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Abstract

Background: Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their
ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes
under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate
the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts.
These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment.
Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and
by contributions from host individuals in the preceding generation.

Methods: In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We
do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and
microbial fitnesses independently. Microbial traits can influence the fitness of hosts (“host selection”) and the fitness of
microbes (“trait-mediated microbial selection”). Additionally, the fitness effects of traits on microbes can be modified by
their hosts (“host-mediated microbial selection”). We simulate the effects of these three types of selection, individually
or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand
generations of hosts.

Results: We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting
on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to
the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when
host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental
contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated
selection acts on microbes concomitantly.

Conclusions: We present a computational framework that integrates different selective processes acting on the evolution
of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial
diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
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Background

In a recent paper [1], we developed an agent-based
framework to model the evolution of host-associated mi-
crobial communities (i.e., microbiomes), in the absence
of any fitness costs or benefits to hosts or microbes, and
subject only to the stochasticity of sampling. Other stud-
ies [2—5] have also explored how microbial communities
are assembled in the absence of selective effects. Neutral
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theories assume that species are ecologically and function-
ally equivalent and that stochastic processes are the main
factors shaping species’ distributions and community
structure [6—8]. In at least some instances, neutral models
are able to reconstruct and predict species abundance dis-
tributions in many natural microbial communities [9-11].

Nonetheless, there is considerable evidence that both
microbes and hosts contribute reciprocally to the fitness
of their ecological partners: Li and Ma [5], in a recent
analysis of human microbiomes, concluded that less
than 1% of human microbial communities are present
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because of neutral processes. Host-associated microbes
often benefit from a protected and nutrient-rich envir-
onment. We know, for instance, that the stable
temperature and pH within the human gut allows the
colonization and cultivation of some microbial species
but not others [12, 13] and the inability to utilize gut
specific substrates can restrict the growth of some mi-
crobes [14, 15]. Conversely, studies have demonstrated
associations between the presence or absence of one or
more microbial taxa and host health and fitness. Gut
bacteria assist their hosts with digestion in many verte-
brate and invertebrate species [16—18] and rhizobia,
which occupy the root nodules in legumes, supply am-
monia for fixing nitrogen [19, 20], and in humans,
microbiome composition has also been associated with a
variety of physical and mental disorders, including in-
flammatory bowel disease [21-23], obesity [17, 24], aller-
gic responses [25], anxiety [26], and autism [27, 28].
Biologically, then, it is reasonable to extend the neutral
model of microbial evolution to allow selective effects:
conceivably, hosts with beneficial microbes are more
likely to succeed in competition with hosts that have
fewer such microbes; it is also likely that microbes that
are able to withstand the selective filters imposed by
environments within hosts, and host antimicrobial de-
fenses, are able to persist within individual hosts.

Li and Ma’s [5] analysis of human microbiome com-
munities, based on work that comes directly from the
neutral theory of biodiversity [29], suggests how we may
test the null hypothesis of neutral microbial community
composition, but does not provide a framework for
uncovering patterns of diversity that may result from
various selective processes. In this paper, we take on the
task of modeling the simplest of these selective processes
by extending our earlier agent-based framework. As in
our earlier paper, we remind readers that the simplicity
of these models in no way reflects a belief that natural
systems are simple; rather, it is an approach that reveals
what outcomes are possible in the absence of the added
complexity that nature often engenders. In doing so, it of-
fers a means for researchers to discern when the data are
consistent with simple processes and, in so doing, resist
the natural temptation to add what may appear to be in-
tuitively obvious (but unnecessary) biological complexity.

Superficially, we may think that we should be able to
model changes in the frequencies of microbial taxa in
ways that are analogous to alleles or traits under selection.
However, microbes are not necessarily transmitted verti-
cally from parent to offspring in the same way that genes
are. In our neutral models of microbiome evolution, hosts
acquire their microbiomes from their parents and/or the
environment, and it seems appropriate to apply the same
mechanisms of microbial acquisition when extending
these models to include effects of selection. To construct
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the environmental complement of microbes, therefore, we
allow a component of environmental microbiome that
remains constant over evolutionary time, as well as a
component that consists of microbial contributions from
each successive parental generation. As with our neutral
models, our forward simulations are agent-based, with
constant numbers of hosts across discrete generations.

To investigate the effects of selection, we allow microbes
to influence the reproductive success of the host (ie.,
“host selection”); we also assign to microbial OTUs differ-
ent fitness values, by either allowing the host to influence
the microbe’s ability to survive within it (i.e., “host-medi-
ated microbial selection”) or by assigning traits that confer
a selective advantage regardless of host (i.e., “trait-medi-
ated microbial selection”). Whereas it is possible to model
these selective effects by defining fitness contributions as
a random variable drawn from an appropriate probability
distribution, we have chosen a different approach. We
model these selective effects by constructing a “phenome”
for each microbial taxon, that is, a complement of traits,
each of which contributes a positive, neutral, or negative
effect to the host and, independently, a positive, neutral,
or negative effect to the microbe itself, either influenced
by the host or not. We have adopted a phenome-based ap-
proach because of its generalizability and flexibility: in this
paper, it provides us with a good way of modulating fit-
ness, and in the future, we will use this approach to study
lateral gene transfer amongst microbes [30-33], as well as
epistasis [34—36].

