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Abstract

Background: Intestinal microbiota are critical determinants of obesity and metabolic disease risk. In previous work,
we showed that deletion of the cytoplasmic lipid droplet (CLD) protein perilipin-2 (Plin2) modulates gut microbial
community structure and abrogates long-term deleterious effects of a high-fat (HF) diet in mice. However, the
impact of Plin2 on microbiome function is unknown.

Results: Here, we used metatranscriptomics to identify differences in microbiome transcript expression in WT and
Plin2-null mice following acute exposure to high-fat/low-carbohydrate (HF) or low-fat/high-carbohydrate (LF) diets.
Consistent with previous studies, dietary changes resulted in significant taxonomic shifts. Unexpectedly, when fed a
HF diet, the microbiota of Plin2-null and WT mice exhibited dramatic shifts in transcript expression despite no discernible
shift in community structure. For Plin2-null mice, these changes included the coordinated upregulation of metabolic
enzymes directing flux towards the production of growth metabolites such as fatty acids, nucleotides, and amino acids.

between the two genotypes.

In contrast, the LF diet did not appear to induce the same dramatic changes in transcript or pathway expression

Conclusions: Our data shows that a host genotype can modulate microbiome function without impacting coommunity
structure and identify Plin2 as a specific host determinant of diet effects on microbial function. Along with uncovering
potential mechanisms for integrating how diet modulates host and microbial metabolism, our findings demonstrate the
limits of 16S rRNA surveys to inform on community functional activities and the need to prioritize metatranscriptomic
studies to gain more meaningful insights into microbiome function.
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Background

Obesity is a substantial public health concern with
increasing prevalence worldwide [1]. Since 1980, world-
wide obesity has more than doubled and in 2014, 13% of
adults were considered obese [2]. A critical determinant
of obesity risk is the intestinal microbiota [3-5], which
has been linked to a wide range of co-morbidities,
including metabolic syndrome [4], gastrointestinal disease
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[6], type-2 diabetes (T2D), [7] and non-alcoholic fatty liver
disease (NAFLD) [8, 9]. Metabolic functions encoded by
the intestinal microbiome have a significant impact on the
host [10]. In addition to the extraction of key nutrients
such as amino acids and vitamins, fermentation by the
intestinal microbiota produces short-chain fatty acids
(SCFAs), such as butyrate, which are the primary energy
sources for colonic epithelia and essential to the develop-
ment of villus morphology within the GI tract [11, 12].
Although previous studies have shown that diet can have
a dramatic impact on the composition and function of the
gut microbiome [10, 13, 14], much less is known concern-
ing the role of the host in shaping diet-microbiome
interrelationships.
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Cytoplasmic lipid droplets (CLDs) are intracellular
organelle-like structures that play critical regulatory
roles in lipid homeostasis [15-21]. Unlike other lipopro-
tein particles that enter circulation (e.g., LDL, HDL),
CLDs form exclusively intracellular, cytoplasmic organ-
elles storing neutral lipids [15-20]. Within enterocytes,
CLDs are thought to function as sites of temporary stor-
age for dietary lipids, which eventually are incorporated
into chylomicrons and secreted into the lymphatic capil-
laries draining the villi of the small intestines [15, 22].
Underlying the formation and regulation of CLDs are
members of the perilipin family which act as protein
scaffolds [23-26]. Within this family, perilipin-2 (Plin2)
is among the most highly expressed, particularly in the
liver and small intestine [21, 27-31]. In a previous work,
we documented in a transgenic whole-body Plin2 knock-
out mouse model (Plin2-null) that Plin2 modulates rapid
(<4 days) effects of diet on fecal lipid levels, enterocyte
CLD contents, and fuel utilization properties of mice
that correlate with differences in their gut microbial
communities [32]. What is not known is how interac-
tions between diet and Plin2 genotype modify the func-
tional, as opposed to compositional, properties of the
gut microbiome.

To date, most microbiome investigations have relied on
the use of 16S rRNA surveys. Although such surveys pro-
vide details of community structure, they provide only
limited functional insights. Algorithms such as PICRUSt
[33] can be applied to deduce the functional capacity of a
microbiome based on taxonomic abundances; however,
such capacity does not directly translate to functional
activity. Consequently, whole microbiome RNASeq (meta-
transcriptomics) has emerged as a powerful technology to
interrogate microbiome function and define members of
microbial communities in terms of their functional activ-
ities [34]. Here, we apply metatranscriptomics to compare
the impact of two dietary regimes (high-fat/low-carbohy-
drate vs. low-fat/high-carbohydrate) on the structure and
function of the intestinal microbiomes of Plin2-null and
WT mice. Note that throughout, we define community
structure on the basis of expressed transcripts rather than,
for example, marker genes such as 16S rDNA genes.

Results

Knockout of Plin-2 has minimal impact on the biodiversity
of the mouse intestinal microbiome in the context of low-
fat and high-fat diets

In previous work, we used 16S rRNA surveys and meta-
genomics to show that both dietary fat content and
Plin2-null genotype could significantly and independ-
ently impact gut microbiome composition, diversity, and
function [32]. To derive a more mechanistic understand-
ing of the relationship between dietary fat content, Plin2
genotype, and microbiome function, we undertook a

Page 2 of 16

metatranscriptiomics analysis of the colon contents of
both wild type (WT) and Plin2-null (Plin2) mice shifted
from chow to either a low-fat/high-carbohydrate (LF)
or high-fat/low-carbohydrate (HF) diet for 4 days. Bulk
RNA was prepared from colon contents and sequenced,
resulting in ~ 419 million sequence reads from 16 mice
(4 replicates of each diet/genotype combination) of
which ~ 234 million reads (55.8%) were of putative bacter-
ial mRNA origin (Table 1; see Additional file 1: Table S1
for additional information on sequence reads).

