Casero et al. Microbiome (2017) 5:105
DOI 10.1186/540168-017-0325-z

Microbiome

RESEARCH Open Access
@ CrossMark

Space-type radiation induces multimodal
responses in the mouse gut microbiome
and metabolome

David Casero', Kirandeep Gill*, Vijayalakshmi Sridharan’, Igor Koturbash®, Gregory Nelson®, Martin Hauer-Jensen®,
Marjan Boerma’®, Jonathan Braun' and Amrita K. Cheema®®”"

Abstract

Metabolic network modeling

Background: Space travel is associated with continuous low dose rate exposure to high linear energy transfer
(LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by
non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the
importance of the gut microbiome in the maintenance of human health is well established, little is known
about the role of radiation in altering the microbiome during deep-space travel.

Results: Using a mouse model for exposure to high LET radiation, we observed substantial changes in the
composition and functional potential of the gut microbiome. These were accompanied by changes in the
abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by
means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at
different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and
signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota
diversity and composition were analyzed at the functional level. A constitutive change in activity was found for
several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and
absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like
phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa.

Conclusions: The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be
an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a
conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of
space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.
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Background

In the context of ongoing programs for human explor-
ation mission to Mars and deep space, there is an emer-
ging interest in how the microbiome may predispose an
individual to radiation injury and how radiation-induced
modifications in the microbiome affect the individual’s
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overall response to radiation [1, 2]. Together with micro-
gravity and other environmental factors in space, ioniz-
ing radiation is a likely contributor to alterations in the
microbiome. The gut microbiome has evolved as a sym-
biotic ecosystem that contributes specific and essential
biochemical reactions to its host [3]. One can therefore
anticipate that protracted low dose exposures to radi-
ation can potentially induce long-term alterations in gut
homeostasis; however, radiation-induced alterations
along the host-microbiome axis associated with health
risks have not been fully characterized. Although the
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importance of the microbiome in the maintenance of
human health during space travel has been recognized
[4, 5], little is known about the role of radiation in alter-
ing the microbiome during deep-space travel [6-8].
Previously, we have shown that exposure to heavy ions
(°°Fe) causes oxidative stress and dysregulated prosta-
noid biosynthesis in the mouse intestinal metabolome
[9]. However, the correlation and the impact of the
microbiota remained to be elucidated.

Space travel beyond the low Earth orbit is associated
with the risk of exposure to high linear energy transfer
(LET) ionizing radiation, mainly due to galactic cosmic
rays (GCR), solar emissions, and solar particle events
(SPEs). SPEs are predominantly associated with high
dose rate exposures to protons, while GCR include iron,
silicon, oxygen, carbon, and helium ions that are highly
energetic and cannot be easily shielded by practical
levels of existing shielding materials used during space
travel. The chronic radiation exposure from GCR, when
outside the protective environment of the earth’s mag-
netosphere, occurs at a dose rate of 1.3 mGy/day, and
total doses of a return mission to Mars can add up to
0.5 Gy [10, 11]. While there are concerns about the sys-
temic effects of exposure to space radiation [12, 13],
long-term degenerative tissue and organ effects of
chronic exposures to GCR have not been characterized
[14]. As such, more research is needed for the identifica-
tion of specific changes that underscore short- and long-
term health risks of exposure to high LET radiation, in
conditions that space travelers are likely to encounter in
deep space.

Herein, we used 16S rRNA amplicon sequencing,
untargeted metabolomics, and metabolic network
modeling (Fig. 1) to produce a multi-omics narrative of
intestinal metabolism in a mouse model of (heavy ion)
extra-terrestrial irradiation exposure (*°0). We report a
complex dynamics of the gut ecosystem post-radiation,
with time-modulated abundances for both commensal
and opportunistic microbial species. Concomitant with
these changes, we observed a shift on the abundance of
multiple metabolites, which could contribute to the on-
set and progression of radiation-induced disorders in a
dose- and time-dependent manner. Metabolic network
modeling suggested that the inferred metagenome is a
good predictor of the observed metabolic state. Finally,
we found a dose-dependent response to radiation in the
microbiome, with increased sensitivity at lower doses
(0.1 and 0.25 Gy). This threshold-like behavior is
suggestive of a complex host-microbiome interaction in
response to radiation that might result from signals
involved in DNA damage and cell survival. This work
provides a framework to identify host-microbiome
responses that might elevate health risks after exposure
to space-type ionizing radiation.
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Results

Changes in the fecal microbiome of mice exposed to low

dose high LET radiation

We started by asking if the composition of the fecal
microbiota was modulated by exposure to charged par-
ticle radiation. We collected fecal samples from mice
after 10 and 30 days of exposure to O (600 MeV/n) at
0.1, 0.25, and 1 Gy or sham-treatment (non-irradiated
mice; Fig. 1). Bacterial composition was inferred from
the analysis of 16S rRNA amplicon sequencing data.
Diversity analysis revealed an intricate relationship be-
tween bacterial richness and radiation dose. Overall,
mice subjected to radiation showed a slight decrease in
bacterial diversity (Fig. 2a) as compared to non-
irradiated controls. Moreover, alpha diversity was signifi-
cantly different (p value <0.006; nonparametric ¢ test of
phylogenetic diversity) between the 10- and 30-day sam-
ples, mostly due to a marked increase in diversity at
30 days for mice radiated at 0.1 Gy (Fig. 2a).

