing cost constraints. These
patients were all under 17 years old with a mean age of
12.7 years. CD biopsies were obtained at the diagnostic
endoscopy prior to commencing any therapy. We based
CD diagnosis on the Paris Classification [18]. None of
these patients used systemic antibiotics or steroids in the
3 months prior to their colonoscopy or immunosuppres-
sion at any point. Treatment response was classified as
sustained remission following induction treatment
response and was defined by physician global assessment
and the requirement for treatment escalation (repeat
induction therapy) before 24 weeks.

Metagenomics sequencing and bioinformatic pipeline

Shotgun MGS preparation and sequencing was con-
ducted by Génome-Québec (McGill University,
Montréal, Québec) on an Illumina HiSeq. A mean of
110 million PE 100 base pair (bp) MGS reads were pro-
duced with a range of 72.7-135 million reads over all
samples. We first concatenated FASTQ files containing
forward and reverse reads into a single FASTQ per sam-
ple. We then screened out contaminant sequences by
mapping all reads against the human (hgl9) and PhiX
(RTA) genomes using bowtie2 [19] (v2.2.6), which re-
sulted in a mean of 90% of reads being excluded. This
high percentage of contaminant reads is mainly due to
the high proportion of human cells in biopsy samples,
which is less of an issue for microbiome studies that
focus on stool samples. After screening out these non-
microbial reads, we classified the remaining reads taxo-
nomically using MetaPhlAn2 [20] (v2.2.0) with the
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“—very-sensitive” global alignment option and into
KEGG orthologs (KOs) using HUMAnN2 [21] (v0.11.1;
http://huttenhower.sph.harvard.edu/humann2). Import-
antly, we found that running bowtie2 in local alignment
mode with MetaPhlAn2 resulted in many spurious hits,
which were mainly represented by viruses. These taxa
were not identified when global alignment was per-
formed. We ran MUSICC [22] (v1.0.2) to normalize the
KO abundances within each sample by the median uni-
versal single-copy gene abundance, which controls for
inter-sample variation in microbial genome sizes. We
then ran HUMAnNN2 on these normalized values to re-
construct KEGG module and pathway abundances
within each sample. No taxa or functions were identified
in the MGS of two samples, S34 and S38 (16S sequen-
cing also failed for these samples, see below), which were
excluded from downstream microbiome analyses.

Calling human variants

Due to the large percentage of human DNA in our MGS
(see above), we were also able to call human variants
from the same dataset. Although we used 133 loci for
calculating the genetic risk score (see below), we called
genome-wide variants to improve imputation accuracy
in cases where samples were missing data at these sites.
We began by mapping all MGS reads to the human gen-
ome (hgl9) using the Burrows-Wheeler Alignment
Tool’s [23] (v0.7.12) mem algorithm, which resulted in a
98% mapping rate. This mapping rate is higher than the
rate for the metagenomic microbial pipeline due to the
different algorithms used for each workflow. We then
followed the Genome Analysis ToolKits (GATK) [24]
Best Practices workflow [25, 26] for variant calling. Pre--
processing steps included marking duplicate reads, re-
calibrating base quality scores based on a model trained
on known variants, and re-aligning reads around known
insertions and deletions. We then ran the GATK (v3.5)
program HaplotypeCaller to call variants using default
parameters and variant quality score recalibration per
the Best Practices workflow. These steps resulted in
16,333,869 raw variants based on a genome-wide mean
coverage of 7.5 reads across all 40 individuals. Due to
the low genome-wide coverage, we also discarded
variants based on several hard filters implemented by
VCFtools [27] (v0.1.13): any variant not in Hardy-Wein-
berg equilibrium (cut-off significance of P<1x107%),
any variant called by <6 reads, or any variant with >50%
missing data. We retained 7,604,626 variants following
these hard cut-offs. The 133 known risk loci were not re-
quired to pass these hard cut-offs.

