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Abstract

Background: Infectious diseases of wildlife are increasing worldwide with implications for conservation and human
public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease
resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd),
has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of
naive, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting,
previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats
shifts following WNS invasion.

Results: Using high-throughput 16S rRNA gene sequencing on 66 bats and 11 environmental samples, we found that
hibernation site strongly influenced the composition and diversity of the skin microbiota. Bats from WNS-positive and
WNS-negative sites differed in alpha and beta diversity, as well as in microbiota composition. Alpha diversity
was reduced in persisting, WNS-positive bats, and the microbiota profile was enriched with particular taxa
such Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus. Some of these taxa are
recognized for their antifungal activity, and specific strains of Rhodococcus and Pseudomonas are known to
inhibit Pd growth. Composition of the microbial community in the hibernaculum environment and the
community on bat skin was superficially similar but differed in relative abundance of some bacterial taxa.

Conclusions: Our results are consistent with the hypothesis that Pd invasion leads to a shift in the skin
microbiota of surviving bats and suggest the possibility that the microbiota plays a protective role for bats
facing WNS. The detection of what appears to be enrichment of beneficial bacteria in the skin microbiota
of persisting bats is a promising discovery for species re-establishment. Our findings highlight not only the
potential value of management actions that might encourage transmission, growth, and establishment of
beneficial bacteria on bats, and within hibernacula, but also the potential risks of such management
actions.
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Background
Infectious diseases of wildlife are on the rise world-
wide with dramatic consequences for wildlife conser-
vation and human public health [1-3]. In North
America, insectivorous bats provide important
ecosystem services by limiting insect pests and
potentially saving billions of dollars annually for
agriculture [4, 5]. However, a number of ecologically
important species are threatened by white-nose
syndrome (WNS). This skin disease, caused by the
fungus Pseudogymnoascus destructans (Pd) [6, 7], has
killed millions of North American bats since 2006 [8].
White-nose syndrome involves invasion of exposed
skin by Pd, and the disease is defined by cup-shaped
erosions and ulcerations on the tissue of the flight
membranes (wings and tail), ears, and muzzle [9].
Infection of the flight membranes is thought to be the
most pathologically significant aspect of the infection be-
cause this tissue is involved in fluid balance, thermoregu-
lation, and gas exchange [10]. Pd invades hair follicles and
sebaceous and apocrine glands [9]. This likely disrupts
secretions that contribute to skin integrity [11, 12] with
consequences for defense against pathogens and import-
ant skin commensal microorganisms [13]. Hibernating
bats survive the winter on just a few grams of stored fat by
using prolonged energy-saving bouts of torpor character-
ized by dramatically reduced body temperatures and
metabolism [14-16]. Pd is adapted for growth at the low
temperature characteristic of bat skin during torpor [6],
and infection causes hibernating bats to warm up too
frequently during winter and deplete their fat reserves
[17, 18]. The immune system is downregulated during
hibernation [19-21] which, in turn, facilitates infection.
Seven species of bats have suffered impacts from
WNS in North America [22] but not all bat species
are equally affected [23, 24]. It has been suggested
that environmental conditions inside hibernacula,
physiology, and behavior could all play a role in the
variable tolerance of, or resistance to, infection with
Pd among species [22, 24-26]. In Canada, the
northern long-eared bat (Myotis septentrionalis), the
little brown bat (Myotis lucifugus), and the tricolored
bat (Perimyotis subflavus) are listed as federally en-
dangered [22] due to mortality rates of 75-90% dur-
ing the several-year invasion stage of the disease [27].
Despite extremely high mortality during the epidemic
stage of WNS, some hibernating colonies of at least one
highly vulnerable species (e.g., M. lucifugus) seem to
have persisted following disease invasion [24, 28-30]
with colony counts stabilizing at about 5 to 30% of their
initial size [24, 28]. Recently, it was observed that inten-
sity of infection with Pd, based on swabs of bat forearms
and quantitative PCR, was significantly lower for persist-
ing colonies in which Pd had become established,
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compared to colonies in the midst of the epidemic phase
and massive declines [31]. One mechanism that could
explain this pattern is a fundamental shift in the micro-
bial community living on bat skin due to selection for
Pd antagonists. Strong selection for microbial taxa that
inhibit Pd could provide resistance to the fungus and
increase bat survival.

Animal skin is an ecosystem inhabited by highly
variable and complex communities of microorganisms
[13]. This community, called microbiota, can be
divided into a resident flora, defined as a relatively
stable assemblage in size and composition, and a
transient flora, acquired from the local environment
and that only temporarily colonizes the skin [32]. A
healthy skin microbiota can directly contribute to
host fitness by occupying pathogen adhesion sites and
producing pathogen inhibitors [13, 33]. Competitive
interactions between beneficial and pathogenic skin
microbes are hypothesized to play a role in disease
dynamics for wild animals [34]. For example, the
bacterium Janthinobacterium lividum, which lives on
salamander skin, appears to confer resistance to the
devastating  fungal  pathogen  Batrachochytrium
dendrobatidis [35] and could explain why some sala-
mander populations decline while others do not. Re-
cently, a strain of the bacterium Pseudomonas
fluorescens isolated from the skin of a bat species
thought to be resistant to WNS (Eptesicus fuscus) was
shown to inhibit Pd growth in vitro [36] as well as in vivo
for M. lucifugus [37]. It has been hypothesized that WNS
could cause a shift in microbiota communities of the skin
[38], and this could be one mechanism underlying resist-
ance in persisting bats. However, it could also have
negative consequences for bat populations if a shift in the
microbiota makes it easier for opportunistic pathogens
other than Pd to invade the skin. A detailed
characterization of the skin microbiota for WNS-positive
and WNS-negative bats is, therefore, needed to fully
understand potential implications of skin microbial
communities in the context of WNS.

Due to its direct exposure to the local environment,
the skin microbiota is more dynamic and should be
more strongly influenced by the environment, than the
gut microbiota [39]. Environment and host species are
strong predictors of variation in the skin microbiota
among bats [40-42]. However, one study [43] found a
strong influence of site and habitat type on the skin
microbiota of 13 bat species in the western USA but was
not able to detect an influence of host species or sex.
For bats and amphibians, the local environment appears
to act as a reservoir for skin microbiota, while condi-
tions on the skin may lead to selection favoring or
enriching particular taxa [40, 44, 45]. Consequently, host
and local environmental factors appear to interact
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closely to shape the skin microbiota. This suggests that
the skin microbiota could exhibit dramatic temporal
variation for species characterized by seasonal shifts in
physiology and habitat selection. Bats exhibit enormous
changes in metabolism and habitat selection between
winter and summer. Therefore, to fully characterize the
skin microbiota and its relevance to WNS, bats must be
sampled at the appropriate time during hibernation.

Several studies have reported on the skin micro-
biota of North American bats, but, to date, these
have involved individuals not yet affected by WNS
[42, 43] or have been based on relatively small sam-
ple sizes [38, 40]. Our objective was to understand
the potential interaction between Pd and the skin
microbiota of bats by comparing individuals from
WNS-positive and WNS-negative regions. We used
high-throughput 16S amplicon sequencing to
characterize the composition and diversity of the
skin microbiota of M. lucifugus sampled from WNS-
positive (Québec) and WNS-negative (Manitoba) hi-
bernacula in the northern part of this species’ range,
in Canada. We tested two predictions of the hypoth-
esis that WNS is causing selection favoring Pd
antagonists on the skin microbiota of bats in the
affected region. First, we predicted that bats persist-
ing in WNS-affected sites would exhibit reduced di-
versity of their microbiota consistent with strong
selection for a subset of pre-WNS microbial species
[38]. Second, we predicted that the microbiota of
persisting bats from WNS-affected sites would show
a proportional increase in antifungal/anti-Pd bacter-
ial species such as those identified in previous
studies [36, 37, 46]. We also tested the third hypoth-
esis that variation in the skin microbiota of hiberna-
ting bats relates to environmental variation in the
microbial community of a given cave. We predicted
that the diversity and composition of the microbial
community living on individual bats would be
similar to that found on substrates in the local en-
vironment of their hibernaculum and would differ
from that on bats and the local environment in
other hibernacula.
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Methods

Sampling and ethics

During winter 2015-2016, we sampled the skin micro-
biota of 33 M. lucifugus from three WNS-negative hiber-
nacula in central Manitoba (Canada) about 50 km north
of the town of Grand Rapids (53° 30" N; 99° 24" W) and
another 33 individuals from three sites known to be
WNS-positive since 2010 in Québec (Canada) within
60 km north of Gatineau city (45° 28" N; 75° 42" W).
The temperature within sites ranged from -3 to 7 °C at
sampling time. Site and population information are
specified in Table 1.

