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Abstract

Background: The emergence and spread of antimicrobial resistance is the most urgent current threat to human and
animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated
with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of
animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity
genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds
receiving two diets containing different proportions of concentrate.

Results: Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or
pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and
abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were
dominant in samples from forage-fed animals (P < 0.001), while aminoglycoside and streptomycin resistances were
enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria,
which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to (Firmicutes + Bacteroidetes) was
confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network
analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk
assessment of the ruminal microbiome.

Conclusions: Diet has important effects on the complement of AMR genes in the rumen microbial community, with
potential implications for human and animal health.
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Background
Two significant challenges face mankind in the near future.
The first is to feed a human population that may soon
exceed nine billion people [1]; the second is to deal with
increasing medical and veterinary problems arising from
the emergence of antimicrobial-resistant (AMR) patho-
genic bacteria [2]. Ruminant livestock production is highly
relevant to both issues. Ruminants consume feedstuffs,
including forages and by-products that cannot be used by

non-ruminants. Thus, ruminant products provide high-
quality nutrients from materials that do not compete with
human-edible food. However, the ruminant digestive tract
contains AMR genes that may be a reservoir from which
AMR develops and spreads [2–4]. The use of antimicrobial
feed additives increases the abundance of AMR genes in
the gut and faeces [4, 5], particularly in beef cattle [3, 6].
Indeed, more antimicrobials are used in livestock produc-
tion than in human therapeutics [7]. AMR genes in the ru-
minant gut are not entirely due to antimicrobial use, but
appear also in non-medicated animals [8, 9]. Given the
overarching importance of diet in determining the
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composition of the ruminal microbiome [10, 11], we con-
sidered that the absence of knowledge about the influence
of diet on the ruminal “resistome” (the collection of all
identified antibiotic resistance genes) was a deficiency in
understanding how AMR develops and spreads in live-
stock. A diet change (e.g. forage to concentrate) could gen-
erate a stress for the rumen microbiome community [12]
as similarly found in humans by Brown et al. [13]. Thus,
we analysed metagenomics data from beef cattle which
had previously been used to explore links between the host
animal, its microbiome/metagenome and methane emis-
sions and feed efficiency.
Dietary changes could also potentially initiate a “bloom”

of specific microbial populations, mostly Proteobacteria
[14], or enhance the abundance of stress-response genes
within the microbial community [15]. This unbalanced
microbial community, also known as “dysbiosis”, is gener-
ally observed after diet changes and alterations in ruminal
volatile fatty acid (VFA) composition also potentially
associated with a lower ruminal pH, antibiotic treatment,
presence of heavy metals or toxic substances or infection
with pathogenic bacteria [13, 16]. For example, a low acet-
ate to propionate (A:P < 2.2) ratio is associated with a lower
ruminal pH in animals offered a high-concentrate diet [17].
All of these factors can have negative effects on the overall
health and production performance of cattle [18, 19].
Proteobacteria is one of the four main phyla in the rumen
microbiome together with Firmicutes, Bacteroidetes and
Actinobacteria. This phylum is composed of many patho-
genic bacteria such as Escherichia coli, and the abundance
of some of these opportunistic pathogens is sensitive to
dietary change [20]. Diet has been shown to have a domin-
ant effect on the shedding of the zoonotic pathogen, E. coli
O157, from beef cattle [21]. Thus, the combined effects of
pathogen abundance and the abundance and diversity of
AMR genes have fundamental implications for human
health.
Finally, microbial mechanisms including quorum sens-

ing and fucose sensing [22, 23] are recognised as inter-
kingdom signalling pathways [24] and help to regulate
bacterial colonisation and virulence within the host [25].
Our study design allowed us to test the impact of diet