Imputing missing genotypes
After calling variants genome-wide, we next imputed the
missing genotypes for the 133 known CD risk loci.
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Three variants (rs9264942, rs11209026, rs6927022) were
missing genotype calls in all samples and were excluded.
Haplotype phasing and the first pass of imputation were
performed with SHAPEIT [28] (v2.r837). IMPUTE2 [29,
30] (v2.3.2) was then run on SHAPEIT’s phased output
to impute the final genotypes. The HapMap phase II b37
genetic map was used for both imputation steps, and the
1000 Genomes Phase 3 [31] phased haplotypes were
used as reference haplotypes. Default parameters were
used for running both SHAPEIT and IMPUTE2.

Genetic risk scores

A custom Perl script was used to parse the IMPUTE2
output into a variant call format, and then PLINK [32]
(v1.90b3.29) was used to convert this table into PED and
MATP files. Per-sample genetic risk scores (GRS) were
calculated using the Mangrove R package [33]. To
calculate the GRS, we used the genotypes at these imputed
risk loci, odds-ratio information for risk alleles, and minor
allele frequencies from previously published genome-wide
association studies [15, 34]. We assumed a CD prevalence
of 1% when calculating GRS (K value = 0.01).

16S rRNA gene sequencing

The intestinal biopsy samples were prepared for 16S se-
quencing using our Microbiome Amplicon Sequencing
Workflow [35]. Briefly, the pre-extracted DNA [17] was
first amplified in duplicate using dual-indexing Illumina
primers (forward: ACGCGHNRAACCTTACC; reverse:
ACGGGCRGTGWGTRCAA) that targeted the V6-V8
region (438 bp) of the bacterial 165 rRNA gene. The
pooled duplicate PCR products were verified using high-
throughput E-gels (Invitrogen), then purified and
normalized using the SequalPrep 96-well Plate Kit
(Invitrogen). Following quantification, the pooled
samples were run on an Illumina MiSeq using PE 300 +
300 bp v3 chemistry at the Integrated Microbiome
Resource (Dalhousie University, Halifax, Nova Scotia).

16S rRNA gene bioinformatic pipeline

We followed the Microbiome Helper standard operating
procedure [35] to process the 16S rRNA gene data. Two
CD samples (S34 and S38) were excluded from this
pipeline due to low DNA quality and repeated
sequencing failures, which left a total of 38 samples
remaining (20 CN and 18 CD). A mean of 21,793 raw
PE read pairs were produced over these remaining sam-
ples (min = 9503; max = 40,392). Forward and reverse
reads were then stitched together using PEAR [36]
(v0.9.6) with an assembly rate >80% for all samples
except for sample S22 (68.7% of reads assembled). We
then filtered out stitched reads with a quality score <30
over 90% of bases using the FASTX toolkit (v0.0.14;
http://hannonlab.cshl.edu/fastx_toolkit/). We also filtered
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out reads <400 bp or that did not have exact matches to
the forward and reverse primers using BBMap (v35.82;
https://sourceforge.net/projects/bbmap/). An average of
18.7% of the assembled reads per sample was discarded by
these filters. Next, we removed chimeric sequences using
UCHIME [37] (v6.1) with the parameters mindiv = 1.5
and minh = 0.2, which resulted in an average of 16.3% of
the assembled reads being discarded. Following these fil-
ters, a mean of 13,815 reads were remaining per sample
(min = 4427; max = 27,472). We ran open-reference 97%
OTU picking using QIIME (v1.9.0) wrapper scripts with
these filtered reads. Reference OTU picking was run
against the Greengenes [38] (v13_8) database using Sort-
MeRNA [39] (v2.0-dev, 29/11/2014) with a minimum
query coverage of 80% and de novo OTU picking using
SUMACLUST  (v1.0.00; https://git.metabarcoding.org/
obitools/sumaclust/wikis/home/). We filtered out OTUs
that were called by < 0.1% of reads and then rarefied read
counts to 4000 reads per sample, which resulted in a final
set of 984 OTUs. PICRUSt [40] (v1.0.0) was used to pre-
dict KEGG ortholog and pathway abundances based on
reference OTU abundances. We compared the rarefied
OTU abundances to non-rarified abundances after
performing a centered log-ratio transformation [41]. Read
counts were imputed with the count zero multiplicative
method in the zCompositions R package [42] (v1.1.1)
before performing the centered log-ratio transform-
ation. We compared these workflows by evaluating how
well models performed using abundance tables pro-
duced by each workflow. To evaluate concordance
between MGS and 16S-identified genera, we calculated
the Spearman’s correlation (p) of the relative abun-
dances of 16S genera at greater than 10% frequency
and identified in both datasets.