Multivariate analysis to determine the effect of the ex-
perimental factors on bacterial composition (beta diver-
sity analysis) showed that both time after exposure (Time
hereafter) and total dose (dose hereafter) have a signifi-
cant impact on bacterial community structure (p values
<0.005 and < 0.001, respectively; ANOSIM nonparamet-
ric test on unweighted UniFrac distances, Additional file
1: Table S1). Binary comparisons between fecal samples
of irradiated and non-irradiated animals revealed a sig-
nificant difference in beta diversity regardless of dose
levels (p value <0.001; ANOSIM nonparametric test
on unweighted UniFrac distances, Additional file 1:
Table S1) at both the 10- and 30-day time points. In
contrast, no difference was found from pairwise com-
parisons between groups of mice at the same radi-
ation dose (p value >0.05; ANOSIM nonparametric
test on unweighted UniFrac distances, Additional file
1: Table S1). The results from these tests were reca-
pitulated in the PCoA ordination plots of the first
three principal components of the unweighted
UniFrac distance matrix (Fig. 2b). Strikingly, this
ordination shows a pronounced modulation of the
composition of the fecal microbiota from mice
exposed to 0.1 and 0.25 Gy, while those exposed to a
much higher dose (1 Gy) consistently clustered with
controls in the PCoA space.

Collectively, our ecological analysis revealed an intri-
cate dose-dependent response to ionizing radiation in
the gut microbiome, with enhanced sensitivity for the
lowest doses employed here. On the other hand, a dis-
tinct reorganization of the microbiota was observed at
different doses as soon as 10 days post-radiation. This
initial perturbation was followed by a restrained modula-
tion at later times (30 days) without appreciable changes
in community structure.
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Fig. 1 Experimental and analytical design. Fecal samples were collected from irradiated mice and processed for both 16S rRNA amplicon and LC-MS
profiling. 165 rRNA amplicon data was analyzed at the phylotype level unless stated otherwise. Constrained Analysis of Principal Coordinates (CAP)
provided condition-specific phylotypes and metabolites, while model-based clustering produced a classification of highly responsive phylotypes based
on overall response to irradiation. The predicted metagenome was employed to estimate contributions of bacterial phylotypes to significant functional
shifts and community-wide metabolic potential (CMP) scores. Metabolic network modeling was used to integrate the 165 rRNA amplicon and
metabolomics data and to establish significant associations between phylotypes and metabolic shifts

Phylotype-level dynamics of the microbiota after irradiation
To characterize bacterial homeostasis post-radiation, we
next determined the specific taxonomies that were sig-
nificantly regulated in our samples. As expected, the
normal gut microbiota commensals, Bacteroidetes (40
and 44%) and Firmicutes (56 and 51%) phyla dominated

the fecal microbiota of non-irradiated mice at 10 and
30 days (Additional file 2: Table S2). Exposure to low
dose high LET radiation was observed to induce signifi-
cant fluctuations on the prevalence of highly abundant
phyla, with a concomitant variation in rare taxa. In fact,
group significance analysis showed a significant
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Fig. 2 Ecological analysis of the irradiated microbiome. a Alpha diversity for control and irradiated samples 10 (red) and 30 (blue) days post-
radiation. Shown are per-sample (dots), and per-condition averages (line plots), and standard deviations (gray bands). Values correspond to Faith’s
phylogenetic diversity metric (PD). b Jackknifed Principal Coordinate Analysis (PCoA) plot of UniFrac unweighted distances between sample groups. For
each sample, shown are confidence ellipses obtained from independent random rarefactions of the OTU counts table. ¢ Barplots of per-condition relative
abundances (logarithmic scale) for bacterial families with significant variations across conditions (Bonferroni p value < 0.05, Kruskal-Wallis test). d Heatmap of
phylotype-level counts. All samples (columns) are shown and grouped by experimental factors. Individual phylotypes (rows) are grouped at the family level
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perturbation on the relative abundance of bacteria in
the order of Bifidobacteriales and Coriobacteriales
(Actinobacteria), and Verrucomicrobiales (Verrucomi-
crobia), along with Lactobacillales (Firmicutes). Figure
2¢ shows the relative abundance of bacterial families
that tested significant in our factorial design
(Bonferroni p value <0.05, Kruskal-Wallis test,
Additional file 2: Table S2). The preceding findings
were recapitulated from the results of linear discrimin-
ant analysis (LDA) effect size (LEfSe) analysis
(Additional file 3: Table S3 and Additional file 4:
Figure S1). In particular, the relative abundance of
Verrucomicrobia species increased to prominent levels
for specific combinations of dose and time (e.g., up to
~18% for 0.1 Gy at 10 days, as compared to <1% for
non-irradiated controls). As a result, LEfSe classified
the order of Verrucomicrobiales with maximal positive
LDA effect size in some cases, suggesting a prominent
role of Verrucomicrobia in the opportunistic
colonization of the mouse gut after exposure to low
doses of high LET radiation.