Our results indicate that selective effects that act on mi-
crobial fitness exhibit a significant depressive effect on
microbiome diversities, regardless of whether these effects
are host-mediated or trait-mediated. In contrast, microbes
that collectively exert an effect on host fitness have only a
weak effect on microbiome diversities, unless there is high
parental contribution from one generation to the next.
Our models can also account for the persistence of mi-
crobes within hosts that have no effect on host fitness (i.e.,
“commensal” microbes) and the persistence of microbes
that have negative fitness effects on hosts (i.e., “patho-
genic” microbes) within populations. Finally, if we exam-
ine the impact of the different selective effects on changes
in average host or microbial fitness over evolutionary time,
we see that when microbes are subject to either host- or
trait-mediated selection, average microbial fitness in-
creases. Increasing average host fitness requires at least
two conditions: (1) microbes influence host survival and/
or reproductive success, and (2) microbes are transmitted
parentally/socially or microbes are themselves subject to
host-mediated selection.

Model
We recently proposed agent-based neutral models of
microbiome evolution [1]. The basic framework of our
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neutral models incorporates a Wright-Fisher genea-
logical model of hosts with discrete generations; this al-
lows us to investigate the dynamics of microbiomes on
an evolutionary timescale in which some host lineages
are lost and others amplified stochastically. We also in-
corporated neutral models of microbiome acquisition and
environmental microbial community assembly that rely
exclusively on random sampling from microbial com-
munities. The acquisition of microbiomes by hosts has
been modeled according to a “mixed-acquisition” (MA,)
process, in which hosts acquire some percentage, x%, of
their microbiomes from their parents and (100 — x)% from
the environment. In our model, when x = 0, all microbes
are acquired from the environment, and we refer to this as
pure environmental acquisition (EA); conversely, when
x = 100, all microbes are acquired vertically from parents
(pure parental acquisition or PA). These models of acqui-
sition also require us to specify mechanisms for how the
environment is constituted. Analogously, we construct a
“mixed environment”(ME,) model, where the environ-
mental microbial pool contains a percentage, %, from the
community obtained by pooling all parental microbiomes,
and (100 — )% of microbes from a fixed and unchanging
environmental pool. Since we are working with discrete
generations of hosts, this allows us to model the
phenomenon whereby each preceding generation of hosts
alters the microbes available for recruitment by the subse-
quent generation. When y = 0, all microbes that are avail-
able in the environment come from a fixed pool (ie., a
pure fixed environment or FE); when y = 100, all microbes
in the environment are derived from the collective micro-
bial content of the previous generation (i.e., the pure
pooled environment or PE). The basic neutral models are
consistent with the neutral theory [6] in which there are
no differences amongst hosts or microbes that can affect
microbial community composition.

The neutral models provide a framework which allows
the incorporation of other evolutionary and ecological
processes. In our current simulations, each microbe has
a phenome, consisting of a collection of several traits. By
using phenomes, we can incorporate variation in the
fitness of microbes, as well as their influence on host fit-
ness, as functions of trait composition. As noted above,
this phenome-based approach future-proofs subsequent
models in which we expect to take account of trait-by-
trait phenomena, including horizontal gene transfer and
epistasis. With a phenome-based approach, the selective
effects on microbes and hosts are modeled by allowing
each trait to confer one fitness value to the microbe it-
self and, independently, one fitness value to the host
where it resides. The two fitness values of a microbial
trait can be positive, negative, or neutral and affect the
processes of microbiome acquisition and parental as-
signment, respectively (Figs. 1 and 2).
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In our models with selection, microbial taxa are ac-
quired stochastically from the appropriate community
(i.e., either the parents or the environment) as a function
of their relative abundances within the community and
the additive effects of their microbial trait fitness values
(Fig. 1b). Similarly, unlike neutral models where mi-
crobes do not interfere with host reproductive capacity,
parental hosts that have microbiomes with more benefi-
cial microbes have a higher probability of producing off-
spring, with the probability again determined by the
cumulative host fitness values of the microbiome
(Fig. 1a). The host fitness values of all traits across all
microbial phenomes within an individual host sum to
give a total host fitness value for that individual. Once
these values are calculated for all hosts, the individual
values are normalized such that each host’s reproduct-
ive success in the next generation is a function of its fit-
ness value, subject to preserving a constant-sized
population. We refer to the selective effects in these
simulations as “host selection” (HS).

Microbial fitness values are assigned to traits in two
ways. First, we allow the fitness of each microbe to be
determined solely by the microbial fitness values
assigned to the traits in its phenome. In this scenario,
the probability that a microbial OTU is available to off-
spring or to the environment is a function of the sum of
the microbial fitness values, irrespective of the host the
microbe is in. We refer to the selective effects in these
simulations as trait-mediated microbial selection (TMS).

In a second scenario, each host imposes a different fit-
ness value on a given trait in a phenome. This condition
is meant to simulate the condition where differences in
host genetics or host microenvironments alter the fitness
of microbes with the same trait content. As with other
scenarios, the sum of microbial fitness values determines
the relative propensity for that microbe to be passed on
to the next generation or into the environmental pool.
Additionally, however, we allow these host influences to
be inherited by the offspring of these hosts in subse-
quent generations so that offspring also impose the same
influences on microbial fitness values. This is equivalent
to modeling, say, a host genetic component that preferen-
tially favors certain microbial traits over others and that
varies from host to host. We call this host-mediated mi-
crobial selection (HMS). In Fig. 2, we illustrate how trait
values are assigned, and cumulative fitnesses calculated,
under each of the models of selection proposed here.