RISK validation cohort

We downloaded single-end sequencing of the V4 re-
gion of the 16S gene produced for the “Risk Stratifi-
cation and Identification of Immunogenetic and
Microbial Markers of Rapid Disease Progression in
Children with Crohn’s Disease” (RISK) cohort [8]
from the National Center for Biotechnology Informa-
tion under study accession PRJEB13679. We reduced
this data to 773 biopsy samples that were either con-
trols or CD patients and <18 years old. To process
this data, we first merged together sequencing repli-
cates for the same samples. We then trimmed all
reads to 130 nucleotides using Trimmomatic [43]
(v0.36). The remaining steps were the same as the
16S processing pipeline described above. The OTU
table was rarefied to 4000 reads (42 samples with
depth below this cut-off were discarded), which re-
sulted in 2564 OTUs being called over 731 samples.
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Random forest classification

For each dataset, we ran random forest (RF) models
to classify disease state and treatment response separ-
ately. Each dataset was pre-processed, so only features
with >10% non-zero values were retained. Each table
was then standardized by sample (subtracted the sample’s
mean and then divided by the sample’s standard devi-
ation). We ran RF models using the random forest [44]
(v4.6.12) R package with default mtzry values and used 712
as the random seed. All models were run with 10,001 trees
except for the KO models which were run with 501 trees
to reduce running time. RF model significance was deter-
mined by the permutation test implemented in the rfUtili-
ties [45] (v2.0.0) R package. This test involves building a
null distribution of out-of-bag (OOB) errors from RF
models with randomized classes (e.g., the disease state
column of the input table was randomized). Model signifi-
cance is then determined by calculating whether <5% of
random permutation models have an OOB error less than
or equal to the observed OOB error. Significance of RF
models as tested by the above permutation procedure was
treated as an omnibus test for any association between the
signal derived from genetic data and the feature labels of
each sample. This allowed us to identify at what level (e.g.,
family, genus and species) further investigation was
warranted and supported our investigation of variable im-
portance in some “datasets” and not others. Note that RF
models make no assumptions about how the input
features are distributed. Leave-one-out cross-validation
was also run on each dataset to output accuracy for each
model with the R package caret [46] (v6.0.77).

Results

Identifying CD-related SNPs, microbial taxa, and functions
from intestinal biopsy samples

To investigate which microbial and genetic features best
classify pediatric CD patients by disease state and treat-
ment response, we sequenced the intestinal microbiomes
of 20 CD and 20 normal colon controls prior to any
treatments. Both MGS and 16S sequencing were per-
formed on the same biopsy samples. Much of the MGS
data was comprised of human DNA (90%), which was
separated from the microbial DNA and used to call hu-
man genotypes. We combined the human genotypes at
133 known CD risk loci with known odds-ratios and
allele frequencies to calculate a genetic risk score [33]
(GRS) per sample. We then used the remaining micro-
bial MGS reads, a mean of 10.7 million paired-end (PE)
reads per sample, to call 115 independent taxa (summa-
rized at the class level in Additional file 1: Figure SI).
All microbial MGS reads were also used to identify the
relative abundances of Kyoto Encyclopedia of Genes and
Genomes [47] (KEGG) orthologs, pathways, and mod-
ules within each sample. Similarly, after filtering the 16S
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amplicon reads, we retained an average of 13,815
stitched reads per sample. We performed open-reference
clustering to call 984 operational taxonomic units
(OTUs; summarized at the class level in Additional file 1:
Figure S2). Overall, the relative abundances of MGS and
16S-identified genera were similar within the same bi-
opsy samples (mean Spearman’s p =0.51, standard devi-
ation = 0.18). Since sequencing read counts are a form
of compositional data, we tested whether a centered
log-ratio transform of the non-rarefied read counts
[41] would result in improved model performance com-
pared to rarefaction of all samples. Although the
compositional-based methods performed slightly better
for some feature tables, in the majority of cases, this
transformation resulted in less accurate classification of
patients (see below; Additional file 1: Figure S3), and so,
we focused on the rarefied datasets for our analyses. We
used these OTUs to infer the relative abundances of
KEGG orthologs and pathways within each sample (see
Additional file 2 for sample sequencing coverage and
metadata). Two of the CD patients’ microbial profiles
were discarded due to low 16S and MGS sequencing
depth. These different datasets are outlined in Fig. 1 (see
Additional file 1: Table S1 for sample details).