Applying our previously developed metratranscrip-
tome analysis pipeline [35], reads were filtered and sub-
sequently assembled into contigs (see “Methods”).
Contigs and unassembled reads were then passed
through a tiered set of sequence similarity searches
using BWA, BLAT, and DIAMOND [36-38] against
databases of microbial genomes and bacterial non-
redundant proteins, resulting in taxonomic and func-
tional annotations for each contig/read (see Additional
file 1: Table S1 for detailed statistics of assembly and
annotation). A total of 200,007 distinct bacterial tran-
scripts were identified across all samples (Additional
file 2: Table S2). With the exception of Fisher’s Alpha
between Plin2-HF and Plin2-LF samples, no significant
difference was observed in measures of alpha or beta
diversity across the four sample types (Table 2). To
investigate changes in specific taxonomic groups, initial
assignments were placed into one of 17 pre-defined
taxa that encompass most mammalian gut bacterial
diversity (Fig. la). Consistent with our previous study
[32], reads associated with Firmicutes and, to a lesser
extent, Bacteroidetes dominated each sample, with
Lachnospiraceae (of the phylum Firmicutes) being the
most abundant family. As before, we also found that
the Plin2 mice which shifted to a LF diet (Plin2-LF)
exhibited a lower incidence of reads assigned to Firmi-
cutes relative to other samples. Principal components
analysis (PCA) revealed no significant separation
between four pairwise comparisons (Plin2-HF vs. Plin2-
LF; Plin2-HF vs. WT-HF; Plin2-LF vs. WT-LF; and
WT-HF vs. WT-LF—non-parametric multiple analysis
of variance (PERMANOVA); Additional file 3: Figure S1A).
In addition, PERMANOVA tests revealed no significant
differences in taxonomic abundance when we compare the
two genotypes as a function of diet, or conversely when we
compare the two diets as a function of genotype. Further-
more, when we focused on specific taxonomic groups,
PERMANOVA tests identified significant differences in
read abundance only when comparing HF and LF diets
independent of genotype (i.e., combining WT and Plin2
samples); specifically, of the 17 pre-defined taxa, Clos-
tridiaceae, Eubacteriaceae, Oscillospiraceae, and Rumi-
nococcaceae display significantly elevated levels of gene
expression under a HF diet (Fig. 1).
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Table 1 Summary of sequence read processing
Genotype Diet Total reads Putative % putative Annotated % of putative mRNA Unique Unique
mMRNA reads mRNA MRNA reads reads annotated transcripts® enzymes
Plin2KO HF 23,259,351 12,202,390 5246 8,324,287 68.22 354,623 1467
Plin2KO HF 26,835,502 14,899,443 5552 12,247,229 82.20 421,650 1499
Plin2KO HF 30,521,645 16,599,182 54.38 13,388,961 80.66 403,966 1464
Plin2KO HF 26,597,134 14,650,846 55.08 11,925,997 81.40 373,227 1465
Plin2KO LF 22,294,860 12,361,287 5544 10,610,304 85.83 331,728 1421
Plin2KO LF 24,177,170 13,568,281 56.12 11,565,876 85.24 367,713 1453
Plin2KO LF 27,308,384 15,414,942 5645 13,153,267 85.33 337,142 1467
Plin2KO LF 30,451,443 17,236,702 56.60 14,227,281 82.54 361,329 1481
WT1 HF 21,588,643 11,895,187 55.10 8,943,569 75.19 321,451 1462
WT2 HF 18,204,894 9,395,383 51.61 7,349,179 78.22 303,773 1453
WT3 HF 25,596,552 14,678,726 57.35 12,343,681 84.09 349,102 1466
WT4 HF 26,696,428 15,035,608 56.32 11,779,646 78.34 361,607 1468
WT5 LF 26,214,964 14,929,947 56.95 12,324,432 82.55 333,978 1480
WT6 LF 25,606,683 15,475,773 60.44 14,246,619 92.06 210470 1407
WT7 LF 31,198,548 17,212,742 55.17 13,361,302 77.62 359,230 1471
WT8 LF 32,317,247 18,081,900 55.95 14,541,413 8042 380,172 1474

HF high fat, LF low fat
“Defined as distinct transcripts identified in each sample
bDefined as distinct enzyme classification (EC) numbers

In summary, these broad taxonomic analyses indicate
that across the four sample types (diet x genotype), only
the dietary regime, and not the Plin2 genotype, had a
significant impact on microbiome composition at the
phylum/family level. These results corroborate our pre-
vious 16S rRNA-based analyses in which Plin2 genotype
had minimal impact on microbiota composition in ani-
mals fed either HF or LF diets.

Diet and Plin2 deletion alter microbiome gene expression
We next examined if genotype influenced the functional
distribution of reads (Fig. 1b—d). Of the 200,007 unique
microbial transcripts identified across all samples, a core
set of 156,289 transcripts (78.1%) were identified in all
four diet/genotype groups (ie., Plin2-HF, Plin2-LF, WT-
HE, WT-LF). Of the remaining 43,718 transcripts absent
in at least one of the four samples, only a small propor-
tion of transcripts were uniquely associated with either

Plin2 genotype or diet (Fig. 1b). Interestingly, samples
from the same genotype (i.e., Plin2-HF and Plin2-LF;
WT-HF and WT-LF) shared a greater proportion of
expressed transcripts (1.7 and 2.7%, respectively) than
samples sharing diets (0.8% for Plin2-HF and WT-HF,
and 0.9% for Plin2-LF and WT-LF), suggesting that Plin2
genotype was a factor in modifying transcript profiles
between treatment groups. When only transcripts with
at least moderate or high levels of expression (defined as
>10 and > 100 reads per kilobase of transcript per mil-
lion mapped reads (RPKM), respectively) in at least one
sample type were considered, the proportion of shared,
core transcripts dropped to 16.4 and 10.3%, respectively,
with many transcripts displaying elevated expression
only in a single sample type (Fig. 1c, d). For example,
across the 6121 highly expressed transcripts (=100
RPKM), 16.6% were specific to Plin2-HF samples, 13.4%
were specific to WT-HF samples, 16.9% were specific to

Table 2 Biodiversity analysis across four mice samples. Presented are five indices of alpha diversity and one for beta diversity

Sample Species richness Chao 1 F-alpha® Shannon Simpson Beta diversity®
Plin2-HF 1517 £ 29 1561 + 1.3 134.7 + 2.66 456 + 0.04 0.97 £+ 0.002 0.96 + 0.002
WT-HF 1513 £ 98 1557 £ 035 136.0 + 262 4.55 +0.08 097 + 0.004 0.96 £ 0.006
Plin2-LF 1492 + 20.2 1563 + 4.18 1313 £ 0.58 461 £0.16 0.98 £ 0.004 094 = 0.013
WT-LF 1512 £ 264 1570 £ 0.25 1317 £ 323 456 + 0.36 0.97 £ 0.023 0.96 + 0017

Values given are means with standard deviations

?Applying the two sample t test for the four types of sample comparisons, only the comparison of Fisher’s Alpha between Plin2-HF and Plin2-LF samples revealed

a statistically significant difference in diversity (p < 0.05)

PBeta diversity was calculated as the number of species in a sample/total_number of species across all 16 samples
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Fig. 1 Abundance distribution of microbiome across four mice samples. a Abundance distribution of 17 predefined bacterial taxa for all four mouse
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Plin2-LF samples, and 11% were specific to WT-LF
samples. Given that their high expression is limited to
specific samples, such transcripts might reflect key
responses to changes in environmental conditions im-
posed by different diets and/or genotypes.

To further examine the impact of Plin2 genotype and
diet on gene expression, we used DESeq [39] to identify
3777 bacterial transcripts that exhibited significant
differences in expression across the four sample types
(Additional file 4: Table S3). PCA based on the expres-
sion of these transcripts revealed a significant separation
between Plin2 and WT mice fed a HF diet (g value <
0.05, PERMANOVA). Significant differences were also
observed in HF vs. LF dietary regimes fed to Plin2 mice
(g value <0.05, PERMANOVA), indicating altered
community transcriptional activity (Additional file 3:
Figure S1B). Hence, through metatranscriptomics, PCA
revealed that although the taxonomic distribution of the
gut microbiota was unaffected by host Plin2 genotype,

the microbiota of Plin2 and WT mice exhibited distinct
gene expression profiles when fed a HF diet.