By simulating microbiome evolution under HS and/or
TMS/HMS, we are able to measure a variety of summary
statistics, including microbial diversities (a-, 3- and y-diver-
sities which are measured within host, between hosts and
within a population, respectively), fitnesses (the means and
variances of host fitness and microbe fitnesses), and the
association of host and microbial trait fitnesses (measured
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Fig. 1 Host reproduction and microbial community assembly under models of selection. a A schematic showing the action of host selection on
numbers of offspring. Each small circle represents a host with the first row representing the parental host population and the second
row representing the offspring host population. The color indicates the fitness status of hosts which is completely determined by the
microbes hosts carry (blue, fit; red, unfit), and the dotted lines indicate the parent-offspring relationship between generations. Fitter hosts
produce relatively more offspring, weighted by parental fitness. b The relative abundance of microbial OTUs in host offspring, taking
account of microbial fitness values. The letters “P,” “E," “S,” and “O" stand for parental, environmental, source, and offspring microbial communities,

Fit microbe

O Unfit microbe (abundant)
Q Unfit microbe (rare)

Multinomial sampling
based on both OTU
frequencies and fitness

O

respectively. The values of Y% and X% represent the percentage of host contribution under mixed environment (ME), and the percentage of parental
inheritance under mixed acquisition (MA), respectively. Two yellow ellipses represent the source community (either parental, environmental, or mixed
microbiomes depending on the value of X), and the offspring microbiome with a blue arrow indicating how microbes are sampled. Each small circle
stands for a microbe with its color indicating the fitness status (green, fit; red, unfit but abundant in source community; blue, unfit and rare in source

community). Fitter microbes and abundant microbes are more likely to be acquired by offspring

by the averaged cosine value of the angle between HS or
HMS/TMS vectors of trait fitness).

Results

Our earlier work on neutral models indicated that mi-
crobial diversities depend quite strongly on the percent-
age of parental contribution to offspring microbiomes
and the environmental microbial pool [1]. Under neu-
trality, diversities within hosts remain high, and diversity
between hosts remains low for a large part of the range
of host contribution. Strong depressive effects on a- and
y-diversities occur only when host contribution, either
directly from parent to offspring or via the environment,
is extremely high (>90%) (Additional file 1: Figure S1).
In this paper, when we model these neutral processes

with very large numbers of microbes (to 10°) and hosts
(to 5000), we find no evidence that microbial diversity is
depressed under neutral conditions (s, = s,, = 1) even
when parental contributions are high (Figs. 3 and 4). We
infer that this is because large numbers of microbes and
hosts dampen or completely suppress the stochastic ef-
fects of sampling with smaller numbers of microbes and
hosts. In other words, when there are many microbes,
each microbial OTU in a host will be represented by suf-
ficiently many representatives so that any stochastic ef-
fects due to intergenerational transfer of microbes will
not remove that OTU from successive descendants.
Under our selective models, microbial diversities are
generally lower than those obtained under neutral
models across the range of percentages associated with
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Fig. 2 From phenomes to host/microbe fitnesses. The diagram shows how our models connect collections of traits (i.e, phenomes) of microbes
to host fitness and microbe fitness. a When HS is acting, each trait (represented by a triangle) has a fitness score affecting host fitness (red — 1, green
+ 1, blue 0). We determined the host absolute fitness and relative fitness with the average fitness score of all microbial traits associated with its
microbiome and a host selection coefficient (see “Methods” for details). b When TMS/HMS is acting, each trait has another fitness score that affects
microbe fitness (red — 1, green + 1, blue 0). The difference between HMS and TMS is that the fitness score of a certain trait is universal for all hosts
under TMS but varies from host to host under HMS. Similarly, microbial absolute fitness and relative fitness are also determined with the average
fitness score of all microbial traits possessed by the microbe and a microbial selection coefficient (see “Methods” for details)

direct parental transmission or parental contributions to
the environmental pool (Figs. 3 and 4, Additional file 1:
Figure S1 and Additional file 2: Figure S2). Unsurpris-
ingly, increasing the host contribution to offspring
microbiomes, either directly through parental transmis-
sion or indirectly through contributions to a common
environmental pool, can intensify the depressive force of
both TMS and HMS on microbial diversities. High host
contributions accumulate advantageous microbial taxa
and eliminate less fit microbes in source communities,
thus leading to microbial diversities that are lower than
expected under neutrality.

In contrast to microbial selection, HS alone has almost
no effect on microbial diversities, and typically weakly
lowers diversities only when host contributions are ex-
tremely high (Figs. 3 and 4, Additional file 1: Figure S1
and Additional file 2: Figure S2). This makes sense, of

course, when host contributions to subsequent genera-
tions are high, microbial taxa act more like inherited traits,
and we expect microbes that contribute to host reproduct-
ive success to fix in the population in the same way that
selectively advantageous traits do (in this case, microbial
diversity is loosely analogous to heterozygosity).

There is little difference in the diversity profiles when
both HS and TMS are present compared to diversities
obtained under TMS alone, thus reinforcing the rela-
tively weak role of HS in shaping microbiome diversities
independently (Fig. 4, Additional file 1: Figure S1 and
Additional file 2: Figure S2). This is true even when we
run our simulations when HS is high (s, = 1000) (Fig. 4).
Interestingly, when both HMS and HS act on the micro-
bial and host populations, we do see microbial diversity
decrease as HS increases (Fig. 3), which suggests a
strong interaction between HS and HMS.
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Parental Inheritance (%)

Fig. 3 Alpha diversity patterns under models of microbiome evolution with HMS. Each heatmap corresponds to a combination of host and
microbial selection parameters both of which have four different levels: 1 (no corresponding selection), 10, 100, and 1000. Microbial selection is
implemented as HMS. For each heatmap, horizontal and vertical axes represent percentages of parental contribution and pooled environmental
contribution, respectively. The scales of axes are linear with ranges from 0 to 1. The color bar on the right of the heatmaps indicates the corresponding
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It is interesting to consider whether OTUs that have a
net neutral effect on host fitness (equivalent to “com-
mensal” microbes) and those that have a net negative ef-
fect (equivalent to “pathogenic” microbes) persist over
the course of the simulations. Since the impact of HS on
OTU diversity is high only when HMS is present, we ex-
pect to see a proportional increase in beneficial bacteria
and an associated decrease in the relative proportion of
commensal and pathogenic microbes under this condi-
tion. This is indeed what we find (Fig. 5, Additional file 3:
Figure S3) with both HS and HMS operating: the pro-
portion of commensal and pathogenic microbes drops,
as parental contribution increases. Interestingly, in all
simulations, commensals and pathogens are never com-
pletely lost from the host population.