We then replicated two well-known predictors of CD:
increased GRS [1] and a reduction in microbial alpha-
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diversity as proof of principle. We chose the simplest
measure of alpha-diversity: the observed number of OTUs
per sample (# OTUs). Both GRS (one-tailed Mann-
Whitney-Wilcoxon (M-W-W) test, W =288, P =0.00837)
and # OTUs (one-tailed M-W-W test, W=261.5,
P =0.00894) significantly differed between patients
based on disease state in the expected directions
(Additional file 1: Figure S4). To make these known pre-
dictors comparable to classification accuracies using data-
sets containing multiple features, we used an analogous
method to calculate accuracy. Importantly, these metrics
produced only marginal accuracies when used to classify
patients by disease state (GRS, 62.5%; # OTUs, 71.1%).

Classifying samples by disease state

We next investigated how well microbial datasets classify
CD disease state. MGS and 16S taxonomic datasets in-
cluded strain and OTU-level-relative abundances
respectively and were also collapsed at each level from
species to phylum (Fig. 1). Functional datasets included
KEGG ortholog and pathway counts for both sequencing
technologies, as well as KEGG modules for MGS sam-
ples. In total, 19 datasets were entered as classifiers for
disease state after standardization (each mean-centered
and scaled by the standard deviation for each sample).
We ran independent random forest (RF) models to

Legend

Biopsy samples: 20 Crohn’s disease
and 20 normal colon controls

ihc:tgur; mi 16S sequencing
16S datasets etagenomic (n=38)
sequencing
(n=40)
Identify variants in human
“contaminant” DNA — — — —
— N E—— —
— — — —
‘ C|335|fy taxa l Classify functions OTU picking

o |
[eans |
=
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Sl?r::)ter l 1 Infer functions
o OTus from 16S
Alpha KEGG pathways
diversity KEGG orthologs

Fig. 1 Diagram of the different datasets used for classification in this study. Datasets in orange were derived from the shotgun metagenomic sequencing
(MGS) data (n=40) and the datasets in blue were derived from the 16S rRNA gene (16S) sequencing data (n = 38*). These datasets were used to classify
both disease state and treatment response as input to random forest machine learning models. *Note two Crohn's disease samples were removed from
both the 165 sequencing and MGS datasets due to low sequencing coverage, but their genetic profile was inferred from the MGS
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determine each dataset’s classification accuracy (Fig. 2a;
see Additional file 3). Each of the 16S taxonomic data-
sets, except for the OTU level, could classify patients by
disease state with high accuracy (maximum accuracy of
84.2% and P<0.001 based on genus level). The MGS
strain, genus, family, and phylum taxonomic datasets
also classified patients, but with lower accuracy than the
16S datasets (maximum accuracy of 68.4% and P =0.016
based on strain level). The predicted KO abundances
based on the 16S data and the MGS-identified KEGG
modules both significantly classified patients as well
(accuracies of 68.4 and 65.8% respectively).