Bats in a given hibernaculum were always sampled
from within the same area (i.e., room, gallery, corridor).
We selected bats at random from among those we could
reach from the ground. Little brown bats are highly gre-
garious during hibernation, and most individuals spend
at least part of their time huddling or clustering during
hibernation. We defined bats in direct contact with each
other as being members of the same cluster. Sixty-four
of the 66 bats we sampled were clustering with other
bats, and cluster sizes ranged in size from 2 to 11 indi-
viduals. We sampled two bats at Emerald that were
roosting solitarily (Additional file 1). We swabbed 11
individual bats per site. Samples were collected by swab-
bing in linear strokes the back and forearm of each bat
for 20 s with a sterile Whatman Omniswab (Fisher
Scientific) soaked in sterile 0.15 M NaCl [41]. Swab tips
were ejected into MoBio Powersoil DNA isolation Kit
tubes (MoBio Laboratories), which were transferred to
-20 °C within 24 h of sampling until DNA extraction.
Local environment samples were also collected by
swabbing cave walls adjacent to clusters of sampled bats
for 20 s in linear strokes (approx. 5 cm). As a negative
control, a humidified sterile swab was exposed to open
air for 20 s, prior to ejecting its tip into a MoBio tube.

Bats are vulnerable to disturbance during hibernation,
and we were careful to minimize the impact of our
visits. Only two people entered hibernacula for sampling,
and bats were not handled during swabbing so we did
not determine their sex. A previous study established
that sex was not a significant predictor of the external

Table 1 M. lucifugus hibernaculum sites information in Manitoba and Québec provinces

Sites Province Hibernaculum Rock Pre-WNS count Total count 2015-2016 Sampling dates
Abyss Manitoba Cave Dolomite NA 399 08/02/2016
Dale’s Manitoba Cave Dolomite NA 385 08/02/2016
Microwave Manitoba Cave Dolomite NA 30 09/02/2016
Emerald Québec Mine Pyroxenite 735° 18 04/03/2016
Lafleche Québec Cave Calcite 450° 155 23/11/2015
Lames Québec Cave Calcite Unknown® 105 24/11/2015
#2009-2010

PFirst count of 96 bats was in 2012-2013, after the arrival of WNS in the area
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microbiota of bats [43]. Therefore, differences among
hibernacula are likely to reflect the influence of the local
habitat (e.g., differences in temperature, humidity, and
environmental bacteria), rather than difference in sex
ratio among sites. All methods were approved by the
Animal Welfare and Ethics Committee at Université de
Montréal (Protocol Number #16-015) and the University
of Winnipeg Animal Care Committee (Protocol Number
AEO5639).

DNA extraction, amplification, and sequencing

Bacterial genomic DNA was extracted from each swab
using the MoBio Powersoil DNA isolation Kit according
to the manufacturer’s protocol. Extractions were random-
ized for site and region to avoid detecting false patterns
[47]. Extraction, amplification blanks, and the HM-782D
Human Microbiome Project mock community (BEIL
Resources) were also included to detect possible contam-
ination and assess sequencing accuracy [47, 48].
Amplification and sequencing were then performed as
previously described [49]. Libraries were prepared using a
two-step PCR. The first PCR amplified the hypervariable
region V4 of the 16S small subunit ribosomal gene with
forward primer U515_f: ACACGACGCTCTTCCGATC
TYRYRGTGCCA GCMGCCGCGGTAA and reverse pri-
mer E786_R: CGGCATTCCTGCTGAACCGCTCTTCC
GATCTGGACTACHVGGGTWTCTAAT [50]. Two mi-
croliters of extracted DNA (equivalent DNA amount by
sample) was added to the PCR reaction containing
14.25 pl of sterile water, 5 pul HF buffer, 0.5 ul DNTPs,
0.25 ul Phusion High-Fidelity DNA Polymerase (New
England Biolabs Inc.), and 1.5 pl of forward and reverse
primers. Amplifications were performed with a
Mastercycler Nexus GSX1 (Eppendorf) under the fol-
lowing conditions: initial denaturation at 98 °C for
30 s; 30 cycles alternating 98 °C for 25 s, 40 s at 54 °C,
35 s at 72 °C, and final elongation step for 1 min at 72 °C.
Each sample was amplified in quadruplicate and pooled to
limit possible PCR artifacts. All PCR products were then
purified by PCR purification Agencourt AMPure XP
(Beckman Coulter). The second PCR step consisted of
adding primers containing a barcode (index) and Illumina
adapter sequences to each DNA amplicon. To do so, 4 pl
of the first step amplification product was added to a PCR
reaction containing 10.25 pl of sterile water, 5 pl HF
buffer, 0.5 pl DNTPs, 0.25 pl Phusion High-Fidelity DNA
Polymerase, and 2.5 pl of forward primer PE-III-PCR-
F:AATGATACGGCGACCACCGAGATCTACACTCTTT
CCCTACACGACGCTCTTCCGATCT and reverse pri-
mer PE-III-PCR-001-096:CAAGCAGA AGACGGCAT
ACGAGATNNNNNNNNNCGGTCTCGGCATTCCTG
CTGAACCGCTCTTCCGATCT (N indicating the unique
barcode) [51]. Indexing was performed under the follow-
ing thermal conditions: initial denaturation at 98 °C for
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30 s, 7 cycles alternating 98 °C for 30 s, 30 s at 83 °C, and
finally 30 s at 72 °C. This second amplification was
performed in triplicate. Samples were pooled and purified
with the PCR purification Agencourt AMPure XP
(Beckman Coulter). Qubit 2.0 Fluorometer (Invitrogen)
was used to measure the DNA concentration of each sam-
ple. Indexed samples were then pooled to obtain a final
concentration range between 10 and 20 ng/pl. DNA was
next diluted and denatured according to the manufac-
turer’s protocol for paired-end sequencing using MiSeq
Reagent Kit v2 (500 cycles) 2 x 250 bp on MiSeq
(Illumina).

Data analysis

We amplified 4,072,792 sequences classified into
13,224 operational taxonomic units (OTUs) from the
66 swabs of bat skin and 11 environmental samples
(one or two per site). A total of 3,729,096 sequences
classified in 11,812 OTUs were amplified from bat
samples with a mean of 56,501 sequences per sample
(range 9920-100,812). A total of 343,696 sequences
classified in 9302 OTUs were obtained from the 11
environmental samples, with a mean of 31,245 se-
quences per sample (range 10,325-73,877). We were
able to match all expected sequences in the mock
positive control, except for Helicobacter pylori, which
genus was nonetheless the most abundant in the
compositional data (see Additional file 2). The genera
or families of the 20 expected mock taxa were also
the most abundant in the mock profile. We detected
36 false positives, with very low abundances (< 0.3%)
(see Additional file 2). After filtering out OTUs with
abundance values smaller than 3, sampling controls,
extraction controls, and library negative controls were
dominated by Halomonas (5-75%, mean of 56%) and
Shewanella  genera (1-26%, mean 18%) (see
Additional file 3).

Preclustering, quality filtering, primer removal, mer-
ging of raw sequences, and postclustering dereplication
were performed with the SmileTrain scripts [52] for 16S
data processing using USEARCH v. 7.0.1090 [53].
Distribution-based clustering using the dbOTUcaller
algorithm was performed to cluster sequences into
OTUs by considering the distribution of DNA sequences
across samples and distances between sequences [51].
The corresponding OTU table, providing abundances of
bacterial taxa in the different samples was assigned with
QIIME version 1.9.0 [54] using GreenGenes database
release 13_5 [55]. For alpha diversity and compositional
analysis of bat samples, mitochondrial and chloroplastic
DNA sequences, as well as OTUs with abundance values
smaller than 3, were filtered out, leaving 3,716,672
sequences classified into 9897 OTUs. In addition, the
genera Halomonas and Shewanella, present in negative
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controls, were filtered out from all bat samples for com-
positional analysis, resulting in 3,145,399 sequences clas-
sified into 9575 OTUs.