Our simulations also allow us to recover the final
changes in host and microbial fitnesses with respect to the
initial. When only microbial selection operates, either
HMS or TMS, average microbial fitness increases but not
average host fitness (Figs. 6 and 7, Additional file 4: Figure

S4). As with our results on microbial diversity, HS alone
improves host fitness (but not microbial fitness) only
when direct and/or indirect parental contribution is
extremely high (Additional file 4: Figure S4 and
Additional file 5: Figure S5).

Interestingly, if HS and TMS are applied together, mi-
crobial fitness still increases over time just as with TMS
alone (Fig. 7), but changes in host fitness seem to depend
on the initial assignment of trait fitness (Additional file 6:
Figure S6 and Additional file 7: Figure S7): if, by chance
alone, more mutually beneficial traits are assigned at the
start of the simulation to phenomes, then host fitness is
likely to increase. Conversely, if simulations begin with a
predominance of antagonistic trait values (ie., those in
which the selective effects on hosts and microbes work in
opposite directions), then mean microbe fitness increases
and host fitness decreases. In other words, under HS and
TMS, an increase in host fitness is a consequence of an
initial “colonization” of microbes that possess traits that
are fortuitously advantageous to both hosts and microbes.
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Fig. 4 Alpha diversity patterns under models of microbiome evolution with TMS. With a similar layout, all heatmaps are also plotted in the same
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This is supported by a significantly positive correlation be-
tween our measurement of initial HS-TMS trait fitness asso-
ciations and change in average host fitness (Additional file 6:
Figure S6 and Additional file 7: Figure S7).

In contrast, when both HS and HMS operate in a popu-
lation, both host and microbial fitnesses are improved:
host fitness increases more markedly than under HS alone
(p value < 2.2e-16) and microbial fitness increased more
markedly than that under HMS alone (p value = 3.215e
-07) (Figs. 6 and 7, Additional file 4: Figure S4). This is
because hosts that actively acquire and cultivate beneficial
microbes that are themselves relatively fitter than other
microbes will increase in frequency, thus leading to in-
creasing fitnesses of both hosts and microbes.

Discussion

In our previous paper [1], we noted that neutral models
provide a baseline on which we may build more elabor-
ate models of evolution. The adage, attributed to Box
[37], that all models are wrong but some are useful, un-
derlies the approach taken by neutral theorists: identify
what happens under the simplest processes before

adding potentially unnecessary complexity. In this paper,
we extend our earlier neutral framework to incorporate
selection because there is evidence that neutrality alone
cannot explain many of the empirical patterns we ob-
serve in microbiomes. Nonetheless, we have tried to stay
true to the principle of simplicity, and we have chosen
to use selective processes that exclude, for instance, the
de novo emergence of host or microbe adaptations. Our
models also ignore the fitness of microbes in the envir-
onment and their ability to disperse and/or colonize
hosts. This is certainly a plausible way of extending the
current models; we have chosen not to do so here, sim-
ply to avoid the complexity of having to add another fit-
ness vector to our microbial phenomes. Nor have we
allowed horizontal gene transfer or microbe-to-microbe
interactions. Despite this simplicity, the selective models
developed here allow us to study how host and microbial
selection affects microbiome diversities and changes in
host and microbial fitnesses over time.

First, our simulations indicate that microbiome diver-
sity is more influenced by microbial selection than host
selection. In other words, the reproductive success (or
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Fig. 5 Composition of beneficial, commensal, and pathogenic microbes in host population under different selective models. Each barplot corresponds
to a combination of host and microbial selection parameters both of which have four different levels: 1 (no corresponding selection), 10, 100, and
1000. Microbial selection is implemented as HMS. Each bar represents results averaged from five replicate simulations, and color indicates the types

of microbes (blue, beneficial; green, commensal; red, pathogenic). Categories on the horizontal axes refer to different combinations of microbiome
acquisition and environmental community assembly processes: MA(0)*ME(0) indicates no contributions from parents either directly or to the
environment, MA(50)*ME(50) indicates 50% contribution of the parent to the offspring microbiome and 50% of parent to the environment, and
MA(90)*ME(90) indicates 90% parental contribution to offspring microbiome and 90% parental contribution to environmental microbial community.
Analysis of variance (ANOVA) tests suggest that the compositional changes of three types of microbes are statistically significant as
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otherwise) of hosts that possess certain microbial OTUs
does little to shape the overall diversity of host-
associated microbial content, unless there is high inher-
itance of microbes from one generation of hosts to the
next. In contrast, when microbes are under selection,
mediated either by the host (HMS) or by the traits that
they possess (TMS), then fitter microbes are more likely
to persist in the microbiome. In other words, our results
indicate that microbial selection rather than host selec-
tion is a more important determinant of microbial diver-
sities within and between hosts. Biologically, of course,
this seems intuitive——we expect to find microbial taxa
that are able to live in hosts to be abundantly present
within hosts: Bacteroidetes and Firmicutes whose mem-
bers are able to ferment available nutrients within intes-
tines are the most dominant phylum (more than 98%) in
gut communities of more than 60 mammalian species
[38, 39]; the low pH environment of the human vagina

limits the colonization of other bacteria but allows
Lactobacillus to thrive (more than 90% of the constitu-
ent bacteria in the human vagina are Lactobacillus spp)
[40, 41]. It is perhaps less intuitive that the benefits that
microbial colonizers deliver to hosts (translated into host
reproductive success) play a very small role in shaping
the eventual diversities of these host-associated micro-
bial communities. In other words, microbiome diversity
is not likely to be a consequence of selection acting on
hosts; instead, it is most likely to be a consequence of
selection acting on microbes.