One advantage of RF models is that they output vari-
able importance metrics for each feature used in a
model. We considered each RF model to be an omnibus
test for each dataset, which enabled us to look at the
ranking of variable importance in significant models to
identify important features (see Additional file 4). Based
on these metrics, the three most informative 16S genera
were Desulfovibrio, Akkermansia, and Butyricimonas
(Additional file 1: Figure S5), whereas the top MGS gen-
era were Alistipes, Oscillibacter, and Dorea. These top
genera could differ since both top 16S genera were close
to the detection limit threshold of the MGS data; they
were only identified in a small number of samples
(Additional file 1: Figure S6). Nonetheless, Akkermansia
was ranked fourth in the MGS genus model despite be-
ing missed in several samples. The top features in the
MGS strain model were strains of Alistipes putredinis,
Clostridium symbiosum, and Faecalibacterium prausnit-
zii. The 16S-inferred KOs, and the MGS modules were
the only functional datasets that significantly classified
samples by disease state (accuracy = 68.4%, P=0.043
and accuracy = 65.8%, P =0.03, respectively). The three
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top 16S KOs were (1) K03785, which is involved in
amino acid biosynthesis, (2) K09013, an Fe-S cluster as-
sembly ATP-binding protein, and (3) K03809, a trypto-
phan repressor binding protein. The three top MGS
modules were (1) M00144, NADH: quinone oxidoreduc-
tase, (2) M00362, nucleotide sugar biosynthesis, and (3)
MO00239, peptides/nickel transport system. Importantly,
the datasets collapsed to different taxonomic and func-
tional levels were not independent from each other,
which is reflected by the fact that the top features in
each taxonomic dataset tended to be part of the same
lineage (e.g., the ranks above Desulfovibrio and Akker-
mansia were also top hits).

Classifying samples by treatment response

Next, we used these same 19 microbial datasets, after
excluding normal colon control patients, to classify the
CD patients as responders (RS) and non-responders
(NR) to induction of remission treatments, started at the
time of diagnosis (Fig. 2b; see Additional file 3). Clinical
CD phenotypes were heterogeneous, but all included ac-
tive colonic disease at the sampled location. Treatments
were similarly not consistent across all patients, reflect-
ing heterogeneity of phenotype, but instead were differ-
ent combinations of exclusive enteral nutrition (EEN)
therapy and immunosuppressive medications, as such
representing ‘real-world’ CD treatment: 11 patients were
on EEN, 3 were on prednisolone and EEN therapy, 4
were on mesalazine alone, and 2 were on prednisolone
alone, as decided by their gastroenterologist at the time
of diagnosis. Sustained response or non-response was
defined as need for a second induction within 150 days
of diagnosis or not (Additional file 1: Table S2). After
classifying CD patients based on their response to
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induction treatment, 16S genera were again the top
dataset (accuracy = 77.8%; P=0.008). However, the
MGS strain (P =0.029), genus (P=0.013), and KEGG
pathway (P =0.018) datasets could also classify patients
with only slightly lower accuracy (accuracy = 72.2% for
all three). We also found that alpha-diversity and GRS
did not significantly differ between RS and NR patients
(Additional file 1: Figure S7).

Using the same omnibus test approach as above, we
were again able to identify the most informative features
in each significant dataset (see Additional file 5). The
top 16S genera were Dialister, Bilophila, and Aggregati-
bacter in this analysis. The top MGS strains were
subtypes of Parabacteroides merdae, Sutterella wads-
worthensis, and an unclassified strain within the
Lachnospiraceae family. The top MGS genera included
Parabacteroides, Bacteroides, and an unclassified genus
of Lachnospiraceae. The top MGS KEGG pathways
included (1) ko00633, nitrotoluene degradation; (2)
ko00250, alanine, aspartate, and glutamate metabolism;
and (3) ko00230, purine metabolism. The top KOs were
(1) K02954, a ribosomal protein, (2) K07259, which is in-
volved in peptidoglycan biosynthesis, and (3) K07793, a
putative tricarboxylic transport membrane protein.