We next explored whether the 3777 differentially
expressed transcripts were significantly enriched in any
of the 17 pre-defined, gut-dominant bacterial taxa. Of
the 200,007 unique transcripts identified in our analysis,
the three largest represented taxa were Lachnospiraceae,
Clostridiaceae, and “Other Firmicutes” (Fig. 2a, top
panel and Additional file 5: Table S4). Transcripts exhi-
biting significant differential expression were identified
in 6 of the 17 pre-defined taxa, including both abundant
(e.g., Lachnospiraceae) and rarer taxonomic groups
(Fig. 2a). For example, the increased abundance of
Lachnospiraceae reads and enrichment in differentially
expressed transcripts in three of four comparisons
(i.e., Plin2 vs. WT on HF diet, Plin2 vs. WT on LF
diet, and Plin2 on HF vs. LF diet; Geno-HF, Geno-LF,
and Diet-Plin2 panels, respectively, in Fig. 2a) is con-
sistent with our previous 16S-based study, which
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suggested an increased abundance of this taxon, albeit
without statistical significance, under a HF diet for
both Plin2 and WT mice [32]. Notably, we did not
identity differential expression in this taxon between
WT mice fed LF and HF diets, suggesting that loss of
Plin2 function alters the expression of Lachnospira-
ceae genes, irrespective of dietary factors (Diet-WT
panel, Fig. 2a). Furthermore, Deltaproteobacteria was
enriched in differentially expressed transcripts in
comparisons between Plin2 and WT animals raised
on a HF diet, in addition to dietary (HF vs. LF) com-
parisons for both Plin2 and WT mice. Porphyromona-
daceae was also enriched in differentially expressed
transcripts in comparisons between Plin2 and WT
mice fed HF diets, in addition to comparisons of the
two genotypes fed a LF diet and the two diets fed to
WT mice.

Contrasting significantly differentially expressed tran-
scripts across the four sample-wise genotype/diet
comparisons (Fig. 2b) revealed that most significant dif-
ferentially expressed transcripts were unique to each
group. The WT vs. Plin2 comparison under a LF diet ex-
hibited the fewest significant transcripts (612 total, 394
specific to this comparison), whereas the WT vs. Plin2
comparison under a HF diet exhibited the most (1447
total, 1163 specific to this comparison). Three tran-
scripts were identified in all four comparisons (i.e., Plin2
vs. WT on HF vs. LF diet): a SSU ribosomal protein S3P
(EC1_07050) putatively expressed by Eubacterium cylin-
droides T2-87; an environmental response regulator,
CLS_10500, putatively expressed by Clostridium cf. sac-
charolyticum, a member of the Lachnospiraceae; and a
flagellin (WP_031391632.1) putatively expressed by Clos-
tridium sp. KNHs209. CLS_10500 encodes a CheY-like
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receiver domain and a winged-helix DNA-binding
domain. Together, these two elements form part of a
modular OmpR-like two-component signaling system
[40] which has been shown in Escherichia coli to have
roles in osmoregulation [41], chemotaxis [42], and the
sensing and transport of nutrients, including carbohy-
drates [43] and fatty acids [44]. Under a LF diet,
CLS_10500 exhibited almost 90-fold higher expression
in Plin2 mice relative to WT (95.6 + 112.6 vs.
1.10 + 1.32 RPKM for Plin2 vs. WT; Additional file 4:
Table S3), but was diminished over 200-fold (1.49 + 1.96
vs. 345.2 + 685.7 RPKM for Plin2 vs. WT) under a HF-
diet. The WP_031391632.1 transcript is also of interest
since in some organisms, and flagellin is regulated by the
OmpR system [45]. Here, we found that WP_031391632.1
was again significantly upregulated in Plin2-null mice rela-
tive to WT under a LF diet, but was significantly downreg-
ulated in Plin2-null mice under a HF diet (RPKM = 124.9,
1.7, 0.4, and 47.9 for Plin2-LF, Plin2-HE, WT-LE, and WT-
HE, respectively). These findings illustrate the interlinked
effects of Plin2 and diet on bacterial transcript expression.
Of note, previous studies have reported that flagellins
secreted by motile bacteria are important determinants
of host-microbiome interactions and gut homeostasis
[46—48]. Further analyses of the 417 transcripts repre-
senting flagellin from different taxa found 37 tran-
scripts that exhibited significant differential expression,
although no clear pattern of direction of change in
expression was observed (Additional file 4: Table S3).

Because of the association of specific taxa with specific
differentially expressed transcripts, we were interested in
examining the magnitude and direction of change of all
transcripts, broken down by a taxonomic group (Fig. 2c).
Focusing on the six taxa we previously identified as being
enriched in these transcripts, for the dietary comparisons
(i.e., Plin2-HF vs. Plin2-LF and WT-HF vs. WT-LF), only
modest changes in expression were observed, with most
taxa demonstrating an overall decrease in expression
under the HF diet (Fig. 2¢, top panels). For the genotype
comparisons, we found that three of the six taxa (Rikenel-
laceae, other Bacteroidales, and Deltaproteobacteria)
exhibited a general increase in transcript expression in
Plin2-null mice relative to WT under a HF diet. Further-
more, under a LF diet, differentially expressed tran-
scripts from all six taxa were upregulated in Plin2
mice relative to WT. Together, these findings suggest
that, unlike taxonomic composition, Plin2 genotype
and not diet, had a greater impact on the magnitude
of change in transcript expression.

Among the transcripts that were significantly differen-
tially expressed in the HF comparison (Plin2-HF wvs.
WT-HF), 44 displayed fold-changes greater than 300;
most of them derived from Lachnospiraceae, Bacteroida-
ceae, and “other Firmicutes” (Additional file 2: Table S2).
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These transcripts included CK5_14390, a flavoprotein
from Ruminococcus obeum, which was highly expressed
only in the Plin2-HF samples (RPKM = 2412 + 2340; com-
pared to <2 for the other three sample types). Flavopro-
teins are involved in butyrate synthesis pathways, a key
metabolite for maintaining gut homeostasis and epithelial
integrity [49]. Conversely, RHOM_00695, a UDP-4-
dehydro-6-deoxy-2-acetamido-D-glucose 4-reductase from
Roseburia hominis, displayed considerably reduced ex-
pression only in the Plin2-HF samples (RPKM = 29.7 + 35.5;
compared to >2000 for the other three sample types).
RHOM_00695 belongs to the short-chain dehydrogenase/
reductase family and is essential for Helicobacter pylori
pathogenesis, with roles in the biosynthesis of flagella and
lipopolysaccharide [50-52].