(“concentrate” versus “forage”) and host influence (e.g. breed,
age or weight) on the ruminal microbiota and functional
genes associated with the microbiome [26]. Metagenomics
was already confirmed as a good strategy to identify links be-
tween the rumen microbiome and host response [20, 27].
Therefore, the overall aim of our work was to improve

knowledge on the diversity and importance of resistance-
and pathogenicity-related genes as well as microbiome-
host interaction genes in the rumen microbial community
affected by diet treatments and over three independent tri-
als. The factors influencing the composition of these genes
in the rumen microbiome were evaluated, and the genes

showing significant differences were identified. We
hypothesised that the microbiome of cattle offered a
concentrate-based diet will favour stress associated with
acidotic challenge and therefore enriched in microbial
genes related to the resistome or pathogenicity activities,
when compared to the cattle offered the forage-based diet.
Rumen samples with higher Proteobacteria content,
reaching a dysbiosis state, were of particular interest for
understanding its association with diet treatments and
how this can be explained by enrichment of the targeted
genes. We also tried to identify a possible link between
these genes and the control that the host has on its micro-
biome. This could be an important step towards identify-
ing novel biomarkers of possible host-microbiome
interactions involving beneficial and detrimental effects
on the health of the host and related to diet change.

Methods
Animals, experimental design and diets
In our previous study [26, 28], data on feed efficiency and
methane emissions (measured using respiration chambers)
were obtained from a 2 × 2 factorial design experiment of
breed types and diets using 72 steers from a two-breed ro-
tational cross between Aberdeen Angus (AA) and Limou-
sin (LIM) and completed in 2011. Similar experiments
were repeated using purebred Luing (LU) and crossbred
Charolais (CH) steers in 2013 and Aberdeen Angus (AA)
and Limousin (LIM) rotational crossbred steers in 2014.
Prior to start of the experiment, all animals received the
same diet type (forage-based diet) and thereafter were
adapted to the experimental diets over 5 weeks. During
the same period, they were also acclimatised to the group-
housed environment and the electronic feeders (HOKO,
Insentec, Marknesse, The Netherlands). Due to EU legisla-
tion, the application of antibiotics is prohibited for enhan-
cing growth. In exceptional cases, animals were treated
with antibiotics and then excluded from the trial. Finally,
there was no change in diets of the animals and was no
fasting period before the animals went to slaughter.
The data in this study were samples from those experi-

ments whereby animals with extreme high and low me-
thane emissions (2011) or feed conversion efficiency (2013
and 2014) were selected for whole genome sequencing.
The breed type of the sampled progenies were balanced
within experiment comprising of 4 AA and LIM in 2011, 9
LU and CH in 2013 and 12 AA and LIM in 2014. The ani-
mals were offered two complete diets ad libitum contain-
ing (g/kg DM) approximately 500 forage to 500
concentrate or 80 forage to 920 concentrate subsequently
referred to as forage and concentrate diets, respectively
(Additional file 1: Table S1). Full details of diets are given
in Rooke et al. [11] and Duthie et al. [29, 30]. Animals
from the 2014 experiment were only offered the forage diet
(see Additional file 1: Table S1), and this experiment was
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included in our analysis to increase observations for the for-
age diet, which is more heterogeneous in composition than
the concentrate diet and to reinforce the microbiome re-
sults obtained with similar forage diets for the 2011 and
2013 experiments. A single sample of rumen fluid for VFA
analysis (expressed as molar proportions) was taken by
stomach tube within 1 h of cattle leaving the respiration
chambers in the 2011 experiment [11]. VFA were deter-
mined for 2013 and 2014 in samples collected directly at
the abattoir [11]. As recommended by Terré et al. [31], we
compared VFA profiles between samples rather than total
VFA concentrations because of the different methods for
rumen sampling applied. The acetate-to-propionate ratio
was calculated and considered as a proxy for rumen pH,
accepting that whilst the relationship between the two is
generally strong, it is not exactly linear. A total of 50 ani-
mals including the 8 animals already studied in Roehe et al.
[26], selected and balanced for breed type and diet, were
used for further analyses (Additional file 1: Table S1). Post-
mortem digesta samples were used here, following our pre-
vious discovery that the abundance of archaea relative to
bacteria was similar between live and slaughter cattle [32].