Comparing the relative importance of top features

Although comparing RF model accuracies allows indi-
vidual datasets to be evaluated, it does not allow the
relative importance of features across datasets to be
evaluated. To this end, we next compared the relative

Page 7 of 12

importance of the overall top features by running RF
models using the top three features from the signifi-
cant datasets for both CD state (Fig. 3a) and treat-
ment response (Fig. 3b). The combined model for
disease state classification performed with high accur-
acy (accuracy = 78.9%, P<0.001), but notably, this
was lower than the 16S genera alone. In contrast, the
combined model for treatment response classification
performed better than the independent datasets
(accuracy = 94.4%, P<0.001). As expected, many of
these features in both models are highly correlated
(Additional file 1: Figure S8 and S9); nonetheless, this
approach vyielded several useful results. Firstly, Akker-
mansia muciniphila was ranked as the most import-
ant feature for classifying disease state, followed by
Verrucomicrobia and Verrucomicrobiales, which rep-
resent the phylum and order of A. muciniphila re-
spectively. Number of OTUs was ranked fourth
among these features, whereas GRS and other MGS-
derived features were ranked lower. Notably, 29/37
(78%) of the microbial features in this model were at
lower relative abundances in CD patients compared
to controls. The top three features for classifying
treatment response in the combined model were
ko00633, the nitrotoluene degradation pathway,
K07793, the putative tricarboxylic transport mem-
brane protein, and Erysipelotrichi (the class contain-
ing the family Erysipelotrichaceae). Unlike for the
combined disease model, MGS-derived functions were
among the most highly ranked features (all six MGS
functions are within the first eight top features).
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Validating the best 16S disease feature rankings in an
independent cohort

We validated the rankings of a subset of the 16S features
(excluding the unclassified species in Desulfovibrio) used
in the combined model for disease state by training a
new model based on these features on the RISK cohort
[8], a large previously published dataset, that consisted
of 16S data for 731 biopsy samples (444 CD and 287
CN) after processing. The goal of this analysis was to
determine if the top features for classifying disease state
would have similar relative importance ranks across both
cohorts. Only 16S sequencing of biopsy samples is
available in this dataset and so we excluded GRS and the
MGS features from this analysis. The new RF model based
on this subset of features and trained on the RISK dataset
was highly significant although less accurate than what we
observed in our data (accuracy = 73.2%, P <0.001).
However, the relative ranking of these features was sub-
stantially different within the BISCUIT and RISK cohorts
(Fig. 3a and Additional file 1: Figure S10). The top features
in the RISK model were the class Erysipelotrichi, the
phylum Actinobacteria, and the KO K09013. In addition,
8/21 16S features were not statistically different between
CD and control patients (M-W-W test P>0.05). In
particular, both Desulfovibrio and Akkermansia did not
significantly differ between CD and control patients within
the RISK cohort.

Discussion

In this study, we have classified treatment-naive pediatric
CD patients by both their disease state and treatment re-
sponse with high accuracies with many different microbial
datasets. Since these microbial profiles were taken from
intestinal biopsy samples, the main challenge of this study
was to identify true microbial markers above the back-
ground of human DNA in the MGS data. Although we
could identify microbial markers by generating much
higher sequencing depth than is usual, the interpretation
of analyses of this data come with the caveat that import-
ant rare taxa may have been below the detection thresh-
old. For instance, although the RF models based on the
MGS datasets were less accurate classifiers of disease
state, this likely was impacted by the fact that the most
informative genera in the 16S data were undetected in
many MGS samples. This observation suggests that the
discrepancy between the 16S and MGS taxonomic classifi-
cation accuracies could be partially due to a relatively
greater taxonomic depth of 16S sequencing, currently
cost-prohibitive for MGS of biopsy samples, which
enabled rarer taxa to be identified.