Although taxonomic changes at the family level
reached statistical significance (Fig. 2c; Additional file 2:
Table S2), moderate differences for radiated samples
from the same group were observed in some cases (Fig.
2d) for both highly abundant and rare phylotypes, which
could be due to individual variations in the temporal
modulation described above. Therefore, we next aimed
to produce a parsimonious, unsupervised classification
of phylotypes based on their relative abundance profile.
To this end, we fitted our phylotype counts matrix to
different models using Generalized Linear Model (GLM)
fitting (see Methods), which allowed us to identify all
OTUs that were affected by our experimental factors
(496 OTUs, FDR <0.01). This pool of candidate phylo-
types was then subjected to unsupervised Model-based
clustering for profile-based classification. Figure 3a
highlights the results for those taxa where a significant
over-representation of their corresponding phylotypes in
specific clusters was found (hypergeometric p value <
0.05, see Additional file 4: Figure S2a and Additional file
5: Table S4 for a complete summary).
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Fig. 3 Phylotype-level classification of the irradiated microbiome. a Model-based clustering of phylotypes based on overall abundance profiles. Shown
are clusters enriched in specific taxonomic groups (hypergeometric p value < 0.05). Full results are provided in Additional file 4: Figure S2a. Line plots
represent the average abundance profile for all phylotypes classified in each cluster. b Heatmap of per-group indicator values (distance-based
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Bacterial taxa generally considered beneficial were sig- again hints to unknown modulatory factors that are
nificantly classified in a cluster describing a time- activated at high doses.
modulated dose response (Fig. 3a; cluster 20 in On the other hand, Mollicutes species (Tenericutes
Additional file 2: Figure S2a). Specifically, Actinobacteria  phylum) were also typically found to extinguish after ex-
(Bifidobacterium genus and Adlercreutzia unclassified — posure to 0.25 Gy of *°O (clusters 19 and 20, Additional
species), Bacteroidetes (S24—7 unclassified species), and file 2: Figure S2a). Concordant with the previous obser-
Firmicutes (unclassified Lactobacillus and Clostridiaceae  vations and the group significance analysis described
species) were observed to decrease their relative abun-  above, a number of Verrucomicrobia phylotypes anno-
dance in irradiated samples 30 days after exposure as tated as Akkermansia muciniphila were observed to in-
compared to their 10-day counterparts. However, this crease their relative abundance. However, a complex
downturn was observed earlier and to be of greater mag-  interaction between Dose and Time was observed for
nitude for low (0.1 and 0.25 Gy) radiation doses, which  these phylotypes, which were classified in a cluster
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showing a strong dose-dependent temporal dynamics
(Fig. 3a; cluster 37 in Additional file 4: Figure S2a) with
distinct phases of blooming and decline along with a
pronounced response to low doses (0.1 Gy).

Remarkably, we observed a heterogeneous array of
abundance profiles for phylotypes in the order of Clostri-
diales, a dominant class of gut commensal bacteria. For
instance, unclassified Dehalobacterium (Dehalobacteria-
ceae) and Oscillospira (Ruminococcaceae) species were
mostly classified as phylotypes with fluctuating abun-
dance profile in the Time/Dose space (Fig. 3a; cluster 28
in Additional file 4: Figure S2a). On the other hand, phy-
lotypes classified under the prevalent Lachnospiraceae
family showed a strong interaction between Time and
Dose across different clusters (Additional file 5: Table
S4). Of note, the butyrate-producing Roseburia genera
showed a marked increase in abundance 30 days after
exposure, mostly for 0.1 and 0.25 Gy (Fig. 3a). Rumino-
coccus gnavus showed a marked expansion at 0.1 Gy that
persisted or was amplified 30 days after exposure for
some phylotypes, while Peptococcaceae species including
the abundant rc4—4, reached normal levels at 30 days
after a decline at 10 days in most animals exposed to
0.1 Gy of '°O radiation. With respect to the Firmicutes
phylum, the most abundant species in the Erysipelotri-
chaceae family was classified in cluster 19 (Additional
file 4: Figure S2a) with decimated abundance post-
radiation, while an unclassified species in the Allobacu-
lum genus showed an opportunistic, blooming profile
(Fig. 3a; cluster 5 in Additional file 2: Figure S2a).