Genomic analysis
As previously described in Roehe et al. [26], the animals
were slaughtered in a commercial abattoir where two
rumen fluid samples (approximately 50 mL) were taken
immediately after the rumen was opened to be drained.
DNA was extracted from the rumen samples following
the protocol described in Rooke et al. [11].
Illumina TruSeq libraries were prepared from genomic

DNA and sequenced on Illumina HiSeq systems 2500
(2011) and 4000 (2013, 2014) by Edinburgh Genomics.
Further analyses using the two sets of data followed the
same procedure as previously described in Roehe et al.
[26]. Briefly, microbial functional genes encoding for
proteins and including the genes detailed in this study
were identified using the KEGG genes database. Genes
with a relative abundance of more than 0.001% were se-
lected for further analysis.
A specific analysis was carried out on antimicrobial re-

sistance genes and a comparison between the annotation
obtained using KEGG genes and the genotyping tool
SRST2 associated with the ARG-ANNOT database was
performed; the latter was created specifically to study
AMR genes [33, 34]. ARG-ANNOT targets all AMR
genes including those on the chromosome and offers the
possibility to identify putative new AMR genes in bacter-
ial genomes as well as the genes involved in regulatory
function associated with the AMR genes [35] and still
showing high sensitivity and specificity for these genes,
similar to other databases (e.g. ResFinder database) [36].
As for the analysis of metagenomics data using KEGG,

a matrix was generated using the depth values and

normalising the relative abundance of each AMR genes
per sample. The length and coverage values for AMR
genes were on average 1386 ± 26 bp and 99.31 ± 0.08%
respectively.
For 16S rRNA gene analysis, the genomic reads were

aligned to the GREENGENES database [37] using Novoa-
lign (www.novocraft.com). The Proteobacteria ratio was
calculated as the abundance of Proteobacteria sequences
divided by the sum of the abundance of Firmicutes and
Bacteroidetes sequences and is used as indicator for micro-
bial disorder in both the rumen of cattle and human intes-
tines [12, 14]. Values equivalent or above 0.19 were
considered as an indication of the microbial disorder also
known as dysbiosis. This cut-off value was calculated based
on the abundance of the bacterial phyla identified in the
core rumen microbiome of cattle fed forage or concentrate
diets [12] and confirmed as a marker of microbial dysbiosis
in the human gut [14].
Parameters were adjusted such that all hits were re-

ported that were equal in quality to the best hit for each
read, and allowing up to a 10% mismatch across the frag-
ment. Further details are included in Roehe et al. [26].

Statistical analysis
Statistical analysis of the metagenomic data was based on
the complete sample profiles as expressed by the pattern of
metagenomic operational functional units (OFUs) and the
relative abundance (percentage) of individual OFU in each
profile. Principal coordinate analysis (PCoA) and canonical
variate analysis (CVA) were carried out using Gen-Stat
16th edition (VSN International Ltd., UK) to identify the
factor(s) explaining the difference observed in microbial
functional genes between samples. In CVA, each factor was
tested individually in order to get a more constrained
analysis.
Microbial functional gene abundances were compared

individually or within a functional group (e.g. all genes as-
sociated with antibiotic resistance) using a general linear
model with adjustment for multiple comparisons using the
Bonferroni correction (SPSS Statistics 22, IBM, USA).
Spearman’s correlations were carried out using SPSS Statis-
tics 22 (IBM, USA) to identify the correlation between the
AMR gene groups and Proteobacteria phylum or ratio, as
well as between the Proteobacteria ratio and 20 Proteobac-
teria families or genera. P values ≤ 0.05 were considered
significant and tendencies were reported (P values < 0.1).
In a network analysis using BioLayout Express3D [38],

we identified the distinct functional clusters of microbial
genes for each experiment and the combination of the
three experiments. These networks consist of nodes repre-
senting microbial genes and the connecting edges deter-
mining the correlations in abundance and functional
linkages between these genes.
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We used partial least squares (PLS) analysis (Version 9.1
for Windows, SAS Institute Inc., Cary, NC, USA) to iden-
tify the most important genes associated with the Proteo-
bacteria:(Firmicutes + Bacteroidetes) ratio. The PLS
analysis accounts for multiple testing and the correlation
between microbial genes. In addition to microbial genes,
the model included the effects of diet (potentially stressor)
and breed type (host genetics effect). The model selections
were based on the variable importance for projection
(VIP) criterion [39], whereby microbial genes with a VIP <
0.8 contribute little to the prediction.