The diversity of the skin microbial community (alpha
diversity) of each sample was computed using the
Shannon index [56]. The Shannon index, which includes
both OTU richness and evenness, was selected due to
its reduced sensitivity to sample depth differences [49,
57] (Additional file 4). R version 3.1.3 [58] was used for
all statistical analyses. Log-transformed alpha diversity
values were compared between WNS-positive and
WNS-negative regions, using a linear mixed-effect
model (Ime() function), and significance was tested with
anova.lme() of the nlme package [59]. Hibernaculum
and clusters were included as a random effect. Variation
in diversity among sites within the WNS-positive and
WNS-negative regions was tested using a one-way
ANOVA (function aov()) and post hoc Tukey test (func-
tion TukeyHSD()) of the package stats [58].

The change in diversity among skin microbial
community (beta diversity) was calculated among
skin microbiota samples and environmental samples.
Two distinct phylogenetic distances, unweighted
UniFrac (qualitative) and weighted UniFrac (quanti-
tative) [60, 61], were computed on rarefied data, as
such measures could be sensitive to differences in
sequencing depth [62, 63]. UniFrac distances were
computed from bat samples rarefied at 9886 se-
quences/sample and from environmental + bat sam-
ples rarefied at 9898 sequences/sample after
retrieving OTUs in low abundance (<3 sequences).
Computations were performed with the phyloseq
package [64]. All beta diversity results were visual-
ized with principal coordinates analysis (PCoA) [65]
using the ordinate() function. The UniFrac distance
matrix was checked with is.euclid() function of the
ade4 package [66] prior to the ordination to ensure
that all distances were Euclidian and properly repre-
sented by PCoA [67]. When required, square-root
transformations were applied to obtain distance
matrices satisfying the Euclidian condition. All
phylogeny-based UniFrac distances were calculated
using a phylogenetic tree constructed with FastTree
2.1.8 [68].

To assess the influence of explanatory variables on the
microbiota composition, we used distance-based redun-
dancy analysis (db-RDA), a method intended to conduct
a redundancy analysis (RDA) on distance matrices [69].
It is computed by first decomposing UniFrac distances
(weighted or unweighted) into principal coordinates and
then applying RDA to the corresponding principal coor-
dinates using the capscale() function of the R package
vegan [70]. Four distinct models were constructed to test
the relative importance of (1) WNS status (i.e., WNS-
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negative vs. WNS-positive), (2) sampling sites (i.e., the
six different hibernacula), (3) types of samples (i.e., bat
samples vs. local environment samples), and (4) clusters
(i.e., bat clusters within each hibernaculum). To better
understand the relationships among explanatory models
in the variation of the microbial assemblages, partial db-
RDA was also computed [71]. This form of RDA allows
for exploration of the contribution of an explanatory
variable model while controlling for other explanatory
models. Adjusted R-squared (R?) values [72] were calcu-
lated to compare the explanatory power of such models
containing different numbers of variables. Significance of
db-RDA and partial db-RDA was tested via 9999 permu-
tations with the anova.cca() function of the R package
vegan.

The microbiota composition was explored down to
genus level to assess differences among hibernacula and
between WNS-positive and WNS-negative sites. To
emphasize these differences, Indicator Value tests
(IndVal) [73] were performed on relative abundance
data, using the 26 taxa with a relative abundance larger
than 1% for the analysis. The IndVal indicator value is
based on the comparison of occurrences and abun-
dances of taxa across predefined groups of bats (e.g.,
grouped by sites or WNS status). The analysis for any
given taxon is not influenced by other taxa present in
the dataset. It provides an index ranging between 0 and
1, the maximum value indicating a taxon exclusively
present in one group. IndVal is calculated as the product
of A (specificity, i.e., the probability that a site belongs to
the group given the fact that a given species is found in
that site) and B (fidelity, i.e., the probability of finding a
given taxon at a site when the site belongs to that group)
[73]. The multipatt() function of the R package indicspe-
cies [74] was used to compute indicator values, and
significance was assessed with 9999 permutations of
object between groups. The p.adjust() function of the R
package stats was used to correct p values for multiple
comparisons [75]. A corrected p value threshold of 0.05
was considered significant in all tests, and only signifi-
cant taxa with a specificity of A > 0.4 were retained as
indicators.

Results

Alpha diversity in WNS-positive and WNS-negative
regions

After controlling for sites and bat clusters using a linear
mixed-effects model, we found significant differences in
Shannon diversity between our pooled set of WNS-
positive hibernacula in Québec and WNS-negative
hibernacula in Manitoba (F; 4 = 16.27, p < 0.05) (Fig. 1a).
WNS-positive sites had significantly lower Shannon di-
versity than WNS-negative sites (Fig. 1a). We also found
significant variation in alpha diversity between some of
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Fig. 1 Alpha diversity of M. lucifugus skin microbiota in WNS-positive and WNS-negative sites in Canada. Distribution of alpha diversity within
groups as estimated by the Shannon index for a hibernacula pooled by WNS status (positive vs. negative) and b all six hibernacula sampled in
the study. Error bars represent standard deviations. Significant differences in alpha diversity among groups are indicated by different letters
according to linear mixed model effect, ANOVA, and Tukey's test (p < 0.05)
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the hibernacula in the WNS-negative region (ANOVA:
Fy 30 = 22.84, p < 0.001), whereas all the three WNS-po-
sitive sites in Québec were statistically indistinguishable
from each other and had relatively low alpha diversity
(ANOVA: F,3p = 0.96, p = 0.395) (Fig. 1b). Within the
WNS-negative region in Manitoba, Abyss cave harbored
particularly high alpha diversity and was significantly dif-
ferent from Dale’s (Tukey’s; p < 0.001) and Microwave
(Tukey’s: p < 0.001).

Beta diversity analysis of microbial community
assemblage
We first used beta diversity analysis to explore compos-
itional differences among skin microbiota samples alone,
that is, after removing all environmental samples from
the analysis. The PCoA, based on unweighted UniFrac,
revealed a clear separation between WNS-positive sites
in Québec and WNS-negative sites in Manitoba, and
also grouped samples from within the same hibernacu-
lum (Fig. 2a). This pattern was not observed with
weighted UniFrac (Fig. 2b), which implies that account-
ing for differential abundances (weighted UniFrac), and
not just the presence/absence of bacterial OTUs
between samples (unweighted UniFrac), affected our
results. However, the first principal axes, accounting for
20.1% of the variation in the data, support the separation
of microbiota samples according to WNS status
(Fig. 2a).

In order to better relate these patterns to different var-
iables, we used a distance-based redundancy analysis

(db-RDA) to compute from UniFrac distances among
skin microbiota samples using three distinct explanatory
models: (1) WNS status, (2) sampling sites (hibernacula),
and (3) clusters (bat clusters within each hibernaculum).
Unweighted UniFrac distances revealed that each of
these models explained a significant fraction of micro-
biota community variation (Table 2). The WNS status
model explained 8%, sites explained 22%, and bat cluster
explained 28% of microbiota community variation
among samples. Weighted UniFrac distances accounting
for abundance of taxa revealed similar patterns with
WNS status explaining 14%, sites explaining 26%, and
cluster explaining 30% of the variation in the microbiota
samples (Table 2).

In light of these results, we conducted partial RDA to
better distinguish the relative influence of our three
explanatory models (Table 2). This analysis revealed that
WNS status explained no variation after controlling for
sites and/or clustering. Similarly, the sites model
explained none of the variation after controlling for bat
cluster. The cluster model, on the other hand, explained
a significant fraction of variation in microbiota
community after controlling for sites, both with
weighted and unweighted UniFrac distances. These re-
sults suggest that bat clustering within each hibernacu-
lum exerts strong influence on the composition of the
skin microbiota. Controlling for WNS status, however,
greatly reduced the variation explained by sites and
cluster models alone, regardless of UniFrac distances
(unweighted or weighted). Taken together, the results of
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simple and partial db-RDA analyses suggest that sites,
combined with a local effect of bat clustering within
sites, contribute to shaping the skin microbiota, whereas
WNS status have much less influence.

We next used unweighted and weighted UniFrac to
explore the relationship between skin microbiota sam-
ples and environmental samples collected at each site.
The first PCoA, based on unweighted UniFrac distances,
grouped skin microbiota samples and environmental
samples by sites, with some overlap between them
(Fig. 3a). The second PCoA based on weighted UniFrac
distances revealed a different pattern, however. In that
case, the PCoA plot clearly distinguished between envir-
onmental samples and skin microbiota samples collected
at all sites (Fig. 3b), except for three bat samples from
Abyss and one from Dale’s. The results of PCoA suggest
that the presence/absence of OTUs in bat skin samples
is influenced by the local environment within each

hibernaculum. Yet, the same analyses also reveal differ-
ences in abundance patterns of some OTUs in bat skin
samples compared to local environmental samples.