The foregoing unsupervised classification of the fecal
microbiota outlines the response to radiation in the
murine gut ecosystem as a function of Dose and Time.
We next aimed to test if, alternatively, the overabun-
dance of a restricted set of phylotypes can segregate spe-
cific combinations of Dose and Time. To this end,
rarefied 16S rRNA counts were subjected to Constrained
Analysis of Principal Coordinates (CAP) by means of the
db-RDA approach (see Methods and Additional file 6:
Table S5). This analysis confirmed that the global ordin-
ation of our samples is explained by a diverse array of
phylotypes from different taxonomic orders, with Firmi-
cutes and Verrucomicrobiales as the more significant
classifiers (db-RDA p value <0.001), although some
Tenericutes and Actinobacteria (Bifidobacteriaceae and
Coriobacteriaceae) phylotypes were also found to be sig-
nificant (db-RDA p value <0.01). On the other hand,
db-DRA was able to single out a small set of condition-
specific phylotypes (Additional file 4: Figure S2b). A few
select examples are shown in Fig. 3b. Unclassified phylo-
types in the rc4—4 genus (Peptococcaceae family) and the
RF39 order were indicative of non-irradiated states, with
variations in relative abundance that never regained con-
trol levels for the samples profiled in this work. Relative
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abundance variations at 0.1 Gy reached a maximum at
10 days for A. muciniphila, while at 30 days, these low-
dose samples are better characterized by the overabun-
dance of the Clostridiales order (unclassified and
Lachnospiraceae species along with Ruminococcus
gnavus, among others).

Overall, model-based classification and db-RDA at the
phylotype level suggest a model in which different radi-
ation doses initiate a distinct reorganization of the
microbial composition. In fact, phylotypes with signifi-
cant association with a given condition showed good
performance as condition-specific classifiers in receiver
operating characteristic (ROC) analysis (Fig. 3c). This
new dose-dependent state seems to be followed by a
time-modulated transition towards a new, yet unknown
ecological equilibrium post-irradiation.

Microbial alterations contribute to functional shifts after
irradiation in mice

Our next goal was to determine if the observed varia-
tions in radiation-responsive taxa contribute to
community-wide functional shifts. In order to account
for the compositional nature of the data, we employed
the FishTaco framework [15], a recently developed ap-
proach that deconvolves predicted functional shifts into
taxon-level contributions along with their statistical sig-
nificance (see Methods for details). Figure 4a shows the
net magnitude W (Wilcoxon test statistic) for predicted
shifts in irradiated samples as compared to non-
irradiated, time-matched samples (full results are
provided in Additional file 7: Table S6). These results
predict that the functional potential of the gut micro-
biome is pushed far from its equilibrium even at low
doses of high LET radiation and that this departure from
the equilibrium seems to mimic the dose-dependent
behavior observed at the species level.

Predicted functional shifts were further examined for
their association with the relative extinction or blooming
of specific phylotypes (Fig. 4b). We observed a marked
downregulation of carbohydrate digestion and absorp-
tion, a pathway in the mammalian gut that is largely
dependent on microbiome-specific reactions. Here, this
drop in functional capacity 30 days post-irradiation
could be tracked down to the depletion of some Bacter-
oidetes and Lactobaciliaceae phylotypes for 0.25 Gy,
while for higher doses, the major contribution to this
shift can be attributed to the depletion of Erysipelotri-
chaceae phylotypes. In both cases, the increased abun-
dance of phylotypes with enzymatic potential in this
pathway (e.g., Verrucomicrobiales at 0.25 Gy, Ruminococ-
caceae) is not able to fully compensate the predicted
reduced activity in this pathway (Fig. 4a). An example of
a ubiquitous pathway reflecting the strong fluctuating
abundance of several taxa is Fructose and mannose
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metabolism (Fig. 4a, b). The early response (10 days) for
the enzymatic abundance in this pathway (upregulation)
can be attributed in part to Verrucomicrobiales and
Lactobaciliaceae phylotypes, due to their elevated
abundance relative to other prevalent Firmicutes taxa.
However, we found a consistent drop in activity 30 days
after irradiation, which for high doses is significantly as-
sociated to the extinction of Bifidobacteriaceae phylo-
types. Another striking example are the variations
observed for the activity within the tricarboxylic acid
(TCA) cycle, which seemed to result from the overabun-
dance of A. muciniphila (Verrucomicrobiales) phylotypes
that prevailed over the depletion of highly abundant,
otherwise inhabitants of the normal microbiota (Bacter-
oidetes, Lachnospiraceae, Peptococcaceae, and Rumincoc-
caceae among others, Fig. 4b).

The previous activity pattern (early upregulation
followed by a decrease pathway activity at 30 days) was
observed in numerous cases (Fig. 4a) and is likely to be
a consequence of a transient dysbiotic microbiome after
radiation exposure. However, the long-term clinical

consequences of such functional shifts in the host are
largely unknown and will probably be a function of the
duration of this transient state and the stability of the
altered microbiota.