Results
Major factors influencing functional genes in the
microbiome
Two hundred and four genes associated with resistance,
colonisation, communication or pathogenicity functions
were identified from 4966 metagenomic genes using
KEGG identification. These genes represent on average
1.07% of the total microbial genes in the rumen samples
and could be classified into 20 functional groups
(Additional file 1: Figure S1). The total number of se-
lected genes was significantly higher (P = 0.046) in
rumen samples from concentrate-fed compared to
forage-fed cattle (Additional file 1: Figure S2A), and di-
versity was also greater in concentrate-fed steers
(Additional file 1: Figure S2B). Biofilm formation and
antibiotic resistance genes, representing 46.76% of the
204 genes, were the dominant groups detected. Other
genes such as those encoding for quorum sensing only
represented 0.1% of the 204 genes initially selected.

Differences in gene composition observed between rumen
samples and their clustering due to diets were confirmed
by PCoA that explained 68.6% over the first two axes
(Fig. 1a). After grouping the samples, CVA confirmed that
diet was the only factor that was significantly correlated
(no overlapping within the 95% circles of confidence) with
the functional gene composition and explaining this differ-
ence (Fig. 1b). Host breed effect and Proteobacteria ratio
were not significantly correlated with functional gene
composition (Additional file 1: Figure S3).
The abundance of 50 genes, each representing at least

0.001% of total genes per sample, was identified as dif-
ferent between diets (P < 0.05; Fig. 2). A greater number
of genes (n = 32) were more abundant in samples from
animals offered the concentrate diet (n = 18). Opposite
results were observed between genes with similar func-
tion like AMR genes (Fig. 3). For example, genes associ-
ated with resistance to macrolide (K08217) and β-
lactamase (K01467, K07576) were significantly more
abundant in samples from animals offered the concen-
trate diet (P < 0.001), whilst the sum of genes including
some specific genes related to chloramphenicol
(K00638) and microcin resistance were dominant in
forage-fed samples (P < 0.001; Fig. 3). Finally, genes en-
coding for aminoglycoside (K00897) and streptomycin
(K00984) resistance were more abundant in concentrate
treatment samples (P < 0.01; Figs. 2 and 3). In general,
similar results were confirmed when using the more spe-
cific AMR genes database. The only difference was the
identification of genes encoding for tetracycline resist-
ance instead of chloramphenicol resistance, which were

Fig. 1 a Principal Coordinates analysis (PCoA) of the structure of 204 selected genes (number of animals, n = 50 samples). Black cross:
concentrate samples from 2011 experiment, white cross: concentrate samples from 2013 experiment, black triangle: forage samples from 2011
experiment, dark grey triangle: forage samples from 2013 experiment, grey triangle: forage samples from 2014 experiment. b Canonical variate
analysis (CVA) of the structure of 204 selected genes (n = 50) based on diet. Black cross: samples from concentrate-fed animals (all years), grey
triangle: samples from forage-fed animals (all years). Circle: 95% confidence range
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in general significantly more abundant (P < 0.01) in
forage-fed animals (Additional file 1: Table S2 and S3).
The relative abundance of genes associated with stress

responses including oxidative stress and cold shock pro-
tein (K03704) differed between diets. For example, K03704
was threefold more abundant with the concentrate diet.
The concentrate diet enhanced the relative abundance of

genes associated with motility, attachment to host cells,
sensing (two-component signal transduction systems) and
transporter for iron acquisition (K04758, K04759). The
forage diet enhanced several genes - encoding for a type
IV pilus assembly protein (K02652, K02662 to K02664 and
K02666). Finally, type I and II secretion systems (K01993,
K02456) were significantly more abundant in samples

Fig. 2 Relative abundance of genes significantly different between diet treatments (n = 50). Mean values with standard error are presented. Grey:
samples from forage-fed animals, dark grey: samples from concentrate-fed animals. Arrow indicates the genes that are also detected in the
network analysis

Fig. 3 Diversity of AMR genes between diets (n = 50). AMR genes with similar antibiotic resistance are grouped together into a final number of
8 groups
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from forage-fed animals, whilst the gene associated with a
type VI secretion system was enriched in concentrate-fed
samples (K11907).