Plin2 genotype and dietary fat/carbohydrate balance
modulate microbial functional pathways operating in the
gut

To further explore the functional consequences of
changes in microbial community gene expression pro-
files, differentially expressed transcripts were mapped to
metabolic enzymes and subsequently grouped into path-
ways as defined by the Kyoto Encyclopedia of Genes and
Genomes (KEGG; [53]). Gene set enrichment analysis
identified 42 of 144 pathways that were enriched in at
least one of the four pairwise comparisons of genotype/
diet groups (Fig. 3 and Additional file 6: Table S5).
Twenty-three of these pathways were associated with
the production and/or degradation of amino acids,
energy, carbohydrates, or nucleotides (Fig. 3a). Although
we note considerable overlap in enriched pathways in
the pairwise comparisons of the genotype/diet groups,
the comparison of Plin2-null vs. WT mice fed a LF diet
exhibited the fewest number of enriched pathways (20
pathways). Consistent with the taxonomic analysis of
differentially expressed transcripts (Fig. 2a), the greatest
abundances of differentially expressed enzymes were
observed in the comparisons of (1) Plin2-null vs. WT
mice fed a HF diet (153 enzymes in 27 pathways) and
(2) Plin2-null mice fed HF vs. LF diets (164 enzymes in
26 pathways).

Analyses of expression fold-change revealed that WT
mice fed LF and HF diets exhibited the least change in
microbial pathway expression, with differentially
expressed genes in 25 of 42 pathways exhibiting <10
fold-change (Fig. 3a). In comparison, microbiota of Plin2
mice exhibited a global upregulation of most enriched
pathways under a HF diet with 24 of 42 pathways exhi-
biting > 10-fold change, suggesting that the microbiota
of Plin2-null mice either were more sensitive than WT
to increased dietary fat or that Plin2 deletion altered the
physiological and/or nutritive landscape of the gut. This
is further shown in the comparison of Plin2 and WT
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mice fed a HF diet (Fig. 3b), in which differentially
expressed enzymes tended to be upregulated in Plin2-
null relative to WT animals. Perhaps reflecting the rela-
tively low number of differentially expressed enzymes,
comparisons between Plin2-null and WT mice fed a
low-fat/high-carbohydrate diet exhibited more extreme
distributions of fold change of expression.

PCA analysis of differentially expressed enzymes re-
vealed significant differences in clustering between the
Plin2-null and WT mice fed a HF diet, as well as WT
mice fed HF and LF diets (g value <0.05 for both;
Additional file 3: Figure S1D). However, only the former
exhibited significant differences in PCA clusters at the
level of the pathway (Additional file 3: Figure SIE).

Together, these results reveal that differential expres-
sion of microbial transcripts between Plin2 and WT
mice extends to changes in the expression of multiple
enzymes having the potential to alter metabolic activity
in the microbiome.

A high-fat diet in the context of Plin2 knockout results in
coordinated patterns of expression among consecutive
enzymes involved in energy metabolism

In the previous section, we identified several metabolic
pathways exhibiting differential expression across geno-
type/diet groups. Of particular interest were compari-
sons between Plin2-null and WT mice fed a HF diet,
given the role of Plin2 in lipid homeostasis. Although



Xiong et al. Microbiome (2017) 5:117

both groups exhibited similar taxonomic distributions,
33 KEGG-defined pathways were enriched in differen-
tially expressed genes in either WT or Plin2 groups on
HF diet (Fig. 3a). Here, we further explore changes in
expression in several pathways involved in energy me-
tabolism and the production of co-factors, amino acids,
and butyrate (Fig. 4 and Additional file 7: Figure S2,
Additional file 8: Figure S3, Additional file 9: Figure S4,
Additional file 10: Figure S5, Additional file 11: Figure S6,
Additional file 12: Figure S7).

Focusing on energy metabolism, most of the enzymes
involved in the TCA cycle (ie., including those not
identified through DESeq as differentially expressed
transcripts) were upregulated in Plin2 mice (Fig. 4a and
Additional file 13: Table S6). All of these enzymes,
except isocitrate dehydrogenase (EC:1.1.1.41), catalyze
consecutive reactions linking the glycolytic metabolites,
pyruvate and phosphoenolpyruvate (PEP), to key inter-
mediates used in the synthesis of fatty acids and amino
acids, as well as the utilization of reducing equivalents
[54]. Such “coordinated” patterns of expression may
result in potential metabolic channeling that connect
both acetyl-CoA, a key intermediate in fatty acid metab-
olism (through pyruvate), and PEP to oxaloacetate and
subsequently to 2-oxoglutarate (a-ketoglutarate) and the
synthesis of amino acids, through NADH-dependent fu-
marate reduction, a part of the bacterial redox system [54].

Analysis of the microbial taxa in the context of this
pathway revealed several taxa with relatively consistent
upregulation of the enzymes that may drive channeling
of PEP and/or Acetyl CoA, with at least 6 of the 12
enzymes involved displaying some level of upregulation
(Fig. 4a inset heatmap). These include both taxa display-
ing an overall upregulation of TCA cycle enzymes
(Clostridiaceae, Actinobacteria, “other Proteobacteria,”
and “other Clostrida”) and those displaying an overall
downregulation of TCA cycle enzymes (Deltaproteobacteria
and “other Firmicutes”). In contrast, the three enzymes: cit-
ric synthase (EC:2.3.3.1); aconitase (EC:4.2.1.3), and NADP-
dependent isocitrate dehydrogenase EC:1.1.1.42), link-
ing acetyl-CoA to 2-oxoglutarate through isocitrate
were downregulated in Plin2 compared with WT.
Such downregulation was possibly driven by changes
in the expression of these three enzymes in Lachnos-
piraceae, Deltaproteobacteria, and “other Bacteroi-
diales.” Thus, although similar taxonomic profiles
were found in WT and Plin2 mice, notably different
taxa exhibited divergent responses in TCA cycle regu-
lation, which presumably reflect inter-taxa metabolic
optimizations related to microbial and host responses
to HF diet. For example, Bacteroidaceae downregu-
lated the expression of six enzymes and upregulated
the expression of five enzymes in the TCA cycle in
Plin2 compared with WT mice.
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Among the other three pairwise comparisons of
diet/genotype groups (i.e,, Geno-LF, Diet-Plin2, and
Diet-WT), coordinated patterns of differential expres-
sion across consecutive enzymes were also observed
in both the Geno-LF comparison and the Diet-WT
comparison (Additional file 7: Figure S2). In the
former, enzymes linking succinate to isocitrate and
acetyl-CoA via oxaloacetate are upregulated in Plin2
mice, while in the latter enzymes linking citrate to
fumarate via 2-oxaglutarate are consistently downreg-
ulated in WT mice fed a HF diet.