Perturbations in the metabolome of mice exposed to low-
dose high LET radiation

Next, we hypothesized that irradiated samples could be
characterized by the differential abundance of specific
metabolic products and that some of the metabolic
perturbations would correlate with the changes ob-
served in the gut microbiome. Hence, we interrogated
the fecal metabolome from the same mice using untar-
geted metabolic profiling. We detected more than
4500 features by LC-MS and compiled putative anno-
tations based on accurate mass from various databases
(see Methods and Additional file 8: Table S7). We first
aimed to produce an unsupervised classification of me-
tabolite abundance profiles, in order to look for poten-
tial parallelisms with the previously described
variations in the microbiome. Multivariate regression
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followed by unsupervised clustering confirmed that
highly variable features (FDR < 10e™* for at least one
covariate in the linear regression model) showed simi-
lar dose-dependent responses (Additional file 4: Figure
S3a). In particular, a significant fraction of highly vari-
able features (284 out of 331) were regulated for the
lowest dose (0.1 Gy), and 152 features were statistically
significant at this dose only.

The identities of significantly dysregulated metabo-
lites were confirmed using tandem mass spectrometry
(see Methods). We again observed several classes of
features with moderate or no response for the highest
dose employed (e.g., cluster 7 in Additional file 4:
Figure S3a). Metabolites classified in the latter cluster
were preferentially annotated in central metabolic
pathways (Glycolysis and gluconeogenesis, Fructose and
mannose metabolism, Pyrimidine metabolism, Lineloic
acid metabolism, Additional file 8: Table S7). There-
fore, the metabolic turnover of the gut ecosystem
seems to be significantly altered at low radiation doses.

Additionally, db-RDA analysis was able to isolate
condition-specific features, which in their turn pro-
vided a more discrete account of metabolic shifts
across our dataset (Fig. 5). We compiled chemical tax-
onomy information (HMDB database) for the pool of
features with putative annotations and summarized en-
richment results at the class level for condition-
specific molecules (Fig. 5, right panel; Additional file 4:
Figure S3b, and Additional file 9: Table S8). Among
prevailing metabolite classes, precursors of glycero-
phospholipids, typically regarded as a fingerprint of
healthy gut metabolism [16], were found to be under-
represented among the classifiers of radiated samples.
Besides, a number of metabolite classes were over-
represented in classifiers of irradiated samples
(Aldehydes, Derivatives of Phenylacetic acid, and
Eicosanoids, among others). Specifically, for intermedi-
ate doses of ionizing radiation (0.1 and 0.25 Gy),
spectral features annotated as leukotriene B4, acetalde-
hyde and benzaldehyde, or auinaldic acid were among
the most significant classifiers. On the other hand,
sulfocholyl taurine showed high indicator value for
1 Gy samples, concurrent with an observed shift
towards steroids and derivatives for the same samples.

Therefore, untargeted metabolomics lend credence
to the widespread metabolic shift predicted from varia-
tions in microbial species, which in turn has an impact
in a heterogeneous array of gut signaling pathways.
Although a substantial number of spectral features
could not be annotated in current metabolomics refer-
ence databases, these results reveal a radiation-induced
breakdown in the symbiotic homeostatic control of
several gut metabolic pathways and provide insights
for future mechanistic and interventional studies.
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Metabolic network modeling and microbiome-metabolite
associations

The impact of the microbiome on the host’s metabolic
activity has been extensively studied and reviewed, and
is known to affect both local and systemic metabolism
[17, 18]. Moreover, the individual or collective contribu-
tion of microbial taxa to specific metabolic pathways has
been established in numerous settings [17, 19]. However,
the functional redundancy of the gut microbiome and
the complex interactions along the host-microbiome axis
can result in a separation between microbial compos-
ition and overall metabolic turnover [20, 21]. We have
shown above that high LET radiation induces (1) signifi-
cant changes in the fecal microbial composition, con-
comitant with a shift in its predicted functional potential
and (2) shifts in the combined host-microbiome meta-
bolic output. We next aimed to integrate our data to es-
tablish  whether radiation-induced alterations in
microbial composition (community structure) can pre-
dict variations in specific metabolic shifts (community
metabolism). To this end, we employed metabolic net-
work modeling [22-24] to estimate the community-wide
metabolic output of our inferred metagenomes and com-
pared these predictions with the abundance of metabo-
lites (validated using tandem MS), in our LC-MS
dataset.

We mapped our inferred metagenomes and
metabolite-putative annotations to a reference set of en-
zymatic reactions retrieved from the KEGG database
[25, 26] and implemented a modeling framework based
on Community-Based Metabolite Potential (CMP) scores
[24]. These scores were used as a surrogate for the rela-
tive capacity of the inferred metagenome to produce or
deplete the metabolite and enabled us to identify a set of
well-predicted metabolites by direct comparison to ac-
tual metabolomics data (see Methods). Strikingly, we
found that ~ 30% of the mapped compounds were classi-
fied as well predicted (Mantel p value and FDR g value
<0.01). Although this degree of predictability compares
with previous results in both vaginal and fecal samples
[24], pairwise correlations between CMP scores and LC-
MS abundances across all samples were lower than pre-
viously observed, which could be a consequence of the
complex host-microbiome post-radiation dynamics de-
scribed above. In fact, metabolites categorized as well
predicted (see examples in Fig. 6) showed high concord-
ance between actual and predicted metabolite abun-
dances, particularly for samples with outlier values, and
even for moderate values of the global correlation across
all samples. This underscores the connection between
strong variations in microbial abundances and metabolic
output in our system.