Identification of markers of rumen microbial disorder and
their link with diet effects on the microbiome
Of the 24 most abundant archaeal and bacterial
phyla, 12 phyla including Proteobacteria were more
abundant in animals offered the concentrate diet (P <
0.1; Fig. 4 and Additional file 1: Figure S5). In con-
trast, Euryarchaeota, Planctomycetes, Fibrobacteres
and Verrucomicrobia were more abundant in rumen
samples from animals offered a forage diet (P < 0.01).
Firmicutes, Bacteroidetes and 14 other phyla were not
significantly affected by diet. A Proteobacteria ratio
above 0.19, suggesting dysbiosis, was only detected in
rumen samples from the concentrate diet treatment,
and thus, this ratio was on average higher for rumen
samples from animals offered the concentrate than
the forage diet (P = 0.001; Fig. 5). In addition, this ra-
tio was strongly correlated with diet change (P =
0.001), but not with other factors tested except me-
thane emissions (Additional file 1: Figure S4). In
addition, a significant negative correlation was found
between the acetate to propionate ratio, a proxy for
low ruminal pH (lower ratio) and the Proteobacteria
ratio when analysing all samples (Fig. 6). In general,
A:P ratio from rumen samples associated with forage
grouped together with an average value of 3.77 ± 0.66
(Fig. 6c).
A high proportion of populations explaining this

higher Proteobacteria ratio were composed of families
(7/20) and genera (7/20) known to be pathogens in

animals, humans or even in plants (Table S4) and
were strongly correlated with the Proteobacteria ratio
(P < 0.001). For example, Aeromonadaceae including
the Aeromonas genus and Enterobacteriaceae were
the most abundant Proteobacteria populations known
to contain pathogens. Other populations were identi-
fied as gut commensals, or with antimicrobial activ-
ities, or linked with nutrients (N, S or Fe) or organic
matter degradation capacities.
Over the three experiments, 43 genes identified by

PLS analysis were considered important in predicting
the impact of the Proteobacteria ratio on the micro-
bial community (Additional file 1: Table S5). The
relative abundance of the selected genes explained
48% of the factor fitted in the model and 81% of the
Proteobacteria ratio. Of these genes, 22 genes were
also affected by the dietary treatment—including
genes encoding for beta-lactamase (K01467, K07576)
and cold shock protein (K03704). For each experi-
ment, a network was generated based on the total
KEGG identified genes (n = 4966) including on aver-
age 56 genes from the 204 genes and representing
about 4.36% of all genes constituting the network. Al-
though these genes were distributed over several clus-
ters, about half of the genes (54%) grouped into one
or two dominant clusters when studied per experi-
ment (Additional file 1: Table S5and S6) and still
grouped in two dominant clusters when the network
analysis combined all experiments (Fig. 7). The most
abundant genes (relative abundance above 0.01%)
within these two clusters encoded for flagellin
(K02406), beta-lactamase (K07576) and type VI secre-
tion system (K11907).

Fig. 4 Relative abundance of microbial phyla between diet treatments (n = 50). Grey: samples from forage-fed animals, dark grey: samples from
concentrate-fed animals. **P value < 0.01, *P value < 0.05, °P value < 0.1
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Discussion
In the present study, the results of three independent ex-
periments were combined. This meta-analysis was used
to highlight the importance of diet rather than the host
on the structure of rumen microbial genes associated
with resistance, colonisation, communication and patho-
genicity activities. It is known that diet has a dominant
effect on the microbial community composition [40, 41],
and here, we first identified that diet influences func-
tional genes associated with AMR and more interest-
ingly microbial genes (e.g. genes encoding for cold shock
protein, T6SS, motility, hooking and sensing) allowing
the microbial populations to adapt to the new ruminal
environment generated by concentrate diet. Information

on the composition of the initial rumen microbiome
may provide further information, but was not available
for this study. However, all animals were offered the
same forage-based diet prior to the trial and animals
were randomly allocated to diets (balanced for breed) at
the start of each experiment. Consequently, there is no
reason to believe that the prevalence of antibiotic resist-
ance genes differed at the start of each experiment.
Therefore, we are confident in our results that concen-
trate diet significantly increased the relative abundance
and diversity of AMR genes and other genes studied in
this manuscript.
The greater abundance of genes encoding for sensing

(two-component signal transduction systems) or secretion

Fig. 5 Calculated Proteobacteria ratio over the three experiments (n = 50). Cutoff: values above 0.19 are considered as an indicator of rumen
dysbiosis. Grey: samples from forage-fed animals, dark grey: samples from concentrate-fed animals