The exception is when hosts tend to acquire most or
all of their microbiomes from their parents or other
members within the same population. In these circum-
stances, beneficial microbes are more likely to be passed
on from one generation of hosts to the next, in the same
way that selectively advantageous traits sweep through
populations. Others have noted that parental and social
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Fig. 6 The effects of different models on host fitness. The vertical axis in each figure represents the log final fold change (after 200,000 generations) of
average host fitnesses (from five replicates) with respect to the initial levels. The categories on the horizontal axes represent different selective models;
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affected when HS and HMS apply (even when parental contributions to offspring or environmental microbial communities are absent). Compared
with HS and HMS, the improvement of HS alone on host fitness under high parental contribution becomes unobservable

Acquisition Modes

. MA(0)*ME(0)

. MA(50)*ME(50)

. MA(90)*ME(90)

behaviors stabilize the association between hosts and mi-
crobes and increase access to beneficial microbes [42,
43]. For instance, young koalas ingest mothers’ feces to
obtain beneficial microorganisms they need for properly
digesting eucalyptus leaves [44—46]; the gut microbiota
of bumble bees are socially transmitted to protect them
against an intestinal parasites [47, 48].

When we consider microbial and host fitnesses, our re-
sults are equally illuminating. As offspring acquire a greater
proportion of their microbiomes from their parents, micro-
bial fitness increases whenever some microbial selection (ei-
ther HMS or TMS) is applied (Fig. 7, Additional file 4:

Figure S4), although there is no significant difference in mi-
crobial fitness outcomes between HMS or TMS. In contrast,
the fitness of hosts only increases when both host selection
(i.e., HS, selection acting on the fitness of hosts) and host-
mediated selection (HMS, selection acting on the microbes)
act together (Fig. 6, Additional file 4: Figure S4). Again, this
increase appears to depend somewhat on the extent of par-
ental contribution to offspring microbiomes.

Why does this happen? In our model, HMS allows in-
dividual hosts to influence microbial fitness by acting
directly on their trait values. These microbial fitness
values imposed by the hosts are variable and heritable
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and are equivalent to any host factor that provides an
accommodating environment to microbes with the
appropriate suite of traits, for example, antigen-
specific immunotolerance, microbial “sanctuaries,” or
microbial “microenvironments.” Clearly, microbes with
the right traits (i.e., in our models, those that possess
traits with positive microbial fitness values) in these
particular hosts will have higher opportunities to con-
tribute to either the microbiomes of host offspring or
to the environmental pool in the succeeding gener-
ation. If these microbes have traits that also increase
the fitness of particular hosts, then in each successive
generation, we expect to see increasing frequencies of
these microbes and their hosts over time. This, in

turn, will lead to increasing average fitnesses of both
hosts and microbes.

This result may resolve an apparent conundrum, al-
luded to by Rodrigo et al. [49]: how can microbes pro-
vide functionally valuable services to hosts, with no
obvious mechanisms of transmission and apparently op-
portunistic acquisition from the environment [50-54]?
Arguably, our simulations under HS and HMS capture
the dynamics of the emergence of “no-cost” or “bypro-
duct” mutualism between hosts and microbes since there
are no active interactions amongst hosts that favor the
persistence of beneficial microbes [55, 56].

Of course, when offspring inherit their entire micro-
biome from their parents, host selective effects can have
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an effect on host fitness even without the action of HMS
on microbes (Additional file 4: Figure S4 and
Additional file 5: Figure S5). Here, a large direct or indir-
ect contribution by parents to offspring is analogous to
the effect of selection acting on heritable advantageous
traits, i.e., we expect that with sufficiently large fitness
effects, these will increase in frequency in the population.

Our results also demonstrate that even when both
host and microbial selection are in play in a population,
microbial communities will continue to harbor microbes
that contribute nothing to host fitness (commensals) or
contribute negatively (pathogens). The persistence of
commensals and pathogens accords with what we expect
of host-associated microbial communities. In reality,
outbreaks of pathogenic bacteria do occur precisely
because these bacteria exist in low levels in the commu-
nity as a result of opportunistic invasions from environ-
mental reservoirs [57-60]. Under our model, these
environmental reservoirs are equivalent to our “fixed
environmental component,” in which microbes that have
a negative effect on host fitness can persist. As noted by
one reviewer, it is also possible that pathogens and com-
mensals may exist because traits in the phenomes of
these OTUs also confer, serendipitously, a fitness advan-
tage to survive in the host. Unsurprisingly, the propor-
tion of these “pathogenic” bacteria tends to decrease as
the proportion of parental contribution to the environ-
ment increases (Fig. 5, Additional file 3: Figure S3).

Our earlier neutral models of microbiome evolution
[1] excluded more complex evolutionary processes. The
models of selection in this paper add an additional layer
of complexity, but they do not encapsulate the complete
set of processes that influence microbiome diversities.
We have, for instance, excluded mutation and microbial
recombination from our models; consequently, host in-
fluences and microbial phenomes are static over the
time-course of our simulations. Both mutation and re-
combination are likely to accelerate the rate at which
host and microbial fitnesses increase. Similarly, we have
excluded population subdivision from structuring our
population of hosts. Population subdivision can potentially
lead to the maintenance of different communities of
microbes in each subpopulation, and subsequent reintro-
duction of pathogenic or commensal microbes (with mi-
gration) into other demes, thus maintaining higher levels
of microbial diversity in the larger host population.