Among the set of well-predicted metabolites, we ob-
served enrichment in metabolite classes strongly
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associated with bacterial activity in the gut (amino acids
and derivatives, steroids and steroid derivatives, prenol
lipids and carboxylic acids and derivatives, along with
carbohydrates and carbohydrate conjugates; Additional
file 10: Table S9). Overall, these results indicate that pre-
dicted metagenome profiles, post high LET radiation

exposure, can be used to explain a significant fraction of
the observed variance in metabolic output.

To further explore the association between bacterial
species and metabolites, we identified the phylotypes
with  significant individual contributions to the
community-wide CMP scores (see Methods and
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Additional file 10: Table S9). Figure 6a shows the net-
work of associations between well-predicted metabolites
and significant contributors to the predicted
community-wide CMP scores. Interestingly, the struc-
ture of this network mainly reflected the functional spe-
cificity of phylotypes in different bacterial families, as
they were primarily associated with distinct sets of well-
predicted metabolites. As expected, the diverse Firmi-
cutes family contributed a significant and redundant
array of associations, with some anticipated overlap with
Bacteroidetes phylotypes. Also, and in concordance with
the functional compensatory effects observed from our
predicted metagenomes between Verrucomicrobia and
Bacteroidetes phylotypes (Fig. 4), these two families were
predictive of variations in a common set of metabolites.
For instance, citrulline abundance in fecal samples has
been shown to correlate with the abundance of Bacter-
oides and other gut bacterial species [16, 27]. Here, we
found that N-acetyl-L-citrulline CMP scores correlated
with Bacteroidales spp., while A. muciniphila was par-
ticularly associated with the lowest CMP scores (Fig.
6b). Among the set of well-predicted metabolites with
the highest global correlation, we observed an increase
in the abundance of ubiquinol particularly for samples
30 days after exposure. The individual CMP scores for
several Actinobacteria species were strongly correlated
with community-wide CMP scores for ubiquinol, with
Bifidobacterium pseudolongum being classified as the
top key contributor. Additional examples of well-
predicted metabolites include Phenylalanine, which was
found to be significantly associated with Bacteroidales
species, although Oscillospira was particularly predict-
ive for samples with the highest levels of Phenylalanine
(Fig. 6b). Finally, phenylpyruvic acid is a bacterial
byproduct of phenylalanine metabolism. Our data sug-
gest a preeminent role of Ruminococcaceae species
(Oscillospira and Ruminococcus among others) in high
levels of this metabolite. Finally, we found that a num-
ber of well-predicted metabolites in this study (phenyl-
alanine, citrulline, phenylpyruvate, chenodeoxycholate,
and mannose among others) were also well predicted in
metabolic models of inflammatory disorders [24].

In summary, the enzymatic potential of the irradiated
microbiome is a good predictor of the metabolic output.
Combined, the observed functional and metabolic shifts
parallel previous observations on the relationship
between dysbiosis of the gut microbiota and disease, as
discussed below.

Discussion

In this study, we report the results from a murine
model-based study aimed at delineating the modulation
of the gut microbiome and metabolome after exposure
to different levels of ionizing radiation. Somewhat
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unexpectedly, our model showed a higher sensitivity of
the gut ecosystem to lower doses—0.1 and 0.25 Gy as
compared to the highest dose—1 Gy. This threshold-like
response was recapitulated at the (predicted) functional
and metabolome levels. Although the basis for this be-
havior in our system is uncertain, non-linear responses
in the range 0.1-1 Gy have been previously reported and
explained in terms of a transition from low-dose hyper-
radiosensitivity (HRS) to increased radioresistance (IRR)
at doses of ~0.3 Gy in mammalian cells (initially ob-
served by Marples et al. [28] and extensively reviewed
thereafter [29]). The HRS regime seemed to be indicative
of adaptive-like responses aimed to block low-dose dam-
age propagation from DNA to cells and tissues. These
could involve time-delayed signals that can span from
hours (e.g., scavenging of toxins) to months (e.g., im-
mune responses). At higher doses, DNA repair mecha-
nisms were fully in effect and resulted in a seemingly
reduction in radiosensitivity, or IRR. Here, we have pre-
sented data in the range 0—1 Gy and up to 30 days after
radiation; our results suggest an emergent HRS/IRR be-
havior in the complex gut ecosystem, where protective
signals in the range 0.1-0.25 Gy would be able to induce
ecological, functional, and metabolic shifts in the gut
that are not present under an IRR regime at 1 Gy. The
behavior of the gut ecosystem under substantially higher
doses than those employed here (such as 5 Gy and
above) remains an open question.