Fig. 6 Linear regression for studying the impact of acetate to propionate ratio to Proteobacteria ratio. a All samples (n = 50). b Samples from
concentrate-fed animals (n = 16). c Samples from forage-fed animals (n = 34). Equation for the linear regression was included in figure when the
difference was significant (P value < 0.05)
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system (T6SS) in concentrate diet samples confers advan-
tages for microorganisms to sense, respond and adapt to a
wide range of environments [42] using different mecha-
nisms [43–45]. T6SS which is more prevalent in Proteo-
bacteria helps in colonising the gut [46] and controlling
bacterial growth in a disturbed rumen [47]. Moreover, mi-
croorganisms carrying genes encoding flagellin, which are
enhanced when a high-concentrate diet is fed, are known
to develop strategies to evade innate immune system de-
tection [48, 49] and therefore increase the risk of disease.
Another host-microbiome interaction system involves fu-
cose sensing, and one gene encoding for alpha-L-
fucosidase was significantly enriched in concentrate-fed
animals. This gene may enhance the abundance of com-
mensals and also pathogenic bacteria carrying this gene
and increase the risk of infection [22]. Finally, it is known
that competition between host and pathogens occurs for
iron resources. Genes associated with iron storage (fer-
ritin) or transport were differently affected depending of
the diet and tend to suggest a lower iron availability for
microorganisms including pathogens in concentrate com-
pared to forage-fed animals. It is known that iron serves
as a signal for bacterial pathogens to recognise host cells

in an iron-depleted environment, potentially leading to
disease [50].
Henderson et al. [10] found similar results, demonstrat-

ing the predominant influence of diet over the host effect
and explaining the differences in microbial community
composition. The host effect was identified in the present
study as a breed effect, which has been shown in our pre-
vious study to be of substantially less impact on the
microbiome, than within-breed genetic effects.
In addition, feeding the concentrate diet signifi-

cantly enhanced the diversity of these rumen micro-
bial genes (higher evenness) including a broader
spectrum of mechanisms of resistance compared to
the forage diet. The increase in abundance and diver-
sity of AMR and pathogenicity genes in rumen sam-
ples from concentrate-fed animals could also be the
result of multi-resistant bacteria enrichment [51], or
an increase in horizontal gene transfer (HGT) as a re-
sult of gut dysbiosis [52, 53] or rumen colonisation
[54]. Therefore, the risk of spreading antimicrobial re-
sistance genes between microbial populations belong-
ing to the same or a different phylum and including
human pathogens increases [55].

AMR

Fig. 7 Functional clusters of AMR genes identified using network analysis combining the three independent experiments. Correlation analysis of
microbial gene abundance was used to construct networks, where nodes represent microbial genes and edges the correlation in
their abundance
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Microbial genes significantly abundant in rumen samples
from animal offered the forage diet were mainly associated
with activities known to be involved in beneficial host-
microbiome interaction and its homeostasis involving non-
pathogenic bacteria. For example, antimicrobial peptides
like microcin are produced and released by gut epithelial
cells and help to maintain the host-microbiome homeosta-
sis [56]. Homeostasis helps to reduce pathogen colonisation
[57] without causing collateral damage to host cells [49,
53]. Therefore, it is coherent to find more microcin-
resistance genes mostly identified in commensal bacteria
[58] and also carrying microcin synthesis genes providing a
competitive advantage against enteric pathogens [57] when
feeding a high-forage diet, which is known to promote
rumen homeostasis [59]. This system is less aggressive and
energy demanding than other systems like T6SS used by,
e.g. pathogenic Proteobacteria [45]. Forage diets, which
contain more fibre, are recognised to enhance gut health in
different animal species by modulating the gut microbiome,
its impact on the host mucosa and reducing the level of
stress or disease compared to grain-fed animals [59, 60].
The results obtained with the concentrate diet can be ex-