To summarize, our results demonstrate that microbial
fitness is the primary determinant of microbiome diversity
within and between hosts. Host selection plays a signifi-
cant role in determining microbiome diversity only when
direct and/or indirect parental contributions to the
microbial communities of offspring are high. We show
that regardless of the type of selective effect applied and
over a wide range of selective strength, commensal and
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pathogenic microbes continue to persist in the host popu-
lation. Finally, we show that even without high parental
inheritance, the combination of host selection and host-
mediated microbial selection leads to an increase in both
host and microbial fitness and the emergence of host-
microbe mutualism. Our results explain why opportunis-
tic acquisition of microbes can still deliver functional ben-
efits to hosts.

Conclusions

Previous studies suggest both hosts and microbes exert
these selective filters on their partners, and these filters
in turn may influence the evolution of these host-
associated microbial communities or microbiomes. Here,
we present a computational framework that considered
the fitness effects on both host and microbe levels and
explore how selection acts to shape microbiomes in a
population of hosts. We show that microbiome diversity
is most strongly shaped by factors that influence micro-
bial survival and persistence. Our models also demon-
strate that selection does not completely deplete the
pool of microbes that have no effect on host fitness (i.e.,
“commensal” microbes) or that have a negative effect on
host fitness (i.e., “pathogenic” microbes). Finally, we
show that it is possible for bacteria and hosts that mutu-
ally sustain each other to dominate microbiomes, even
in the absence of high parental contributions from one
generation to the next.

Methods

The simulation details of our neutral models have been
described in our previous paper [1]. Again, we employed
agent-based forward-time simulations, with discrete host
generations, to obtain our results. Under the selective
models in this paper, we augment our neutral models by
introducing microbial “phenomes.” In our simulations,
we applied different combinations of selection and par-
ental contribution parameters to our models.

A constant-sized population of host individuals
(N = 5000) were simulated with each host individual al-
located a microbiome. In our model, the capacity of the
microbiome in each host (or the “slots” available for oc-
cupation by individual microbes) was fixed as 10° mi-
crobes. The initial environmental pool contained 150
microbial OTUs, with each OTU having the same (uni-
form) abundance. The microbiomes of the initial gener-
ation of host individuals were seeded randomly, with
microbes sampled from the initial environmental mi-
crobial pool. Each microbial OTU was assigned a phe-
nome consisting of five “traits” (m = 5) randomly
sampled from a uniformly distributed trait pool of 25
available traits (n = 25). Phenomes were assigned to
each OTU at the beginning of simulation and remained
the same throughout the entire simulation (i.e., no
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changes are made to OTU phenomes through “muta-
tion” or “recombination”). All simulations were run for
200,000 discrete host generations.

Our model parameters are not chosen arbitrarily but
set to approximate the real human-associated microbial
community as much as possible. We choose 5000 as the
host population size because previous population genetic
studies estimate the effective population size of humans
at ~ 3100 to ~ 10,000 [61-63]. (As a digression, we have
chosen to use effective population size in our simula-
tions because the effective size is proportional to the rate
of loss/gain of genetic diversity in a population. Al-
though it is outside the scope of this paper, it is interest-
ing to consider whether there is a different host
“effective” size that is proportional to the rate of loss/
gain of microbiome diversity.) We choose 150 as the
total number of OTUs because empirical human micro-
biome data from the HMP website (http://www.hmpdac-
c.org/HMSMCP/) suggest that the total number of
microbial genera (equivalent to a 97% identity threshold
of 16S OTU) associated with different human body sites
varies from ~ 50 to ~ 200.

For the total number of available microbial traits, the
functional composition of human minimal gut metagen-
ome has been summarized into 25 KEGG functional or-
thogonal groups [64, 65]. We would like to treat each
functional group as one microbial trait under our model,
thus 25 can be a reasonable choice of the total number
of traits. The distribution of bacteria genome size ranges
from 0.13 to 14 Mbp [66-68] with an average of ~
3 Mbp [69]. Previous studies also suggest a high correl-
ation between bacterial genome size and the number of
functional genes and operons given the small amount of
non-coding DNA in prokaryotic genomes [70]. If we as-
sume there is a linear correlation between genome size
and phenome size and the maximum genome contains
all the available traits, the average number of traits
across all OTUs can be estimated as:

Average genome size

Average number of traits~ - -
aximum genome size

x Total number of traits
_3MbP oes
14 Mbp

For the size of an individual microbiome, we use 10’
to approximate the total number of microbes carried by
one host. This huge number may still not be large
enough. However, we believe that further increase of the
size will not drastically change the currently observed
diversity patterns and fitness effects since we also have
simulations under much smaller parameter settings that
confirm the robustness of our simulated results
(Additional file 1: Figure S1, Additional file 2: Figure S2,
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Additional file 3: Figure S3, Additional file 4: Figure S4
and Additional file 7: Figure S7). For those small-scale
simulations, we have host population size of 500, indi-
vidual microbiome size of 10,000, 150 microbial OTUs,
10 available traits, and 5 traits per OTU. All small-scale
simulations were run for 10,000 discrete host genera-
tions with 50 replicates.

For a specific OTU, each microbial trait is associated
with two numbers (both can be -1, 0, or 1 independ-
ently) to specify a negative, neutral, or positive effect, re-
spectively, on its own fitness and the fitness of the host
where it resides. For host selection (HS) and trait-
mediated microbial selection (TMS), the assignment of
trait fitness was only performed once and applied to all
the hosts and microbes. However, for host-mediated mi-
crobial selection (HMS), this process was repeated N
times and each assignment applied uniquely to each host
and all its offspring, as well as all the microbes within
the host (see Fig. 2). Therefore, for any specific host, all
microbes that possess a certain trait still retain the same
fitness value for that trait, whereas microbes associated
with different hosts can have different fitness values for
the same trait.