Interestingly, analysis of the glycolysis pathway also re-
vealed consistent differential regulation of enzymes per-
forming consecutive reactions (Fig. 4b). For example,
enzymes involved in the production of PEP from B-p-fruc-
tose-6-phosphate were largely downregulated in Plin2 com-
pared with WT animals on HF diet, whereas those acting
directly on various forms of glucose (e.g., phosphoglucomu-
tase—EC:5.4.2.2 and glucose-1-phosphatase—EC:3.1.3.10)
were upregulated. As with the TCA cycle, specific taxa
yielded distinct patterns of regulation across glycolysis, with
8 of the 17 taxa displaying an overall regulation of this
pathway and the other 9 displaying an overall downregula-
tion of this pathway. Focusing on the ten enzymes link-
ing B-p-fructose-6-phosphate to PEP, we observe the
greatest contributions to the coordinated pattern of
downregulation from Lachnospiracea (8 of 10 enzymes
downregulated), “other Firmicutes” (7 enzymes), “other
Bacteroidales” (7 enzymes), Bacteroidaceae (6 enzymes),
and “other bacteria” (6 enzymes). Other taxa display
more heterogeneous patterns of expression; for ex-
ample, Clostridiaceae, Eubacteriaceae, and Bacilli re-
spectively feature four, five, and four downregulated
enzymes and six, three, and five upregulated enzymes.

For the other diet-genotype comparisons, although
other parts of the pathway displayed heterogeneous re-
sponses to diet and Plin2 genotype, enzymes involved in
the production of pyruvate from p-fructose-6-phosphate
were largely downregulated under a HF diet in both WT
and Plin2-null animals (Additional file 8: Figure S3).

Next, with important roles in the TCA cycle and fatty
acid metabolism, we examined the pantothenate and
CoA biosynthetic pathway (Additional file 9: Figure S4
and Additional file 10: Figure S5). As before, we note
consistent patterns of regulation involving consecutive
reactions. For example, enzymes linking valine and uracil
were consistently upregulated in Plin2-null mice com-
pared to WT mice fed a HF diet, while those linking
pantothenate to CoA were largely downregulated (i.e.,
upregulated in WT mice). Interestingly, this latter
pattern was also observed in WT mice fed a HF diet
compared to those fed a LF diet. This again highlights
the coordinated regulation of consecutive enzymes in
these pathways with the potential to redirect metabolic
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Fig. 4 Comparison of enzyme expression between Plin2-HF and WT-HF mice. Two pathways are shown: the TCA cycle (a) and glycolysis and
gluconeogenesis metabolic pathway (b). For each pathway, circular nodes indicate enzymes, with size indicating a relative difference in expression
between sample types (Plin2-HF vs. WT-HF) and color indicating the direction of change (see inset key). Associated heatmaps indicate global changes
in expression for each enzyme, in addition to taxon-specific changes in expression for each of the 17 defined taxa colored according to phylum. Key
metabolites mentioned in the text are indicated with bold blue text. The following abbreviations are used: S-adhlam-E (S-acetyldihydrolipoamide-E),
2H-ThPP (2-hydroxyethyl-ThPP), dhlam-E (dihydrolipoamide-E), S-sdhlam-E (S-succinyldihydrolipoamide-E), and 3C-1H-ThPP (3-carboxy-1-hydroxypropyl-ThPP)

flux between key metabolites. Furthermore, taxon-
specific patterns of expression were observed; enzymes
in the pathway associated with Rikenellaceae, Deltapro-
teobacteria, Clostridiaceae, Eubacteriaceae, and Baciilli
were largely upregulated in the Plin2-mice compared to
WT mice fed a HF diet while other groups displayed
more mixed patterns of expression.

Finally, focusing on butyrate metabolism (Additional
file 11: Figure S6 and Additional file 12: Figure S7), we
again identify patterns of elevated expression of con-
secutive enzymes in Plin2 mice relative to WT mice fed
either a high- or low-fat diet that may help channel me-
tabolites. In particular, we note the upregulation of many
enzymes linking acetyl-CoA with butyrate for both diet-
ary comparisons and fumarate to acetyl CoA for the HF
diet comparison. Interestingly, we note little correlation
in taxonomic responses to the two dietary comparisons.
For example for Plin2-null mice, five taxa (Lachnospira-
ceae, Ruminococcaceae, “other Clostridia,” Bacteroida-
ceae, and Porphyromonadaceae) exhibit an overall
downregulation of the pathway under a HF diet relative
to WT but an overall upregulation of the pathway under
a LF diet.

Furthermore, we note that two enzymes that help
link acetyl-CoA with butyrate, butyryl dehydrogenase
(EC 1.3.8.1), and 3-hydroxybutyryl-CoA dehydratase
(EC:4.2.1.55) are down regulated in the HF comparison
but not the LF comparison. While these expression differ-
ences suggest that Plin2 mice may produce more butyrate
under a low-fat/high-carbohydrate diet, the relative impact
for Plin2 and WT mice fed a HF diet are less clear. Fur-
ther insights may be gained through the application of
methods such as constraints-based modeling to examine
changes in pathway flux as a consequence of enzyme
expression [55].

Discussion

Previous studies in humans and animal models have
documented that diet plays a major role in driving the
taxonomic structure of the intestinal microbiota and that
the composition of the microbiota can have a significant
impact on host health. For example, through the produc-
tion of short-chain fatty acids, previous studies have
shown that species of Bacteroides, Alistipes, and Para-
bacteroides can influence host body mass [56]. However,
although different taxa within a microbiome can impart

unique functionality, metagenomic studies have also
revealed the capacity of diverse microbiomes to encode
similar functional potential [57]. In this study, we
applied metatranscriptomic sequence analysis to exam-
ine the potential of host genotype and diet to influence
microbial community structure and function. Consistent
with previous studies, we found that changes in dietary
fat and/or carbohydrates had a dramatic impact on com-
munity structure. Crucially, however, we also demon-
strated that deletion of a mouse lipid storage gene,
Plin2, can significantly alter microbial gene expression,
despite having minimal impact on community structure
(at least in the short-term). Furthermore, although the
intestinal microbiota of WT mice exhibited relatively
robust and rapid transcriptional responses to changes in
dietary fat/carbohydrates, the microbiota of Plin2 mice
displayed even more dramatic responses, as indicated by
the greater number and increased magnitude of differen-
tially expressed pathways in this group (Fig. 3). Collect-
ively, our results provide evidence of host gene function
and diet interacting to regulate gut microbial metabol-
ism and suggest a specific role of Plin2 host functions in
integrating metabolic responses of specific bacterial taxa
to HF diets.