The basis for the observed convoluted response to ra-
diation remains elusive. For high LET radiation, one
could speculate on the presence of modulatory factors at
high doses. These would include a protective DNA re-
pair and oxidative phosphorylation signaling pathway re-
sponse of the microbial ecosystem [30, 31] amplified by
the local hematopoietic or epithelial cellular response
[32]. On the other hand, host-specific alterations to this
dose and type of radiation are poorly understood, al-
though recent gene expression studies indicate that there
is a detectable and consistent protective-like response
[30]. A core of signaling radiation-responsive pathways
includes those involved in sensing alterations in redox
balance and downstream regulatory activities to restore
homeostasis, e.g., cell-cycle modifications, cytotoxicity,
and inflammatory responses [31]. Our data shows a
long-term modulation of the gut ecosystem; at least
30 days after a single (high dose rate) exposure to radi-
ation. Therefore, it is tempting to speculate that
radiation-induced redox imbalance is followed by a pro-
inflammatory dysbiotic state, as a mechanism with the
ability to sustain a modulatory effect on that time scale.
We profiled plasma samples from C57Bl/6 ] male mice
that were exposed to 'O (600 Mev/n) at 14 and 90 days
after irradiation. We found an increase in plasma levels
of phosphatidic acid (PA) and lyso PA metabolites that
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are known to activate pro-inflammatory mTOR signaling
directly (data not shown) [33]. On the other hand, untar-
geted metabolomics data suggest that the metabolic
turnover of the gut ecosystem was substantially altered
for low radiation doses, including a number of spectral
features with dose-dependent abundance and potential
host metabolic impact: leukotriene B4 [34], phenyl acetic
acid [35-37], sulfocholyl taurine [38], and the L-
tryptophan metabolites quinaldic acid and kynurenic
acid [39, 40]. Regardless, these observations only provide
indirect evidence of host-microbiome interactions, and
therefore, additional studies will be required to fully
characterize the crosstalk between host-derived signals
and the observed dose-dependent responses to radiation
reported here.

Alternately, we employed metabolic network modeling
to delineate the association between gut microbial ecology
and the collective, host-microbiome metabolic output
after irradiation. In agreement with previous studies, we
found that the abundance of a non-marginal fraction of
metabolites can be predicted by microbial community
structure. Examples of well-predicted metabolites include
ubiquinol, whose abundance can be modulated as a re-
sponse to accumulated oxidative stress or DNA damage
[41]. In agreement with our modeling results, the over-
abundance on Phenylalanine has been previously associ-
ated with the activity of Clostridiales species [42]. Another
example of well-predicted metabolite was N-acetyl-L-cit-
rulline, which has been mechanistically linked to
radiation-induced gut epithelial loss [32]. Finally, phenyl-
pyruvic acid is a bacterial byproduct of phenylalanine me-
tabolism and could be a fingerprint of microbial-enhanced
fermentation [43]. Therefore, our integrative approach
supports the notion that microbiome-mediated changes in
the metabolite milieu could play a key role on host-
microbiome interactions post-radiation.

Functional resilience is an important quality of the mi-
crobial ecosystem [44] and can be altered by metabolic
cues [45-47], bacterial phage activation [48, 49], and
other heterologous competitive relationships [50-52].
Our analysis of predicted functional shifts allowed us to
evaluate the impact of specific microbiome compos-
itional variations. Of note, several pathways dominated
by microbiome-specific enzymatic reactions (Lipopoly-
saccharide Biosynthesis, Fluorobenzoate Degradation,
Phosphonate and Phosphinate Metabolism, Taurine and
Hypotaurine Metabolism) were predicted to be constitu-
tively upregulated in irradiated samples. In other cases,
predicted functional variations were reflective of the op-
portunistic behavior of several taxa like A. muciniphila,
Ruminococcus gnavus, and Erysipelotrichaceae, among
others. Their pronounced overabundance even at low
doses paralleled a transient abundance decline of com-
mensals (such as Actinobacteria, Bacteroidetes, and
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Firmicutes). Both A. muciniphila and Erysipelotrichaceae
have been deemed as opportunistic gut colonizers after
antibiotic treatment [53-55]. Also, A. muciniphila has
gained much recent attention because of its overabun-
dance in response to various environmental triggers
[55-62]. In particular, A. muciniphila has been regarded
as a colitogenic and pro-inflammatory species in specific
models of colitis [63, 64] through its ability to degrade
the intestinal mucus layer and high immunostimula-
tory activity. However, within the complex gut ecosys-
tem, those findings are likely to be context dependent
[65, 66]. Our study does not rule out the possibility
that these and other observed changes are the result
of mutualistic protective responses to harmful alter-
ations Therefore, the long-term consequences of a
transient colonization by A. muciniphila and other
species after a short-term insult remain uncertain.