The probability of sampling microbes from a source
community (i.e,, either the environmental or the parental
microbiomes) is given by:

Siai
==
l 22/1:1fk“k

where f; represents the fitness of microbial OTU i de-
fined by its phenome and the particular model of selec-
tion applied, a; represents the relative abundance of
microbial OTU i within the source community, and M
is the total number of microbial OTUs.

The probability that a host individual in a given gener-
ation is descended from host i in the previous generation
is:

g = fi
i T N
21 Sk
where f; represents the fitness of host i, and N is the host
population size.

For any microbe i or host i, the fitness is given by f;

5
= SZFL"/‘/ ® where v; represents the fitness value of jth
“trait” for the microbe/host (j = 1,...,5), and s is a selec-
tion parameter (>1) which is related to the strength of
selection and can be different for HS and microbial selec-
tion. The relative fitness that is generally defined by popu-
lation geneticists as the survival and/or reproductive rate
of microbe i or host i relative to the maximum survival
can be further derived as w; = fi/s. In our plots of host and
microbe fitnesses, we used w; to represent fitness (Figs. 6
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and 7, Additional file 1: Figure S1 and Additional file 6:
Figure S6). When s, = s, = 1, fand w are always equal to
1, and they are equivalent with the neutral models. For
our simulations, we simulate with different combinations
of s, and s, with s,,€{1,10,100,1000} and s,€
{1,10,100,1000} , which means after one single host
generation, the most competitive microbe/host is ex-
pected to produce s% or s; times as many offspring
as the least competitive microbe/host does.

The definition of f; under our model can be derived
from a simplified form of the Lotka—Volterra equation
without consideration of species interactions.

dx,»(t)
dt

= aixi(t)

where x;(¢) is the abundance of OTU i at time ¢ and «; is
its specific growth rate.

The integration of the differential equation above gives
us: x;(t + At) = x;(¢)e“?. Let At be one host generation
time 7, then x;(¢ + T) = x;(¢)e% ™.

If all microbial species has the same growth rate, e*
term is the same for all microbial taxa. Thus, after one
host generation, the acquired microbial relative abun-
dances will only be proportional to the initial relative
abundances x;(f) which can be seen as the relative abun-
dances in the source community. This is equivalent to
our neutral assembly process.

Under our selective model, if we allow the specific
growth rate a; € [-a, a] (a = 0), we have

T

xi(t+ T) = x;(£)e"T = x,(2) (e“T)m/a

Let s=e*" and ;= a;/a, we have x;(t+ T) = x;(t)sP
where f3;€[-1,1] and s> 1. Under our model, s becomes
the selection coefficient we defined and B, = >",v;/m

is represented as the average fitness score contributed by
all the microbial traits. Thus, after one host generation,
the acquired microbial relative abundances will be pro-
portional to the product of the initial relative abundance
x;(t) and the corresponding microbial fitness term s%. As
mentioned before, our microbial selection coefficient
can be interpreted as follows: after a single host gener-
ation, the most competitive microbe is expected to pro-
duce s?, times as many offspring as the least competitive
microbe does. Now, for s = ¢*, both e and T are constant
and only a is a variable; so, we can also interpret it in
this way: after a single host generation, the most com-
petitive microbial taxon has a specific growth rate a
while the least competitive microbial taxon has a specific
growth rate —a where a = IHT“) Similarly, host fitness
can be derived in the same way.

As mentioned above, the microbiome of each host is
associated with two fitness vectors with size equal to the
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total number of traits in the population (i.e., 10 traits),
as depicted in Fig. 2. The correlation of these fitness vec-
tors under HS and TMS/HMS is defined as the cosine
of the angle between them and is calculated as:

10

Dkt P

10 ;210 2
\/Zk:lhk k=1

where /i and m; represent the host and microbial fitness
values, respectively, of kth microbial trait (k = 1,..., 10).
At the population level, we take the average of each
host’s cosf to calculate the consistency. Biologically, a
positive consistency means HS and MS generally favor
the same microbial genes while a negative consistency
means microbial genes favored HS/MS are generally disfa-
vored by MS/HS. Zero consistency simply means one type
of selection exerts no influence on those microbial genes
that are positively or negatively selected by the other.

Three microbial diversities are measured in the same
way as previously described [1]: a- and y-diversities are
measured with Shannon-Wiener index, and f-diversity
is measured with Bray-Curtis distance.

All statistical tests and distribution/model fitting were
conducted using the R software package [71]. For Figures
S1 and S7, a test for Pearson product-moment correlation
was performed to identify the association between the ini-
tial HS-TMS consistency and change in host fitness. For
Fig. 5, an ANOVA test was applied to evaluate the statis-
tical significance of microbial compositional change as
parental contribution, HMS, and HS increase. For Figs. 6
and 7, a paired two-sample Wilcoxon test was conducted
to confirm the promotive effects of HS and HMS on fit-
nesses compared to HS or HMS alone. For Additional file
6: Figure S6, a Student’s ¢ test was performed to examine
the effects of different selective models on fitnesses against
the null neutral models.