Plin2 is a member of the perilipin family that orga-
nizes the formation of cytoplasmic lipid droplets and
contributes to the coordination of cellular and tissue
lipid storage and metabolism [20]. In previous studies,
we demonstrated that deletion of Plin2 abrogates
long-term deleterious effects of a high-fat diet, at
least in part through limiting intestinal lipid uptake
[32]. We now report that Plin2 deletion results in
altered patterns of expression of microbial enzymes
responsible for directing metabolic flux through key
pathways that drive the production of energy and
components required for cell growth. A global conse-
quence of these responses appears to be a general
increase in pathways linked with the production of
metabolic intermediates contributing to fatty acid and
amino acid synthesis, in addition to other metabolites
such as uracil. Importantly, data demonstrating bac-
terial taxon-dependent effects of Plin2 on bacterial
metabolic pathways suggest that Plin2-dependent
modulation of host lipid metabolism is a determinant
of the syntrophic metabolic optimization of gut bac-
teria in response to dietary substrate alteration.
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The precise mechanism by which Plin2, or other host
genes, influence gut microbial metabolism remains to be
determined and may be complex. Increased quantities of
fecal trigylcerides (TG) are observed in both HF-fed
(relative to LF- or chow-fed) and Plin2-null (relative to
WT) animals [32]. It is possible that increased availabil-
ity of lipids in the intestinal lumen provides the micro-
bial community with an excess source of energy in
relation to other essential metabolites. By altering
enzyme expression, the community may respond by
directing metabolic flux away from the production of
energy and instead into the anabolic production of bio-
mass constituents, such as fatty acids, amino acids, and
nucleotides, which are growth-limiting under conditions
of lipid/energy excess. For example, through reductive
carboxylation, the TCA cycle may operate in reverse,
consuming energy in the form of ATP, GTP, and NADH
to produce intermediates for the production of metabol-
ically important fatty acids, such as butyrate, and amino
acids, such as glutamate. Additionally, the luminal lipid
concentration can influence gut osmolarity [58] and
secretion of bile acids [59], both of which regulate envir-
onmental signaling systems, such as OmpR, which is
involved in nutrient uptake and metabolism, as well as
motility and invasion [44, 60]. Our findings that bile
acid-sensitive flagellin genes [60] are differentially
expressed in some bacteria of HF-fed Plin2 mice may re-
flect the effects of Plin2 on bile acid production. Similarly,
decreased expression of the osmotically sensitive OmpR
system in HF-fed Plin2 mice is consistent with suppres-
sion of this system under low osmotic conditions [58].

The differences in expression profiles of HF-fed Plin2
mice compared with HF-fed WT mice could have arisen
simply through elevated TG reaching the colons of Plin2
animals. However, this conclusion is difficult to reconcile
with our finding that the genes and pathways modulated
by HF vs. LF diet differed between Plin2 and WT groups
(Fig. 3, noting the contrast of Diet-Plin2 with Diet-WT),
as well as between HF-fed Plin2 and WT groups (Fig. 3,
Geno-HF comparison). In other words, relative to WT
animals, Plin2 animals did not merely exhibit an exacer-
bated response of similar metabolic pathways to HF
feeding, distinct patterns of up- and downregulated
pathways were observed between the two groups. Thus,
we hypothesize that Plin2 deletion alters the intestinal
environment, and the microbiota’s transcriptional re-
sponse to this environment, beyond increasing fecal TG
levels; we are currently exploring other Plin2-dependent
aspects of lipid metabolism and hepato-intestinal cross-
talk, such as bile acid pool size and composition that
might affect the gut microbiome in this system.

Interestingly, over the timescale of this experiment
(4 day exposure to LF or HF), changes in pathway
expression apparently did not selectively benefit the
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growth of any single taxon because no significant differ-
ence in intestinal community composition was observed
between the WT or Plin2 mice. In longer experiments
involving weeks of dietary exposure, we have noted com-
positional change in 16S rRNA datasets between WT
and Plin2 mice (Frank and McManaman, unpublished).
Thus, this study indicates that applying methodologies
that more directly interrogate microbiome function,
such as metatranscriptomic profiling, can provide a
more sensitive means of detecting early or subtle
changes in microbiome activity than can marker gene in-
ventories. We note that tools such as PICRUSt [33] that
seek to infer microbiota function using 16S rRNA gene
abundance data may fail to recognize the potential of
communities with similar taxonomic structures to
exhibit significant shifts in gene expression and hence
functional capacity.

Key outstanding questions include the mechanism by
which changes in lipid uptake and/or metabolism by the
host influence microbial gene expression patterns. By
using metabolomics and stable isotope labeling, we
expect that future studies will reveal how changes in
enzyme expression affect the flux of metabolites through
diverse metabolic pathways and thereby impact micro-
bial growth and community function. Of particular
interest would be experiments that allow the delineation
of metabolites produced and consumed by the micro-
biome from those associated with the host. Furthermore,
because the two dietary regimes examined in this study
differed in both fat and carbohydrate content, additional
work is needed to delineate the relative contributions of
these two energy sources to the phenotypes reported in
this study. Finally, longitudinal follow-up studies are
needed to determine the temporal relationships between
diet-induced changes in microbiome function and devel-
opment of metabolic disease. Conducting these studies
across developmental stages (i.e., infant, juvenile, adult,
and aged mice) would also be of interest to better under-
stand inter-generational transmission of obesity and
metabolic disease risk.

Conclusions

Obesity and its co-morbidities, such as fatty liver disease,
are major global health concerns. The composition and
function of the intestinal microbiome is recognized as a
critical determinant of metabolic disease risk. Here, we
show that under a high-fat/low-carbohydrate dietary
regime, despite sharing similar microbiome community
structures, the knockout of the Plin2 gene in mice can
give rise to dramatic differences in microbial gene
expression profiles. Many of these changes were associated
with the coordinated expression of suites of enzymes me-
diating consecutive reactions within a pathway, directing
metabolic flux towards the production of important
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“biomass” constituents (i.e., amino acids, nucleotides, and
other molecules required for growth). To our knowledge,
this is the first demonstration of how host genotype can
impact microbiome function without altering community
composition, emphasizing the need to prioritize metatran-
scriptomic studies over 16S rRNA surveys to gain more
meaningful insights into microbiome function.

Methods

Animal procedures

Eight-week-old male C57BL/6 (WT) and Plin2-null (Plin2)
mice on the C57BL/6 background were used for all stud-
ies. The generation and characterization of Plin2-null mice
have been described in detail previously [61]. The WT
mice used in this study were obtained from a breeding col-
ony maintained at the University of Colorado School of
Medicine’s Center for Comparative Medicine and housed
in the same room as Plin2-null mice. All mice were fed
standard mice chow (2020X, Harlan Laboratories, 16% fat
calories, 24% protein calories and 60% carbohydrate calo-
ries) ad libitum from weaning to 8 weeks of age, at which
time they were housed individually in a metabolic moni-
toring system at 30 °C, the thermoneutral temperature of
mice [62], for measurements of energy balance (intake and
expenditure), the respiratory exchange ratio (RER), and
activity levels (Columbus 8 M Oxymax) [63]. Following a
3-day adjustment period, the mice were fed nutritionally
balanced high-fat (HFD; 60% fat calories, 20% protein calo-
ries, 20% carbohydrate calories, D12492) or low-fat (LED;
10% fat calories, 20% protein calories, 70% carbohydrate
calories, D12450B) diets from Research Diets Inc. (New
Brunswick, NJ) ad libitum for 4 days.