We then used RDA to explore the influence of site (hi-
bernaculum) and sample type (bat vs. environment sam-
ples) on variation in microbial community assemblage.
Both of these models were significant (Table 3), but the
sites model accounted for the most variation in the data,
explaining 18% of the microbial community variation in
both UniFrac distances employed (Table 3). The sample
type model only explained 5% of microbial variation for
unweighted UniFrac distances and 8% for weighted dis-
tances. The higher explanatory power of the weighted
UniFrac model indicates that differences observed be-
tween environmental samples and bat samples partly de-
pend on the relative abundance of each taxon within the
corresponding microbial communities. This is consistent
with patterns revealed by the PCoA plots (Fig. 3).
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Table 2 db-RDA of unweighted and weighted UniFrac distances
of M. lucifugus skin microbiota samples

Model ~ Test Adjusted R® F statistic
db-RDA unweighted WNS Global test 0.0850***  7.0354
UniFrac Partial test: sites 0 0

Partial test: 0 0
clusters

Sites Global test 0.2204*** 46754

Partial test: 0 0
clusters
Partial test: WNS  0.1354***  3.7798
Clusters Global test 0.2840*** 29829
Partial test: sites  0.0637*** 1.6676
Partial test: WNS  0.1989*** 24813
db-RDA weighted WNS Global test 0.1413%** 11.7000
UniFrac Partial test: sites 0 0
Partial test: 0 0
clusters

Sites Global test 0.2552%** 54543

Partial test: 0 0

clusters

Partial test: WNS  0.1138%** 34457
Clusters Global test 0.3039*** 31833

Partial test: sites  0.0491*** 1.5286

Partial test: WNS = 0.1623*** 22433

WNS, sites, and clusters model redundant variation with UniFrac beta diversity
variation among M. lucifugus skin microbiota. Global test for one model
redundant variation on microbial community whereas the partial test for the
model controlling variation from the other model. ***p < 0.001. Total inertia of
response variable matrix is 0.21286 for unweighted UniFrac db-RDA and
0.10555 for weighted UniFrac db-RDA

We used a partial db-RDA to better understand the re-
lationship between the two explanatory models, and
their influence on the composition of microbial commu-
nities. In both cases, when variation of one model was
controlled for using partial db-RDA, the ability of the
models to explain variation in microbial community
composition was slightly increased by 1% (Table 3).
These results suggest that both sample type and sites
models had a non-redundant influence on microbial
community variation and that the local environment is
an important factor explaining skin microbiota patterns
of hibernating bats in our study sites.

Taxonomic indicators of WNS status

We found that the most abundant bacterial taxa were
shared among all hibernacula, but we also identified
indicator taxa present more often and more abundant at
particular sites. At the phylum level, the dominant taxa ac-
counting together for 86 to 98% of overall profiles in a
given cave were Actinobacteria (23 to 53%),
Proteobacteria (24 to 51%), and Bacteroidetes (6 to 38%)
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(Additionalfile 5). At the class level, the six principal taxa
accounting for 80 to 98% of the total abundance were
Actinobacteria, Gammaproteobacteria, Flavobacteriia,
Sphingobacteriia, Alphaproteobacteria, and Betaproteo-
bacteria (Additional file 6).

Generalist genera such as Arthrobacter, Chryseobacter-
ium, Flavobacterium, Intrasporangiaceae, Pedobacter,
Mycoplana, Pseudonocardiaceae, Ralstonia, Rhodococ-
cus, Sinobacteraceae, and Sphingobacterium were identi-
fied from all sites (Additional file 7). Significant
representatives were found among the 26 more abun-
dant taxa representing more than 1% of the total com-
position profile (Fig. 4, Additional file 8). Among the
more abundant taxa identified at three WNS-positive
sites in Québec, only Pseudomonas and Acinetobacter
were indicators of one site (Fig. 4, Additional file 8). On
the other hand, the more abundant taxa at three WNS-
negative sites in Manitoba, Knoellia, Brucellaceae:Other,
Microbacterium, and Pseudomonadaceae were all indica-
tors of the Microwave site (Fig. 4, Additional file 8). The
largest indicator value was obtained for Nitrosovibrio at
the Abyss site. Cytophagaceae and Flavobacteriaceae
were also associated with Abyss. Representative taxa
were identified from all hibernacula, except for Emerald,
Lafleche and Dale’s.

We compared skin microbiota profiles based on
WNS status in order to highlight possible differences
in microbial composition related to the fungal disease.
Here, again, some of the most abundant taxa such as
Pedobacter and Intrasporangiaceae were not signifi-
cant representatives as they were identified in both
areas in similar relative abundance (Additional file 7).
However, a large number of significant indicators
were detected, some with high indicator values. At
WNS-negative sites in Manitoba, significant indicators
were  Knoellia, Brucellaceae:Other, Nitrosovibrio,
Flavobacteriaceae, Enterobacteriaceae, Microbacterium,
Sphingobacterium, Cytophagaceae, Chryseobacterium,
and Xanthomonadaceae (Fig. 5, Additional file 9). On
the other hand, significant indicators of WNS-positive
sites in Québec were Ralstonia, Janthinobacterium,
Rhodococcus, Micrococcaceae, and Pseudomonas
(Fig. 5, Additional file 9).

Discussion

We compared the skin microbiota of bats from WNS-
positive and WNS-negative sites to better understand
the role of the microbiota as a factor in the host-
pathogen interaction associated with WNS. We found
support for the hypotheses that WNS has contributed
changes in the skin microbiota for bats that are persist-
ing in affected regions and that the skin microbiota is
strongly influenced by the local environment within
hibernacula. Although we cannot rule out the role of
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geographic variation confounded here with WNS status
we believe that our results are more consistent with the
proposal that WNS has led to a shift in the microbiota
of bats inhabiting WNS-positive sites. For one, our
analyses based on weighted UniFrac distances show no
clustering environmental samples by province when
analyzed together with bat samples, supporting that re-
gion is not a major driver of microbiota communities.
Second, because Pd affects and interacts with the skin so
directly and because higher levels of bacteria known to
inhibit Pd growth in vitro [36, 46] and in vivo [37] were
observed, it seems more likely that WNS status, and not
geography, explains the compositional patterns. As pre-
dicted by our first hypothesis, the diversity of the skin
microbiota was indeed smaller at WNS-positive sites
compared to WNS-negative sites, which is consistent
with a shift in microbiota caused by Pd. In addition,
WNS status was a strong predictor of variation in
Shannon diversity values across sites. A previous study

on tricolored bats (P. subflavus) affected by WNS also
revealed a trend for lower diversity values at WNS-
positive sites [38], as shown here for little brown bats
persisting after WNS invasion. Phylogenetic beta
diversity analysis was also consistent with selection on
the microbiota by Pd and WNS. Future studies, asses-
sing diversity of the microbiota on bats from the same
sites, before and after Pd invasion, would help resolve
the WNS influence in microbiota diversity patterns of
persisting bats.

At the compositional level, the skin microbiota of hi-
bernating little brown bats is dominated by the classes
Actinobacteria, Gammaproteobacteria, Flavobacteriia,
Alphaproteobacteria, and Betaproteobacteria, a pattern
consistent with previous investigation of the skin
microbiota in several species of bats [42] and particularly
M. lucifugus [40]. Our analysis also identified
Sphingobacteriia as a predominant class. IndVal analysis
revealed that one interesting genus, Rhodococcus, was
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Table 3 db-RDA of unweighted and weighted UniFrac
distances among local environment and bat skin microbiota
samples

Model Test Adjusted  F
R? statistic
db-RDA unweighted Sites  Global 0.1804*** 43457
UniFrac Partial  01934"* 48220
type
Type  Global 0.0473%** 47786
Partial: 0.0604*** 66491
sites
db-RDA weighted UniFrac  Sites  Global 0.1763%** 42544
Partial: 0.1892%** 48584
type
Type  Global 0.0752***  7.1866
Partial: 0.0881*** 95141
sites