plained by the necessity for the rumen microbiome to adapt
to a new environment [61] and the increase in populations
with broader adaptability and colonisation capacities. Inter-
estingly, the relative abundance of Proteobacteria, one
phylum containing bacterial populations associated with
AMR and pathogenicity [27], was one of the bacterial phyla
enriched when feeding the concentrate diet. We also identi-
fied bacterial genera within Proteobacteria (e.g. Tolumonas
or Methylomonas) and including pathogens (e.g. Aeromo-
nas or Moraxella) with a relative abundance above 0.001%
and strongly correlated with the Proteobacteria ratio which
may explain the high Proteobacteria ratio detected in 8
rumen samples from animal offered the concentrate diet.
Interestingly, the plant pathogen Pantoea, belonging to Pro-
teobacteria, was also significantly more abundant when
feeding the concentrate diet and highly correlated with the
Proteobacteria ratio, suggesting that microorganisms colo-
nising plants and present in the diet might play a role in
the rumen. Functional similarities between microorganisms
inhabiting the gut or plant roots and sharing similar eco-
logical niches were found, supporting a potential role of
these plant-associated microbial populations during the
acidotic challenge [62].
Proteobacteria populations partly explained the change

in functional gene composition and diversity observed in
samples from animals offered the concentrate diet. A
high Proteobacteria ratio was also significantly negatively
correlated with a low acetate to propionate ratio (a
proxy for low ruminal pH) [12]. It is known that concen-
trate diets with a high grain content tend to increase
propionate concentration and are associated with lower
rumen pH, as well as an increase in the abundance of

Proteobacteria [12]. The formulation of concentrate di-
ets with respect to the proportion of starch to digestible
fibre could be more important than the concentrate type
for explaining the effect on rumen pH [63], and this in-
formation could be used as a strategy to reduce the det-
rimental effect of concentrate diet increasing the
abundance and diversity of the genes targeted in this
study.
We confirmed the relevance of using a Proteobacteria

ratio instead of Proteobacteria abundance as a proxy of a
microbiome dysbiosis and more pathogenic bacteria may
increase the risk of host disease [12, 14]. This ratio was
significantly correlated with a gene encoding for a cold
shock protein known to have a wider role in bacterial
stress tolerance and reinforcing the detrimental effect of
the concentrate diet on the rumen microbiome [2].
Finally, the 43 rumen microbial genes identified by

PLS analysis to be significantly associated with the Pro-
teobacteria ratio include several AMR genes such as
genes encoding for beta-lactamase. Although these genes
were distributed over several clusters, most of them were
grouped in one major cluster as shown by the network
analysis. Therefore, it would be possible to apply the
same strategy as Roehe et al. [26] to determine a base-
line of these genes for risk assessment.

Conclusions
In conclusion, diets with high fibrous forage components
would be recommended over those with high grain com-
ponents to lower the abundance and diversity of AMR
genes and to avoid rumen microbiome dysbiosis associ-
ated with pathogenic species among ruminal Proteobac-
teria. The results presented here will help to improve
policies about antimicrobial treatments in beef cattle
production and to help avoid AMR gene transmission to
bovine-associated human pathogens. We describe AMR
gene abundance/diversity in antibiotic-free cattle that
complements published information on AMR genes in
animals receiving antimicrobials. It will now be import-
ant to combine the investigation of AMR usage with
dietary regime, to determine whether alterations in diet
can lessen the threats associated with AMR in livestock
production.
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Additional file 1: Figure S1. Relative abundance (%) of 20 groups of
functional genes representing 204 selected genes (number of animals,
n = 50 samples). The sum of the relative abundance (%) of genes
grouping within the same function is shown in this figure. Figure S2A.
Total abundance of 204 selected genes based on diet treatments (n =
50). *P value < 0.05. Figure S2B. Shannon index diversity of 204 selected
genes based on diet treatments (n = 50). *P value < 0.05, °P value < 0.1.
Figure S3. Canonical Variate analysis (CVA) on the structure of 204 genes
selected based on breed, age, weight, Proteobacteria ratio, FCR and
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methane grouping (n = 50). Figure S4. Factors explaining the significant
differences observed for Proteobacteria ratio (n = 50). Figure S5. Microbial
community composition at the phylum level (n = 50). Table S1.
Characteristics of the cattle used in the experiment. Table S2. Groups of
AMR genes significantly correlated with abundance of the Proteobacteria
phylum and Proteobacteria ratio. Table S3. The relative abundance of
AMR genes. Table S4, Proteobacteria populations strongly correlated with
the Proteobacteria ratio. Table S5. Functional genes significantly
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