Metatranscriptomic analysis

The RiboPure-bacteria kit (Ambion, Austin, TX, USA)
was used to isolate total RNA from colon contents
according to the manufacturer’s protocol. Briefly, samples
were collected and suspended in RNAwiz (provided in a
kit) and bead beaten with zirconia beads using the Roche
MagnaLyser (Roche Applied Science, Indianapolis, Indi-
ana). Nucleic acids were recovered from the lysate by
adding chloroform, centrifugation, and removal of the
aqueous layer. Following ethanol precipitation, the sample
were bound to a spin filter, washed, and then eluted with
50 pl of the provided elution solution. The eluted RNA
was then treated with DNAse I (provided in the kit) for re-
moval of any contaminating DNA from RNA. The final
product RNA was stored in —-80 °C and shipped on dry ice
to the Donnelly Sequencing Centre of the University of
Toronto, Canada. Ribosomal RNA depletion was per-
formed using the Ribo-Zero™ Epidemiology kit (Epicentre
Inc, Madison, WI, USA). Sequencing was performed on
an Illumina NextSeq500 platform using a single high-
output cartridge to generate ~419 million 1 x 150 bp
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reads. With ~20-30 million reads generated per sam-
ple (Table 1), rarefaction analysis revealed sufficient
depth of coverage to identify the vast majority of spe-
cies and enzymes present in the samples (Additional
file 14: Figure S8). Sequence data is available at the NCBI
Sequence Read Archive (https://www.ncbinlm.nih.gov/
sra/) with the BioProject identifier: PRINA379425.

Sequence reads were processed as described previously
[34, 35]. In brief, we processed sequence reads by
removing adaptor-contaminated and low-quality reads
using Cross_Match v0.990319 (www.phrap.org) and
USEARCH v7.0.1001 [64], respectively. Next, rRNA and
tRNA reads were filtered using Infernal v1.1.1 [65] and
host reads identified through BWA v0.7.5a [66] and
BLAT v35 [67] sequence similarity searches against a
database of mouse transcripts (ENSEMBL release 78
[68]). Putative mRNA reads were then assembled using
the Trinity v2.1.1 de novo assembler [69], and resultant
contigs, as well as unassembled reads, were assigned to
microbial transcripts using a tiered set of sequence simi-
larity searches against a database of sequenced microbial
genomes (downloaded from NCBI June 2015) using
BWA and BLAT, as well as the protein non-redundant
database (downloaded from NCBI July 2015) using DIA-
MOND v0.7.5a [38]. The expression level of a microbial
transcript is then based on the number of sequence
reads mapped to that transcript. Consistent with previ-
ous studies [70], we first filtered for transcripts
expressed at low levels, defined here as those with <5
mapped reads (representing ~ 6.5% of all mapped reads),
and then normalized expression levels of transcripts as
reads per kilobase per million mapped reads (RPKM;
[71]). Where no expression was observed, RPKM values
were set to 0.

Non-parametric permutational multivariate analysis

For each dietary/genotype comparison, in addition to
examining differences in the overall distribution of
microbiome composition, we also investigated changes
in the abundance of each taxon, defined as the sum of
RPKM values of transcripts assigned to that taxon. For
the former, the influence of only a single factor was
investigated in the analysis, i.e., genotype (Plin2 vs. WT)
or diet (HF vs. LF). For each taxon, we estimated the
influence of two independent factors, genotype and diet,
on one dependent variable, i.e., relative expression as
defined by RPKM values. Comparisons were performed
using the non-parametric permutational multivariate
analysis of variance test (PERMANOVA; [72]) to assess
the difference in microbiome composition between
different genotypes or diets. PERMANOVA was imple-
mented through the f npManov function of MATLAB
(R2015a, The MathWorks Inc., Natick, MA, USA) toolbox
Fathom [73], using 100,000 replicate label permutations
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and adjusting p values with the Benjamini-Hochberg
procedure [74]. The cutoff of the adjusted p value
was set as 0.05.

Principle component analysis

To reveal the correlation of the overall expression
distributions relating to taxa, transcripts, differentially
expressed transcripts, enzymes, and pathways across
the 16 samples, we applied principal component ana-
lysis (PCA) using the pca function from MATLAB
(R2015a, The MathWorks Inc., Natick, MA, USA). In
addition, we used PERMANOVA to test how well the
first and the second principle components separate
sample types (e.g., Plin2-HF vs. WT-HEF).

Biodiversity analysis

We used four biodiversity indices, i.e., Shannon entropy
index (Shannon), Fisher’s alpha index (F-alpha), Chaol
index (Chaol), and Simpson index (Simpson) to exam-
ine biodiversity distributions of our data. Chaol values
were calculated using EstimateS v 9.1.0 [75] with 100
bootstrap replicates. Other indices were calculated using
the vegan package v2.4.3 [76] in R v3.4.0 [77].

Gene set enrichment analysis

To test if taxonomic categories and KEGG-defined path-
ways were enriched with either significantly differentially
expressed transcripts or enzymes, gene set enrichment
analyses were performed using a hypergeometric test with
a minimum of two genes per gene set. In these analyses,
to ensure consistency across sample comparison, we ex-
amined enrichment relative to the total pool of all tran-
scripts identified across all 16 samples. We used a false
discovery rate (FDR) adjustment with the Benjamini-
Hochberg procedure to correct p values. Hypergeometric
tests were performed using the hygecdf and mafdr func-
tions from MATLAB (R2015a, The MathWorks Inc.,
Natick, MA, USA) with a FDR cutoff of 0.05.

Expression fold change

Given a transcript or enzyme g, its expression fold
change (eFC), for a pairwise comparison between sample
1 and 2, was calculated as:

max(ry,r3)

eFC1p4 sign(ry—ri)x , min(ry,ry) > 0

min(ry, )
ra—r1, min(ry,ry) =0

where r; is the RPKM value of a transcript or enzyme in
sample 1 (note several transcripts may be assigned the
same enzyme (EC number)), while r, is the RPKM of the
transcript or enzyme in sample 2. eFCj, > 0 indicates the
transcript or enzyme g is upregulated in sample 2, while
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eFCy5 < 0 indicates g is downregulated in sample 2. The
average eFC (aeFC) of an enzyme, for a sample-wise
comparison between sample 1 and 2, is calculated as:

aeFC12 = eFClz/l’l

Where n is the total number of transcripts mapped to
this enzyme in that sample. Pathway visualizations of
enzyme eFCs were performed using Cytoscape v3.4.0
[78] with pathways downloaded in KGML format from
KEGG [79].

Differential expression analysis of transcripts and
enzymes

Differential expression analysis of mapped transcripts for
different sample-wise comparisons was performed using
DESeq [39]. Since our interest is focused on comparisons
between different genotypes or diets, only four combina-
tions were explored, i.e., Plin2-HF vs. WT-HF (Geno-HF),
Plin2-LF vs. WT-LF (Geno-LF), Plin2-HF vs. Plin2-LF
(Diet-Plin2), and WT-HF vs. WT-LF (Diet-WT). For each
pairwise comparison, we defined significantly differentially
expressed transcripts (sig. transcripts) as those with ¢
values < 0.05 (using the Benjamini-Hochberg procedure to
correct p values) and Log, (eFC) >2. Across all compari-
sons, 3777 unique sig. transcripts were identified. Enzymes
are defined as significantly differentially expressed if at
least one sig. transcript is mapped to that enzyme.