Sites and type model redundant variation with UniFrac beta diversity variation
among M. lucifugus skin microbiota and site environmental microbial
assemblage. Global test for one model redundant variation on microbial
community whereas the partial test for the model controlling variation from
the other model. ***p < 0.001. Total inertia of response variable matrix is
0.21818 for db-RDA unweighted UniFrac and 0.22375 db-RDA

weighted UniFrac

significantly more abundant in skin microbiota samples
collected at WNS-positive sites in Québec. This genus
has previously been identified on bats [38, 76] and is
known for its antifungal activity [77, 78]. Most interest-
ing, a volatile organic chemical produced by R. rhodo-
chrous strain DAP 96253 has been shown to inhibit Pd
growth in vitro [46]. Several other genera, reported as
antifungal agents, were also identified as significant indi-
cators of bat samples collected at WNS-positive sites.
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Namely, Pseudomonas was enriched at all WNS-positive
sites, whereas Acinetobacter was enriched at a single
WNS-positive site. Both taxa are known for their anti-
fungal activity [79, 80] and have been previously identi-
fied on the skin of North American bats [38, 40].
Moreover, one strain of Pseudomonas fluorescens has
been shown to inhibit Pd growth in vitro and reduce dis-
ease severity and improve survival of bats with WNS in
a laboratory challenge experiment [36, 37]. Another
lesser-known antifungal bacterial genus, Janthinobacter-
ium, was also identified as a significant representative at
WNS-positive sites in Québec. Some species from the
same genus isolated from the skin of wild amphibians
confer resistance against the fungal pathogen Batracho-
chytrium dendrobatidis 35, 79]. Enrichment of multiple
taxa with potential antifungal and anti-Pd activity in bats
persisting following WNS invasion is consistent with our
second hypothesis that the skin microbiota of bats pro-
vides a mechanism for resistance to, or tolerance of, Pd
infection. Further studies should focus on any functional
influence of these bacteria on the host-pathogen inter-
action between bats and Pd.

Consistent with our third hypothesis, we found that
the skin microbiota of hibernating little brown bats is re-
lated to the microbial community composition of the
nearby environmental substrates. That is, bacteria living
on bats and bacteria living on adjacent cave walls are
very likely exchanged by contact. However, bat skin sam-
ples and local environmental samples were by no means
identical in their compositional profiles, indicating that
microbial communities on the skin of hibernating bats
are probably not regulated in the same way as in the

*IndVal > 0.60, **IndVal L > 0.75, **IndVal > 0.89

Fig. 4 M. lucifugus skin microbiota taxa indicator of the six hibernacula of different WNS status in Canada. The sites from WNS-negative (Manitoba,
Canada) and WNS-positive (Québec) regions are presented. The significant indicators were identified by IndVal analysis among the 26
more abundant taxa representing more than 1% of total abundance. Stars indicate hibernacula with significant representative taxa.

B WNS+/Québec Lames

B WNS+/Québec Lafleche

B WNS+/Québec Emerald

M WNS-/Manitoba Microwave
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B WNS-/Manitoba Abyss
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environment (Additional file 10). These results are con-
sistent with other studies of bats [40] or frogs [44, 45]
showing that skin microbiota assemblages do not exactly
mirror the microbial communities in the immediate en-
vironment. Although we did not detect any related vari-
ation within sites of microbial communities of the skin
and that of the substrates, we found that individual bats
strongly differ across sites. Moreover, the tendency for
hibernating little brown bats to cluster, often in large
groups of hundreds to thousands of individuals, is likely
to reduce variation in the microbiota among individuals
because of transfer within clusters, as shown by our
analysis. Homogenization of the skin microbiota by close
contact among individuals has also been observed in
previous studies of bats and humans [41, 81]. Taken
together, these results suggest that bat populations could
differ in their susceptibility to WNS depending on the
microbial community in their immediate environment,
their reliance on clustering behavior, and the potential
for clustering to homogenize the bacterial community.
In this study, we did not attempt to quantify the
potential influence of abiotic variables, such as pH,
temperature, and humidity, and considered these factors
as possible contributors to site effects. It would be
interesting in future studies to analyze these factors
separately to understand their relative influence on the
microbial community on bats and in the environment.
Temporal variation may also have influenced the
compositional patterns observed in this study, but our
experimental protocol was designed to reduce this effect
as much as possible. All sites were sampled within a
relatively short period of time (less than 3.5 months),

and we avoided the start of hibernation when the experi-
ence of bats prior to hibernation might be expected to
more strongly influence their skin microbiota. Moreover,
the microbiota on bats or in the environment for the
single WNS-positive site we sampled in March
(Emerald) was not different from the two WNS-positive
sites we sampled in November (Lames and Lafleche).

Conclusions

This study highlights the role of skin microbiota for wild-
life population health, conservation, and management in
the face of emerging infectious diseases. The enrichment
of potentially beneficial bacteria in skin microbiota sam-
ples collected at WNS-positive hibernacula is an encour-
aging discovery for the prospect of bat population
recovery after WNS becomes endemic in a given region.
This finding highlights the potential value of management
actions that might encourage transmission, growth, and
establishment of beneficial bacterial taxa on bats and
within hibernacula [37]. However, our findings also high-
light a potential risk of some proposed management ac-
tions. Considerable funding and time is currently being
devoted to development and testing of potential chemical
or biological treatments for WNS that could be applied to
hibernating bats or hibernaculum substrates. Our results
not only support previous work highlighting the potential
of some bacteria as biological control agents for Pd (e.g.,
[36, 37, 46]) but also highlight a potential risk of biological
or chemical treatments. Treatments that disrupt the skin
microbiota or attenuate selection for a beneficial skin
community could cause more harm than good for recov-
ery of bat populations and the establishment of stable,
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long-term resistance to WNS in the wild. Thus, an im-
portant component of testing any potential treatment for
WNS should be to confirm that it is selective for Pd and
has minimal negative impacts on the whole non-target
microbiota on bats or in hibernacula.

Additional files

Additional file 1: Clusters of bats sampled within each hibernaculum
and coded as dummy variables for db-RDA analysis.

Additional file 2: Positive control mock community analysis. Sequence
set comparisons of the mock community to what is expected. File 1
shows the matching sequences and related taxa identified. File 2 shows
the taxa composition of the mock in relative abundance, the matching
taxa at the genus or family level, and the false positive taxa.

Additional file 3: Main taxa relative abundance (> 0.1%) in negative
control samples. File 1 presents DNA extraction control samples, file 2 the
library control, file 3 the negative site controls, and file 4 presents all
controls together.

Additional file 4: Rarefaction curves of alpha diversity calculated on
multiple rarefied data table for each of the 66 bat skin microbiota
samples and 11 environmental samples. (A) Shannon diversity of bat skin
samples. (B) Overall richness (OTUs observed) of bat skin samples. (C)
Shannon diversity of environmental samples. (D) Overall richness (OTUs
observed) of environmental samples.

Additional file 5: Main phyla identified in bat skin microbiota samples.
The 8 more abundant phyla across all hibernacula are provided.

Additional file 6: Main classes identified in bat skin microbiota samples.
The 6 more abundant classes across all hibernacula are provided.

Additional file 7: Major bacterial taxa identified in bat skin microbiota
samples. The 16 more abundant taxa across all hibernacula are provided.
Stars represent significant indicator taxa. *IndVal < 0.50, **IndVal > 0.50,
**IndVal > 0.89.

Additional file 8: V. lucifugus skin microbiota taxa indicator test and
related association measure (A, B) of six hibernaculum groups with
different WNS status in Canada. Indicator value tests were computed
with the multipatt() function of the indicspecies package in R. Only taxa
with A > 04 were retained as indicators. A, the specificity, is the
probability that a site belongs to the group given the fact that the
species is found and B, the fidelity, is the probability of finding a given
taxon when the sites belong to that group. *p < 0.05, **p < 0.01,

#%p < 0,001

Additional file 9: V. lucifugus skin microbiota taxa indicator and related
association measure (4, B) of WNS-positive (Québec) and WNS-negative
(Manitoba) sites in Canada. Indicator value tests were computed with the
multipatt() function of the indicspecies package in R. Only taxa with

A > 04 were retained as indicators. A, the specificity, is the probability
that a site belongs to the group given the fact that the species is found
and B, the fidelity, is the probability of finding a given taxon when the
sites belong to that group. *p < 0.05, **p < 0.01, **p < 0.001.

Additional file 10: OTU table resulting from the analysis of 66 bat skin
microbiota samples and 11 environmental samples.
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Acknowledgements

We thank Pascal Samson, Jocelyn Caron, Valérie Simard, Ariane Massé,
Guillaume Tremblay, Kaleigh Norquay, Ana Breit, Drew Sippell, Manon Gagné,
and Armand Yargeau for their assistance with the sampling, Julie Marleau for
help with the experiments, Nicolas Tromas for help with the sequence
treatment, and Quinn Fletcher for assistance in the data analysis.