Since the 16S data does not face these challenges,
interpreting the analyses based on these datasets is more
straightforward. Indeed, many of the top features in the
significant 16S datasets used to classify disease state (see
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Additional file 4) have previously been associated with
IBD. For instance, sulfur-reducing species within the
Desulfovibrio genus have previously been positively
linked to another form of IBD—ulcerative colitis [48],
and Mottawea et al. recently showed the importance of
hydrogen sulfide producers in colonic CD [49]. However,
we found Desulfovibrio to be negatively associated with
CD in our data, which could highlight a difference in
microbiota between these two forms of IBD or merely
reflect the different sampling strategies (stool, biopsy
and MLI) between IBD studies to date. We also found
Akkermansia muciniphila to have lower relative abun-
dance in CD patients’ biopsies, which has been previ-
ously observed [50]. The top 16S-inferred KOs are also
related to functions previously associated with CD symp-
toms. The lower proportion of K09013 (Fe-S cluster as-
sembly ATP-binding protein) in CD patients is
interesting to find since intestinal inflammation in gen-
eral has been associated with the breakdown of Fe-S
clusters [51]. Similarly, both K03809 (tryptophan repres-
sor binding protein) and KO03785 (3-dehydroquinate
dehydratase I), which is involved in tryptophan and
other amino acid biosynthesis, in CD patients could be
interesting markers since lower serum tryptophan levels
has previously been associated with CD [52, 53]. How-
ever, in this analysis, these markers were both at higher
levels in the unexpected direction (K03809 was lower in
CD and K03785 was higher in CD).

The top MGS-identified features for classifying disease
state also include several previously identified markers.
The genus Alistipes is a known producer of short-chain
fatty acids (SCFAs) [54]. This genus was at lower relative
abundance in CD patients, which could be related to
lower levels of certain SCFAs that have long been a hall-
mark of IBD [55-57]. In addition, although several key
taxa identified by 16S sequencing appeared to be below
the detection threshold in the MGS samples, both
Alistipes and Oscillibacter, which has previously been
negatively associated with CD [58], were not identified
in the 16S data. The absence of these informative taxa is
likely related to how certain lineages cannot be identified
with high-resolution based on 16S sequences. This dif-
ference highlights a trade-off in the MGS taxonomic re-
sults: improved taxonomic resolution at the cost of
lower sensitivity, which has been discussed elsewhere
[59]. The identification of the MGS-identified KEGG
module M00144, which is involved in ATP synthesis, as
being informative for classifying disease state is also in-
teresting since IBD patients are known to have lower
levels of intestinal ATP [60].

Similar to the RF models for disease state, many of the
top features for classifying treatment response agreed
with previous studies (see Additional file 5). For in-
stance, the top 16S genus, Dialister, was at higher
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abundance in RS patients, which is consistent with
previous work [61]. Similarly, the bacterial family
Erysipelotrichaceae has been linked to human health in
several ways [62]. Although this taxon was not ranked
highly, it is the only family within the top 16S-identified
order, Erysipelotrichales, to pass pre-processing cut-offs.
This order is found at higher relative abundance in
RS patients. Erysipelotrichaceae are particularly of
interest since they have been shown to decrease in
abundance in CD patients given EEN therapy [63]
and species within this family are positively linked to
inflammation [64].

Several of the top MGS-identified KEGG functions
also consistent with past work. The pathway ko00633,
nitrotoluene degradation, has previously been identified
as the most distinguishing pathway between EEN-treated
CD patients and healthy controls [65]. Similarly, micro-
bial glutathione and purine biosynthesis have previously
been positively and negatively associated with Crohn’s
disease respectively [57]. In our dataset, the pathway
ko00250, glutamate and other amino acid metabolism,
was found at higher relative abundance in RS patients
whereas ko00230, purine metabolism, was found at
lower relative abundance in RS patients. In addition,
both the genera Parabacteroides and Bacteroides have
previously been found at higher abundance in CD pa-
tients at the time of surgical resection who remain in re-
mission [66], which is the same direction we find here.
Our previous work in this cohort determined that Sut-
terella wadsworthensis is unlikely to be involved in IBD
pathogenesis [67]. However, since this species was one
of the best predictive features for treatment response
and was found at lower abundance in RS patients, it
may still be clinically relevant. Although these results in-
dicate that future CD treatments could be informed by
the presence of these and other microbial markers, fur-
ther work will be required to disentangle which markers
are predictive of response to specific treatments.