Each combination of parameters was run for 5 simula-
tions, except for small-scale simulations (with 50 replicates)
and simulations reported in Additional file 2: Figure S2,
which was run for 1,000,000 generations without any repli-
cates. All simulations were carried out using Java programs,
available from https://github.com/qz28/microbiosima.git.

cosf =

Additional files

Additional files 1: Figure S1. Diversity patterns under different models
of microbiome selection. This plot is based on small-scale simulations. The
first row represents results obtained under our neutral model [1]. Rows
(b)-(f) represent diversities obtained under models of selection (b TMS, ¢
HMS, d HS, e HS and TMS; f, HS and HMS). Heatmaps in each column display
measurements of different diversity measures, from left to right, a-diversity,
y-diversity, and B-diversity. For each heatmap, horizontal and vertical axes
represent percentages of parental contribution and pooled environmental
contribution, respectively. Under neutral and HS models, the scales of axes
are non-positive exponentials of 2 with ranges from 0 approaching to 1. For
heatmaps in (b), (0), (e), and (f), the scales of axes are linear with ranges from
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0to 1. The color bar on the right of the heatmaps indicates the corresponding
values for diversity (warm color, high diversity; cold color, low diversity).
(TIFF 2395 kb)

Additional files 2: Figure S2. Diversity patterns under different models
of microbiome selection. This plot is based on small-scale simulations. The
first row represents results obtained under our neutral model [1]. Rows
(b)-(f) represent diversities obtained under models of selection (b TMS, ¢
HMS, d HS, e HS and TMS; f, HS and HMS). Heatmaps in each column display
measurements of different diversity measures, from left to right, a-diversity,
y-diversity, and B-diversity. For each heatmap, horizontal and vertical axes
represent percentages of parental contribution and pooled environmental
contribution, respectively. Under neutral and HS models, the scales of axes
are non-positive exponentials of 2 with ranges from 0 approaching to 1. For
heatmaps in (b), (), (), and (f), the scales of axes are linear with ranges from
0to 1. The color bar on the right of the heatmaps indicates the corresponding
values for diversity (warm color, high diversity; cold color, low diversity).

(TIFF 2293 kb)

Additional files 3: Figure S3. Composition of beneficial, commensal,
and pathogenic microbes in host population under different selective
models. This plot is based on small-scale simulations. Stacked barplot
labeled with “initial” shows the initial composition of these three types of
microbes in host population; all simulations start with the same initial
conditions. Stacked barplot labeled with “HS,” “HS and TMS,” and “HS and
HMS" shows the ultimate composition of these three type of microbes in
host populations under the respective selective model. Each bar repre-
sents results averaged from 50 replicate simulations, and gray scale indi-
cates the types of microbes (white, beneficial; gray, commensal; black,
pathogenic). Categories on the horizontal axes refer to different combinations
of microbiome acquisition and environmental community assembly processes:
MA(0)*ME(0) indicates no contributions from parents either directly or to the
environment, MA(50*ME(50) indicates 50% contribution of the parent to the
offspring microbiome and 50% of parent to the environment, and
MA(90)*ME(90) indicates 90% parental contribution to offspring
microbiome and 90% parental contribution to environmental microbial
community. (TIFF 1293 kb)

Additional files 4: Figure S4. The effects of different models on microbe
fitness and host fitness. This plot is based on small-scale simulations. Panels (a)
and (b) show the effects of different models of selection on final values of
average microbial fitness and host fitness, respectively. The vertical axis in each
figure represents the final fold change of average microbe or host fitnesses
with respect to the initial levels. The categories on the horizontal axes represent
different selective models; colors ranging from black to white label different
host parental contributions to offspring or environmental microbiomes (see
Fig. 4 for description). Over each bar, asterisks indicate the statistical significance
of differences from neutral models (***p value < 0.0001, **p value < 0.001,
**p value <001, *p value < 0.05). For panel (a), microbial fitness is strongly influ-
enced by any selective model in which microbial selection operates, ie, HMS,
TMS, HS and HMS, and HS and TMS. For panel (b), host fitness is most strongly
affected when HS and HMS apply (even when parental contributions to off-
spring or environmental microbial communities are absent) or when HS or HS
and TMS operate with high parental contributions. (TIFF 4270 kb)

Additional files 5: Figure S5. The effects of HS on microbe and host
fitnesses under pure parental acquisition. Each point corresponds to one
simulation implemented under HS alone and pure parental acquisition
for 1000,000 host generations. The vertical axes represent the log final
fold change of average host/microbe fitnesses with respect to the initial
levels (red dot, host fitness; blue triangle, microbe fitness). The horizontal
axes represent the logarithm of host selection parameters with respect to
base 10. (TIFF 710 kb)

Additional files 6: Figure S1. Scatterplots of host fitness changes and
initial HS-TMS consistency under host and microbial selections. Each dot
represents one simulation performed under the selective model of HS
and TMS (sys = sys = 10). For each simulation, the HS-TMS consistency is
a fixed value over time but randomly initialized since the trait fitnesses to
host and microbe are randomly assigned at the very beginning. The
changes in average fitness of host population is measured by subtracting
the initial fitness level from the final (positive value means increased fit-
ness and negative value means decreased fitness). Pearson correlation
tests were performed and suggested a strongly positive correlation

(r = 0.6413382) between host fitness changes and initial HS-TMS
consistency (p value < 2eA—16). (TIFF 300 kb)

Additional files 7: Figure S7. A scatterplot for visualizing the positively
correlated relationship between host fitness changes and initial HS-TMS
consistency. This plot is based on small-scale simulations. Each dot repre-
sents one simulation performed under the selective model of HS and
TMS. For each simulation, the HS-TMS consistency is a fixed value over
time but randomly initialized since the trait fitnesses to host and microbe
are randomly assigned at the very beginning. The changes in average fit-
ness of the host population is measured by subtracting the initial fitness
level from the final (positive value means increased fitness and negative
value means decreased fitness). (TIFF 2927 kb)
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