The following reagent was obtained through BEI Resources, NIAID, NIH as
part of the Human Microbiome Project: Genomic DNA from Microbial Mock

Page 12 of 14

Community B (Even, Low Concentration), v5.1L, for 16S rRNA Gene
Sequencing, HM-782D.

Funding

This research was funded by Discovery Grants from the Natural Sciences and
Engineering Research Council (NSERC Canada) OGP0155251 to FJL and
RGPIN-2015-04437 to CKRW and excellence awards from the Quebec Centre
for Biodiversity Science. The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The datasets generated and analyzed during the current study are available
in the Figshare repository. Raw sequence data and metadata are available at
DOI: https:/figshare.com/s/623ale47b4bed20459a7 and DOI: https://
figshare.com/s/74d9497a792f9c0c76df.

Authors’ contributions

VLL designed the experiments, performed the sampling, carried out the
experiments, analyzed the data, and wrote the manuscript. CKRW and AS
helped in the sampling logistic and wrote the manuscript. FJL designed the
experiments and wrote the manuscript. All authors read and approved the
final manuscript.

Ethics approval and consent to participate

All methods were approved by the Animal Welfare and Ethics Committee at
Université de Montréal (Protocol Number #16-015) and the University of
Winnipeg Animal Care Committee (Protocol Number AEO5639).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details

1Départemem de Sciences Biologigues, Université de Montréal, CP 6182,
Succursale Centre-ville, Montréal, Québec H2V 259, Canada. “Direction de
I'expertise sur la faune terrestre, I'herpétofaune et I'avifaune, Ministére des
Foréts, de la Faune et des Parcs, Québec, Canada. *Department of Biology
and Centre for Forest Interdisciplinary Research, University of Winnipeg,
Winnipeg, Manitoba, Canada. “Quebec Centre for Biodiversity Science, CP
6182, Succursale Centre-ville, Montréal, Québec H2V 259, Canada.

Received: 27 March 2017 Accepted: 28 August 2017
Published online: 05 September 2017

References

1. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al.
Emerging fungal threats to animal, plant and ecosystem health. Nature.
2012,484(7393):186-94. https://doi.org/10.1038/nature10947.

2. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of
wildlife-threats to biodiversity and human health. Science. 2000,287(5452):
443-9. https;//doi.org/10.1126/science.287.5452.443.

3. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al.
Global trends in emerging infectious diseases. Nature. 2008;451(7181):990-3.
https://doi.org/10.1038/nature06536.

4. Boyles JG, Cryan PM, McCracken GF, Kunz TH. Economic importance of bats
in agriculture. Science. 2011,332(6025):41-2. https://doi.org/10.1126/science.
1201366.

5. Maine JJ, Boyles JG. Bats initiate vital agroecological interactions in corn.
Proc Natl Acad Sci. 2015;112(40):12438-43. https://doi.org/10.1073/pnas.
1505413112.

6. Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. Geomyces destructans
sp. nov. associated with bat white-nose syndrome. Mycotaxon. 2009;108(1):
147-54. https//doi.org/10.5248/108.147.

7. Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, et al.
Experimental infection of bats with Geomyces destructans causes white-


dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
dx.doi.org/10.1186/s40168-017-0334-y
https://figshare.com/s/623a1e47b4bed20459a7
https://figshare.com/s/74d9497a792f9c0c76df
https://figshare.com/s/74d9497a792f9c0c76df
http://dx.doi.org/10.1038/nature10947
http://dx.doi.org/10.1126/science.287.5452.443
http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1126/science.1201366
http://dx.doi.org/10.1126/science.1201366
http://dx.doi.org/10.1073/pnas.1505413112
http://dx.doi.org/10.1073/pnas.1505413112
http://dx.doi.org/10.5248/108.147

Lemieux-Labonté et al. Microbiome (2017) 5:115

20.

21.

22.

23.

24.

25.

26.

27.

nose syndrome. Nature. 2011;480:376-8. https://doi.org/10.1038/
nature10590.

US. Fish & Wildlife Service. North American bat death toll exceeds 5.5
million from white-nose syndrome. In: News release. 2012. http://www.
batcon.org/pdfs/USFWS_WNS_Mortality_2012_NR_FINALpdf. Accessed 28
Dec 2016.

Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V,
et al. Histopathologic criteria to confirm white-nose syndrome in bats. J Vet
Diagn Investig. 2009;21(4):411-4. https://doi.org/10.1177/
104063870902100401.

Cryan PM, Meteyer CU, Boyles JG, Blehert DS. Wing pathology of white-nose
syndrome in bats suggests life-threatening disruption of physiology. BMC
Biol. 2010;8:135. https://doi.org/10.1186/1741-7007-8-135.

Cortese TA, Nicoll PA. In vivo observations of skin appendages in the bat
wing. J Invest Dermatol. 1970;54:1-10. https.//doi.org/10.1111/1523-1747.
ep12551469.

Sisk MO. A study of the sudoriparous glands of the little brown bat, Myotis
lucifugus lucifugus. J Morphol. 1957;101:425-55. https.//doi.org/10.1002/jmor.
1051010303.

Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011,9(4):244-53.
https//doi.org/10.1038/nrmicro2537.

Czenze ZJ, Willis CKR. Warming up and shipping out: cues for arousal
and emergence in hibernating little brown bats (Myotis lucifugus). J
Comp Physiol B. 2015;185:575-86. https://doi.org/10.1007/500360-015-
0900-1.

Czenze ZJ, Park AD, Willis CKR. Staying cold through dinner: cold-climate
bats rewarm with conspecifics but not sunset during hibernation. J
Comp Physiol B. 2013;183(6):859-66. https://doi.org/10.1007/500360-013-
0753-4.

Jonasson KA, Willis CKR. Hibernation energetics of little brown bats. J Exp
Biol. 2012;215:2141-9. https://doi.org/10.1242/jeb.066514.

Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, et al.
Frequent arousal from hibernation linked to severity of infection and
mortality in bats with white-nose syndrome. PLoS One. 2012;7(6):238920.
https://doi.org/10.1371/journal.pone.0038920.

Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, et al.
Inoculation of bats with European Geomyces destructans supports the novel
pathogen hypothesis for the origin of white-nose syndrome. Proc Natl Acad
Sci. 2012;109(18):6999-7003. https://doi.org/10.1073/pnas.1200374109.
Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TH. Specific
alterations in complement protein activity of little brown myotis (Myotis
lucifugus) hibernating in white-nose syndrome affected sites. PLoS One.
2011;6(11):227430. https.//doi.org/10.1371/journal.pone.0027430.

Bouma HR, Carey HV, Kroese FG. Hibernation: the immune system at rest? J
of Leukoc Biol. 2010;88(4):619-24. https://doi.org/10.1189/j1b.0310174.
Geiser F. Metabolic rate and body temperature reduction during
hibernation and daily torpor. Annu Rev Physiol. 2004;66:239-74. https;//doi.
org/10.1146/annurev.physiol.66.032102.115105.

Frick WF, Puechmaille SJ, Willis CKR. White-nose syndrome in bats. In: Voigt
CC, Kingston T, editors. Bats in the Anthropocene: conservation of bats in a
changing world. Cham, Heidelberg, New York, Dordrecht, London: Springer
International Publishing; 2016. p. 245-62.

Turner GG, Reeder DM, Coleman JTH. A five-year assessment of mortality
and geographic spread of white-nose syndrome in North American bats,
with a look to the future. Bat Res News. 2011;52:13-27.

Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Kilpatrick AM. Sociality,
density-dependence and microclimates determine the persistence of
populations suffering from a novel fungal disease, white-nose
syndrome. Ecol Lett. 2012;15(9):1050-7. https://doi.org/10.1111/j.1461-
02482012.01829.x.

Willis CKR, Wilcox A. Hormones and hibernation: possible links between
hormone systems, winter energy balance and white-nose syndrome in bats.
Horm Behav. 2014;66(1):66-73. https://doi.org/10.1016/j.yhbeh.2014.04.009.
Puechmaille SJ, Frick WF, Kunz TH, Racey PA, Voigt CC, Wibbelt G, et al.
White-nose syndrome: is this emerging disease a threat to European bats?
Trends Ecol Evol. 2011,26:570-6. https://doi.org/10.1016/j.tree.2011.06.013.
COSEWIC. COSEWIC Assessment and Status Report on the little brown
Myotis lucifugus, Northern Myotis septentrionalis and tri-colored bat
Perimyotis subflavus in Canada. Committee on the Status of Endangered
Wildlife in Canada. 2013. http://www.registrelep-sararegistry.gc.ca/
document/default_e.cfm?documentlD=1323. Accessed 4 Jan 2017.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

Page 13 of 14

Frick WF, Puechmaille SJ, Hoyt JR, Nickel BA, Langwig KE, Foster JT, et al.
Disease alters macroecological patterns of North American bats. Glob Ecol
Biogeogr. 2015;24(7):741-9. https://doi.org/10.1111/geb.12290.