The findings of Akkermansia muciniphila and the
order and phylum (Verrucomicrobiales and Verrucomi-
crobia, respectively) that contain this species as the top
three features for classifying disease state, highlights the
importance of this taxon in our dataset. High levels of A.
muciniphila in donor’s stool has recently been found to
be a strong predictor of remission in ulcerative colitis
patients undergoing fecal microbiota transplantation
treatment [68]. This finding taken together with our and
others’ observation of lower A. muciniphila abundance
in CD patients suggests that this species is a useful bio-
marker for gut health. Similarly, the relative importance
of alpha-diversity compared to genetic risk was also
shown in this combined model. This finding illustrates
the importance of microbial features in CD develop-
ment, as compared with the weak contribution of
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genetic markers for CD development and the influence
of the inherited variants on microbiome composition
[69]. The top MGS-identified features largely performed
worse than the 16S-identified functions in the combined
RF model for classifying disease. One interesting excep-
tion is the genus Alistipes (and its corresponding family
Rikenellaceae).

In the combined RF model for treatment response,
it is notable that MGS-identified functions were the
most informative features. This observation could in-
dicate that major metabolic shifts in the microbiome
could be more informative for predicting treatment
response than the presence of particular taxa, which
is consistent with past results indicating that func-
tions shift more consistently than taxa in CD patients
[57]. Interestingly, functions were only found to be
more informative for classifying patients by treatment
response, and not by disease state. However, it is
possible that with higher sequencing depth, MGS-
identified features may have been more informative.
Note that patients’ GRS were not significantly differ-
ent between RS and NR samples, which is consistent
with a recent study indicating that the genetic contri-
butions to CD susceptibility are largely independent
from the genetic contributions to CD prognosis [70].

Ideally the combined RF model trained on the top fea-
tures from our cohort would also have been tested on
the validation cohort. However, due to technical differ-
ences across the studies, such as different sampling pro-
tocols and different 16S variable regions sequenced, the
same model cannot be implemented for both datasets.
In addition, variation in pathophysiology due to
geography as well as differential microbial profiles due
to different distributions of patient age and sex across
the cohorts could also result in differences in predictive
markers across the two cohorts. This issue highlights
that additional work in this area is needed to facilitate
the comparison of microbiome datasets from different
studies. Nonetheless, the independent validation cohort
enabled the ranking of features within the combined
model for disease state to be evaluated. The ranking of
these features did differ in this cohort although the
number of OTUs, Verrucomicrobiales, and Verrucomicro-
bia remain within the top six features (Additional file 1:
Figure S10). However, the genera Desulfovibrio and
Akkermansia were not significantly different between
CD and control patients within the RISK samples,
which highlights the issue of comparing predictive
features across different cohorts. Unfortunately, we
were unable to validate the ranking of the top
features for classifying treatment response on an
independent dataset since there is no paired 16S and
MGS dataset with adequate sample size available to
our knowledge.
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Conclusions

Here, we have integrated human genetic data with 16S
and MGS intestinal biopsy data to classify CD patients
by disease state and treatment response for the first
time. We found genera identified from 16S data to be
the best classifiers of each outcome. One possible ex-
planation for why 16S data was found to have higher
performance than the MGS data could be that it enables
much higher read depth for taxonomic assignment. This
increased depth allows rare taxa to be identified, which
was the case for the top 16S-identified genera. The bio-
logical importance of rare taxa in CD pathogenesis war-
rants further consideration, and indeed, rarity may prove
an important bias in culture-based studies of the IBD
microbiome. Although we found alpha-diversity to be a
clear marker for disease state, GRS was relatively less in-
formative. This result is perhaps not surprising since mi-
crobial shifts are likely causally related to disease onset,
although the direction is unclear. In contrast, GRS has
been developed as a metric for assessing disease risk at
any point in a patient’s life, including well before onset,
but has not been of great influence in predicting onset
or treatment stratification [1]. The multi-genomics ma-
chine learning approach presented in this study could be
extended in the future to other diseases and to other
data types such as transcriptomics and metabolomics to
better understand the relative importance of each of
these features. These models will provide new insights
into the multifactorial nature of CD and help highlight
cohort-specific as well as fundamental contributors to
disease pathophysiology and may result in novel signa-
tures to predict and guide personalized treatments.
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