Additional files

Additional file 1: Table S1. Summary statistics of sequencing. (XLSX 19 kb)

Additional file 2: Table S2. Expression values (RPKM) for each of the
57,736 transcripts identified across all samples. (XLSX 35991 kb)

Additional file 3: Figure S1. Principal component analysis for four data
types (Taxa, Enzymes, Significant Differentially Expressed Transcripts and
Metabolic Pathways). With each plot, p values (< 0.05) are provided
indicating significant differences in clustering between each of the four
pairwise comparisons. (PDF 912 kb)

Additional file 4: Table S3. Expression values (RPKM) of 1344 transcripts
displaying differential expression across at least one of the four pairwise
comparisons (Plin2-HF vs. WT-HF, Plin2-HF vs. Plin2-LF, Plin2-LF vs. WT-LF,
and WT-HF vs. WT-LF). (XLSX 799 kb)

Additional file 5: Table S4. Breakdown of genomes, transcripts, and
average RPKM per taxon across all samples. (XLSX 17 kb)

Additional file 6: Table S5. Enrichment of sig. enzymes in 144 KEGG
pathways for four pairwise comparisons (Plin2-HF vs. WT-HF, Plin2-HF vs.
Plin2-LF, Plin2-LF vs. WT-LF, and WT-HF vs. WT-LF). (XLSX 41 kb)

Additional file 7: Figure S2. Comparison of TCA cycle enzyme
expression in between sample types. Three comparisons are shown: (A)
Plin2-LF vs. WT-LF; (B) Plin2-HF vs. Plin2-LF; (C) WT-HF vs. WT-LF. Circular
nodes indicate enzymes, with size indicating relative difference in expression
between sample types and color indicating direction of change (see inset
key). Associated heatmaps indicate global changes in expression for each
enzyme, in addition to taxon-specific changes in expression for each of the
17 defined taxa colored according to phylum. (PDF 1246 kb)

Additional file 8: Figure S3. Comparison of glycolysis pathway enzyme

expression between sample types. Three comparisons are shown: (A)
Plin2-LF vs. WT-LF; (B) Plin2-HF vs. Plin2-LF; (C) WT-HF vs. WT-LF. Circular
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nodes indicate enzymes, with size indicating relative difference in expression
between sample types and color indicating direction of change (see inset
key). Associated heatmaps indicate global changes in expression for each
enzyme, in addition to taxon-specific changes in expression for each of the
17 defined taxa colored according to phylum. (PDF 1138 kb)

Additional file 9: Figure S4 Genotype-based comparisons of
pantothenate pathway enzyme expression. Two comparisons are shown:
(A) Plin2-HF vs. WT-HF and (B) Plin2-LF vs. WT-LF. Circular nodes indicate
enzymes, with size indicating relative difference in expression between
sample types and color indicating direction of change (see inset key).
Associated heatmaps indicate global changes in expression for each
enzyme, in addition to taxon-specific changes in expression for each

of the 17 defined taxa colored according to phylum. The following
abbreviations are used: 5,6-dh-uracil (5,6-dihydro-uracil), N-cm-B-alanine
(N-carbamoyl-B-alanine), N-pt-Cys (N-pantothenoyl-cysteine), and (R)-4"-P-
pt-L-Cys ((R)-4"-phospho-pantothenoyl-L-cysteine. (PDF 1370 kb)

Additional file 10: Figure S5. Diet-based comparisons of enzyme
expression in pantothenate pathway. Two comparisons are shown: (A)
Plin2-HF vs. Plin2-LF and (B) WT-HF vs. WT-LF. Circular nodes indicate
enzymes, with size indicating relative difference in expression between
sample types and color indicating direction of change (see inset key).
Associated heatmaps indicate global changes in expression for each
enzyme, in addition to taxon-specific changes in expression for each
of the 17 defined taxa colored according to phylum. The following
abbreviations are used: 5,6-dh-uracil (5,6-dihydro-uracil), N-cm-B-alanine
(N-carbamoyl-B-alanine), N-pt-Cys (N-pantothenoyl-cysteine), and (R)-4'-P-
pt-L-Cys ((R)-4"-phospho-pantothenoyl-L-cysteine. (PDF 1119 kb)

Additional file 11: Figure S6. Genotype-based comparisons of enzyme
expression in butanoate pathway. Two comparisons are shown: (A) Plin2-
HF vs. WT-HF and (B) Plin2-LF vs. WT-LF. Circular nodes indicate enzymes,
with size indicating relative difference in expression between sample
types and color indicating direction of change (see inset key). Associated
heatmaps indicate global changes in expression for each enzyme, in
addition to taxon-specific changes in expression for each of the 17 defined
taxa colored according to phylum. The following abbreviations are used:
3B-CoA (3-butenoyl-CoA), 4HB-CoA (4-hydroxy-butanoyl-CoA), C-CoA
(crotonoyl-CoA), G-CoA (glutaconyl-CoA), 3HB-CoA (3-hydroxybutanoyl-
CoA), and HMG-CoA (hydroxy-3-methylglutaryl-CoA). (PDF 1234 kb)

Additional file 12: Figure S7. Diet-based comparisons of enzyme
expression in butanoate pathway. Two comparisons are shown: (A) Plin2-
HF vs. Plin2-LF and (B) WT-HF vs. WT-LF. Circular nodes indicate enzymes,
with size indicating relative difference in expression between sample
types and color indicating direction of change (see inset key). Associated
heatmaps indicate global changes in expression for each enzyme, in
addition to taxon-specific changes in expression for each of the 17 defined
taxa colored according to phylum. The following abbreviations are used:
3B-CoA (3-butenoyl-CoA), 4HB-CoA (4-hydroxy-butanoyl-CoA), C-CoA
(crotonoyl-CoA), G-CoA (glutaconyl-CoA), 3HB-CoA (3-hydroxybutanoyl-
CoA), HMG-CoA (hydroxy-3-methylglutaryl-CoA). (PDF 1262 kb)

Additional file 13: Table S6. Expression fold change (eFC) values of
sig. enzymes for four pairwise comparisons (Plin2-HF vs. WT-HF, Plin2-HF
vs. Plin2-LF, Plin2-LF vs. WT-LF and WT-HF vs. WT-LF) (XLSX 80 kb)

Additional file 14: Figure S8. Rarefaction analysis of annotated mRNA

reads. Recovery of species (A) and enzymes (B) with increasing numbers

of annotated mRNA reads (reads mapped to known transcripts) indicate

that sequencing depth for each sample was sufficient to recover the vast
majority of species and enzymes present within each of the 16 samples.

Rarefaction analysis was performed using R. (PDF 16825 kb)
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