Dobony CA, Hicks AC, Langwig KE, von Linden RI, Okoniewski JC, Rainbolt RE.
Little brown myotis persist despite exposure to white-nose syndrome. J of Fish
Wildl Manag. 2011;2(2):190-5. https//doi.org/10.3996/022011-JFWM-014.
Maslo B, Valent M, Gumbs JF, Frick WF. Conservation implications of
ameliorating survival of little brown bats with white-nose syndrome. Ecol
Appl. 2015;25(7):1832-40. https://doi.org/10.1890/14-2472.1.

Langwig KE, Hoyt JR, Parise KL, Frick WF, Foster JT, Kilpatrick AM. Resistance
in persisting bat populations after white-nose syndrome invasion. Philos
Trans R Soc B Biol Sci. 2017;372(1712):20160044. https.//doi.org/10.1098/
rsth.2016.0044.

Price PB. The bacteriology of normal skin; a new quantitative test applied to
a study of the bacterial flora and the disinfectant action of mechanical
cleansing. J Infect Dis. 1938,63(3):301-18. http://www.jstor.org/stable/
30088420.

Roth RR, James WD. Microbial ecology of the skin. Annu Rev Microbiol.
1988;42:441-64. https;//doi.org/10.1146/annurev.mi42.100188.002301.
Belden LK, Harris RN. Infectious diseases in wildlife: the community ecology
context. Front Ecol Environ. 2007;5(10):533-9. https://doi.org/10.1890/060122.
Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, et
al. Amphibian chemical defense: antifungal metabolites of the
microsymbiont Janthinobacterium lividum on the salamander Plethodon
cinereus. J Chem Ecol. 2008;34(11):1422-9. https://doi.org/10.1007/510886-
008-9555-7.

Hoyt JR, Cheng TL, Langwig KE, Hee MM, Frick WF, Kilpatrick AM. Bacteria
isolated from bats inhibit the growth of Pseudogymnoascus destructans, the
causative agent of white-nose syndrome. PLoS One. 2015;10(4):e0121329.
https://doi.org/10.1371/journal.pone.0121329.

Cheng TL, Mayberry H, McGuire LP, Hoyt JR, Langwig KE, Nguyen H, et al.
Efficacy of a probiotic bacterium to treat bats affected by the disease
white-nose syndrome. J Appl Ecol. 2016; https://doi.org/10.1111/1365-
2664.12757.

Lueschow SR. Effect of Pseudogymnoascus destructans on microbial
community composition on bats. Ph.D. diss, Western lllinois University.
2015. http://search.proquest.com/docview/1758623705?accountid=12543.
Accessed 30 Dec 2016.

Romano-Bertrand S, Licznar-Fajardo P, Parer S, Jumas-Bilak E. Impact de
I'environnement sur les microbiotes: focus sur I'hospitalisation et les
microbiotes cutanés et chirurgicaux. Revue Francophone des Laboratoires.
2015;2015(469):75-82. https://doi.org/10.1016/51773-035X(15)72824-8.
Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al.
Deconstructing the bat skin microbiome: influences of the host and the
environment. Front Microbiol. 2016;7:1753. https://doi.org/10.3389/fmicb.
2016.01753.

Lemieux-Labonté V, Tromas N, Shapiro BJ, Lapointe FJ. Environment and
host species shape the skin microbiome of captive neotropical bats. PeerJ.
2016;4:€2430. https.//doi.org/10.7717/peer}.2430.

Winter AS, Kimble JC, Young JM, Buecher DC, Valdez EW, Hathaway JIM, et
al. External bacterial diversity on bats in the southwestern United
States: changes in bacterial community structure above and below
ground. PeerJ Preprints. 2016;4:¢2493v1. https://doi.org/10.7287/peerj.
preprints.2493v1.

Kooser A, Kimble JC, Young JM, Buecher DC, Valdez EW, Porras-Alfaro A, et al.
External microbiota of western United States bats: does it matter where you
are from? bioRxiv. 2015; 017319. doi: https://doi.org/10.1101/017319.

Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, et
al. Microbial community dynamics and effect of environmental microbial
reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 2014:8(4):
830-40. https.//doi.org/10.1038/ismej.2013.200.

Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, et al.
Amphibian skin may select for rare environmental microbes. ISME J. 2014;
8(11):2207-17. https.//doi.org/10.1038/ismej.2014.77.

Cornelison CT, Keel MK, Gabriel KT, Barlament CK, Tucker TA, Pierce GE,
et al. A preliminary report on the contact-independent antagonism of
Pseudogymnoascus destructans by Rhodococcus rhodochrous strain
DAP96253. BMC Microbiol. 2014;14:246. https://doi.org/10.1186/512866-
014-0246-y.

Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and laboratory contamination can critically impact sequence-


http://dx.doi.org/10.1038/nature10590
http://dx.doi.org/10.1038/nature10590
http://www.batcon.org/pdfs/USFWS_WNS_Mortality_2012_NR_FINAL.pdf
http://www.batcon.org/pdfs/USFWS_WNS_Mortality_2012_NR_FINAL.pdf
http://dx.doi.org/10.1177/104063870902100401
http://dx.doi.org/10.1177/104063870902100401
http://dx.doi.org/10.1186/1741-7007-8-135
http://dx.doi.org/10.1111/1523-1747.ep12551469
http://dx.doi.org/10.1111/1523-1747.ep12551469
http://dx.doi.org/10.1002/jmor.1051010303
http://dx.doi.org/10.1002/jmor.1051010303
http://dx.doi.org/10.1038/nrmicro2537
http://dx.doi.org/10.1007/s00360-015-0900-1
http://dx.doi.org/10.1007/s00360-015-0900-1
http://dx.doi.org/10.1007/s00360-013-0753-4
http://dx.doi.org/10.1007/s00360-013-0753-4
http://dx.doi.org/10.1242/jeb.066514
http://dx.doi.org/10.1371/journal.pone.0038920
http://dx.doi.org/10.1073/pnas.1200374109
http://dx.doi.org/10.1371/journal.pone.0027430
http://dx.doi.org/10.1189/jlb.0310174
http://dx.doi.org/10.1146/annurev.physiol.66.032102.115105
http://dx.doi.org/10.1146/annurev.physiol.66.032102.115105
http://dx.doi.org/10.1111/j.1461-0248.2012.01829.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01829.x
http://dx.doi.org/10.1016/j.yhbeh.2014.04.009
http://dx.doi.org/10.1016/j.tree.2011.06.013
http://www.registrelep-sararegistry.gc.ca/document/default_e.cfm?documentID=1323
http://www.registrelep-sararegistry.gc.ca/document/default_e.cfm?documentID=1323
http://dx.doi.org/10.1111/geb.12290
http://dx.doi.org/10.3996/022011-JFWM-014
http://dx.doi.org/10.1890/14-2472.1
http://dx.doi.org/10.1098/rstb.2016.0044
http://dx.doi.org/10.1098/rstb.2016.0044
http://www.jstor.org/stable/30088420
http://www.jstor.org/stable/30088420
http://dx.doi.org/10.1146/annurev.mi.42.100188.002301
http://dx.doi.org/10.1890/060122
http://dx.doi.org/10.1007/s10886-008-9555-7
http://dx.doi.org/10.1007/s10886-008-9555-7
http://dx.doi.org/10.1371/journal.pone.0121329
http://dx.doi.org/10.1111/1365-2664.12757
http://dx.doi.org/10.1111/1365-2664.12757
http://search.proquest.com/docview/1758623705?accountid=12543
http://dx.doi.org/10.1016/S1773-035X(15)72824-8
http://dx.doi.org/10.3389/fmicb.2016.01753
http://dx.doi.org/10.3389/fmicb.2016.01753
http://dx.doi.org/10.7717/peerj.2430
http://dx.doi.org/10.7287/peerj.preprints.2493v1
http://dx.doi.org/10.7287/peerj.preprints.2493v1
http://dx.doi.org/10.1101/017319
http://dx.doi.org/10.1038/ismej.2013.200
http://dx.doi.org/10.1038/ismej.2014.77
http://dx.doi.org/10.1186/s12866-014-0246-y
http://dx.doi.org/10.1186/s12866-014-0246-y

Lemieux-Labonté et al. Microbiome (2017) 5:115

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

based microbiome analyses. BMC Biol. 2014;12:87. https://doi.org/10.
1186/512915-014-0087-z.

Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial
DNA contamination of extraction and sequencing reagents may affect
interpretation of microbiota in low bacterial biomass samples. Gut
Pathog. 2016;8:24. https://doi.org/10.1186/513099-016-0103-7.

Preheim SP, Perrotta AR, Friedman J, Smilie C, Brito |, Smith MB, et al.
Computational methods for high-throughput comparative analyses of
natural microbial communities. Methods Enzymol. 2013;531:353-70. https://
doi.org/10.1016/B978-0-12-407863-5.00018-6.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA,
Turnbaugh PJ, et al. Global patterns of 165 rRNA diversity at a depth of
millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516—
22. https://doi.org/10.1073/pnas.1000080107.

Preheim SP, Perrotta AR, Martin-Platero AM, Gupta A, Alm EJ. Distribution-
based clustering: using ecology to refine the operational taxonomic
unit. Appl Environ Microbiol. 2013;79(21):6593-603. https://doi.org/10.
1128/AEM.00342-13.

Alm Laboratories. SmileTrain. https://github.com/almlab/SmileTrain/wiki/.
Accessed 1 July 2016.

Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460-1. https://doi.org/10.1093/bioinformatics/
btg461.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
et al. QIIME allows analysis of high-throughput community sequencing data.
Nat Methods. 2010;7(5):335-6. https//doi.org/10.1038/nmeth.f303.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al.
Greengenes, a chimera-checked 165 rRNA gene database and workbench
compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069-72. https://
doi.org/10.1128/AEM.03006-05.

Shannon CE. A mathematical theory of communications. Bell Syst Tech J.
1948;27(3):379-423, 623-56. https://doi.org/10.1002/j.1538-7305.1948.
tb01338x.

Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust
estimation of microbial diversity in theory and in practice. ISME J. 2013;7(6):
1092-101. https://doi.org/10.1038/ismej.2013.10.

R Developement Core Team. R: a language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nime: linear and
nonlinear mixed effects models. R package version 3.1-131. 2017. https.//
CRAN.R-project.org/package=nime. Accessed 19 July 2017.

Lozupone CA, Knight R. UniFrac: a new phylogenetic method for
comparing microbial communities. Appl Environ Microbiol. 2005;71(12):
8228-35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.

Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative 8
diversity measures lead to different insights into factors that structure
microbial communities. Appl Environ Microbiol. 2007;73(5):1576-85. https://
doi.org/10.1128/AEM.01996-06.

Lozupone CA, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an
effective distance metric for microbial community comparison. ISME J. 2011;
5(2):169-72. https://doi.org/10.1038/ismej.2010.133.

Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al.
Normalization and microbial differential abundance strategies depend
upon data characteristics. Microbiome. 2017,5:27. https://doi.org/10.1186/
540168-017-0237-y.

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS One. 2013;8(4):
€61217. https://doi.org/10.1371/journal.pone.0061217.

Gower JC. Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika. 1966;53(3/4):325-38. https://doi.
0rg/10.2307/2333639.

Dray S, Dufour AB. The ade4 package: implementing the duality diagram for
ecologists. J Stat Softw. 2007;22(4):1-20. 10.18637/jss.v022.i04.

Gower JC, Legendre P. Metric and Euclidean properties of dissimilarity
coefficients. J Classif. 1986;3(1):5-48. https://doi.org/10.1007/BF01896809.
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-
likelihood trees for large alignments. PLoS One. 2010;5(3):29490. https://doi.
0rg/10.1371/journal. pone.0009490.

Legendre P, Anderson MJ. Distance-based redundancy analysis: testing
multispecies responses in multifactorial ecological experiments. Ecol
Monogr. 1999,69(1):1-24. https://doi.org/10.2307/2657192.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Page 14 of 14

Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al.
vegan: Community Ecology Package. R package version 2.4-1. 2016. http//
CRAN.R-project.org/package=vegan. Accessed 29 Oct 2016.

Davies PT, Tso MKS. Procedures for reduced-rank regression. Appl Stat. 1982;
31(3):244-55. https://doi.org/10.2307/2347998.

Ezekiel M. Methods of correlation analysis. New York and London: Wiley; 1930.
Dufréne M, Legendre P. Species assemblages and indicator species: the
need for a flexible asymmetrical approach. Ecol Monogr. 1997;67(3):345-66.
https://doi.org/10.2307/2963459.

De Céceres M, Legendre P. Associations between species and groups of
sites: indices and statistical inference. Ecology. 2009;,90(12):3566-74. https://
doi.org/10.1890/08-1823.1.

Holm S. A simple sequentially rejective multiple test procedure. Scand J
Statist. 1979,6(2):65-70. http://www.jstor.org/stable/4615733.

Voigt CC, Caspers B, Speck S. Bats, bacteria, and bat smell: sex-specific
diversity of microbes in a sexually selected scent organ. J Mammal. 2005;
86(4):745-749. doi: http://dx.doi.org/10.1644/1545-1542(2005)086[0745:
BBABSS]2.0.CO;2.

Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, et al.
Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal
activity from Rhodococcus sp. I. Taxonomy, fermentation, isolation, physico-
chemical properties and biological activities. J Antibiot. 1999;52(8):695-9.
Nakayama K, Kawato HC, Inagaki H, Nakajima R, Kitamura A, Someya K, et al.
Synthesis and antifungal activity of rhodopeptin analogues. 2. Modification
of the west amino acid moiety. Org Lett. 2000;2(7):977-80. https://doi.org/
10.1021/01005630k.

Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. Diversity of cutaneous
bacteria with antifungal activity isolated from female four-toed salamanders.
ISME J. 2008;2(2):145-57. https://doi.org/10.1038/ismej}.2007.110.

Liu CH, Chen X, Liu TT, Lian B, Gu Y, Caer V, et al. Study of the antifungal
activity of Acinetobacter baumannii LCHOOT in vitro and identification of its
antifungal components. Appl Microbiol Biotechnol. 2007,76(2):459-66.
https://doi.org/10.1007/500253-007-1010-0.

Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et
al. Cohabiting family members share microbiota with one another and with
their dogs. elife. 2013;2:e00458. https://doi.org/10.7554/eLife.00458.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central



http://dx.doi.org/10.1186/s12915-014-0087-z
http://dx.doi.org/10.1186/s12915-014-0087-z
http://dx.doi.org/10.1186/s13099-016-0103-7
https://doi.org/10.1016/B978-0-12-407863-5.00018-6
https://doi.org/10.1016/B978-0-12-407863-5.00018-6
http://dx.doi.org/10.1073/pnas.1000080107
http://dx.doi.org/10.1128/AEM.00342-13
http://dx.doi.org/10.1128/AEM.00342-13
https://github.com/almlab/SmileTrain/wiki/
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/ismej.2013.10
https://cran.r-project.org/package=nlme
https://cran.r-project.org/package=nlme
http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
http://dx.doi.org/10.1128/AEM.01996-06
http://dx.doi.org/10.1128/AEM.01996-06
http://dx.doi.org/10.1038/ismej.2010.133
http://dx.doi.org/10.1186/s40168-017-0237-y
http://dx.doi.org/10.1186/s40168-017-0237-y
http://dx.doi.org/10.1371/journal.pone.0061217
http://dx.doi.org/10.2307/2333639
http://dx.doi.org/10.2307/2333639
http://dx.doi.org/10.18637/jss.v022.i04
http://dx.doi.org/10.1007/BF01896809
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.2307/2657192
http://cran.r-project.org/package=vegan
http://cran.r-project.org/package=vegan
http://dx.doi.org/10.2307/2347998
http://dx.doi.org/10.2307/2963459
http://dx.doi.org/10.1890/08-1823.1
http://dx.doi.org/10.1890/08-1823.1
http://www.jstor.org/stable/4615733
http://dx.doi.org/10.1021/ol005630k
http://dx.doi.org/10.1021/ol005630k
http://dx.doi.org/10.1038/ismej.2007.110
http://dx.doi.org/10.1007/s00253-007-1010-0
http://dx.doi.org/10.7554/eLife.00458

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Sampling and ethics
	DNA extraction, amplification, and sequencing
	Data analysis

	Results
	Alpha diversity in WNS-positive and WNS-negative regions
	Beta diversity analysis of microbial community assemblage
	Taxonomic indicators of WNS status

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