The previous remarks raise a number of open-ended
relevant questions, in particular about the transient or
permanent nature of a radiation-induced dysbiotic state
under space travel conditions. First, and due to experi-
mental constraints, the '°O exposures in this study were
performed at high dose rates, since chronic or fraction-
ated exposures to oxygen ion irradiation were not feas-
ible at the time of these studies. However, heavy ion
radiation in space occurs continuously and at lower dose
rates, and although a reduced diversity on the micro-
biota has been reported following space flight [67], little
is known about how the microbiome and its metabolic
output are modulated under chronic, low dose rate ex-
posures. Additionally, space travel conditions constitute
a highly unusual environment for the microbiome. The
lack of exposure to microbial diversity due to a limited
diet and extremely sterile habitat could amplify the effect
of harmful, opportunistic pathogens [68], or impede the
correction of an otherwise transient dysbiotic state.
Studies are under way to evaluate the feasibility of diet-
ary interventions to improve astronaut health [68]. How-
ever, the translational potential of our findings regarding
exposure to high LET radiation should be studied in the
future. Of particular relevance for space travel applica-
tions, it would be informative to extend the scope of our
integrative approach by evaluating additional tissue func-
tion outcomes from the same cohort, such as intestinal
structure, cognitive function, and cardiovascular func-
tion and structure. Still, our data show for the first time
that even small doses of high LET radiation constitute a
challenge to the functional resilience of the gut
ecosystem.

Conclusions

Our integrative analysis underscored several points;
firstly, there were robust changes in ecological commu-
nities harboring the gut microbiota as a consequence of
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high LET exposures (16 O); secondly, these changes
seem to shift the equilibrium towards an increase in op-
portunistic pathogens with a concomitant decrease in
normal microbiota upon irradiation; finally, these
changes were predicted to induce functional shifts in
metabolism, both at the level of the predicted enzymatic
potential of the perturbed microbiome and of the metab-
olome. Most importantly, metabolic network modeling
showed that specific changes in the metabolome are
connected to irradiation-induced changes in the abun-
dance of specific taxa. Our model suggests an emergent,
dose-dependent hyper-radiosensitivity behavior of the
gut ecosystem. Regardless of the specific mechanisms
involved in these singular responses, our exploratory
study clearly establishes that high LET radiation induces
a metabolite-mediated, convoluted reorganization of the
gut ecosystem. Therefore, the implication of
microbiome-mediated host pathophysiology after low-
dose ionizing radiation may be an unappreciated biologic
hazard of space travel and deserves experimental valid-
ation. This study provides a conceptual and analytical
framework to increase our understanding of the chronic
effects of space radiation on human health.

Methods

Animal and irradiation protocols

Male C57BL/6] mice (Jackson Laboratory) were pur-
chased at 4 weeks of age and housed at the Division of
Laboratory Animal Medicine, University of Arkansas
for Medical Sciences (UAMS), on a 12:12 light-to-dark
cycle with free access to food (soy-free rodent diet
2020X, Harlan Teklad) and water. At 6 months of age,
mice were transported to Brookhaven National Labora-
tories (BNL) and housed under comparable conditions
(12:12 light-to-dark cycle, free access to rodent diet
2020X and water). After a one-week acclimation period,
mice were individually placed in well-ventilated clear
Lucite cubes (3 x 1% x 1% in.) and exposed to whole-
body '°O irradiation (600 MeV/n; 0.1, 0.25, or 1.0 Gy,
0.21-0.28 Gy/min) at the NASA Space Radiation
Laboratory. Sham-irradiated mice were placed in the
same holders, but were not exposed to radiation. A
total of 10 mice per dose group were used. Dosimetry
details and schematics along with dose distribution
curves are reported elsewhere [69]. One day after
(sham-) irradiation, all mice were returned to UAMS
and placed on 2020X diet containing 0.68 g/kg fenben-
dazole (Harlan Teklad) as part of the standard UAMS
rodent quarantine procedure. At 10 and 30 days after
irradiation, mice were individually placed in a Plexiglas
box to obtain fresh fecal pellets. Fecal pellets were
stored at —-80 °C until processing. Each pellet was di-
vided into two parts under liquid nitrogen, one halve
was shipped to the University of California Los Angeles
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for 16S rRNA amplicon sequencing and the other halve
to Georgetown University for metabolomics.

16S rRNA amplicon sequencing library preparation
Genomic DNA was extracted using the PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad,
CA, USA) with a 30-s beat-beating step using a Mini-
Beadbeater-16 (BioSpec Products, Bartlesville, OK,
USA). Polymerase chain reaction amplification of bac-
terial 16S rRNA genes was performed using extracted
genomic DNA as the template. The 100 ul reactions
contained 50 mM Tris (pH 8.3), 500 pg/ml bovine
serum albumin, 2.5 mM MgCl,, 250 puM of each
deoxynucleotide triphosphate, 400 nM of each primer,
4 ul of DNA template, and 2.5 units JumpStart Taq
DNA polymerase (Sigma-Aldrich, St. Louis, MO,
USA). The PCR primers (F515/R806) targeted the V4
hypervariable region of the 16S rRNA gene, with the
reverse primers including a 12-bp Golay barcode.
Thermal cycling were performed in an M] Research
PTC-200 (Bio-Rad Inc., Hercules, CA, USA) with the
following parameters: 94 °C for 5 min; 35 cycles of
94 °C for 20 s, 50 °C for 20 s, and 72 °C for 30 s;
72 °C for 5 min. PCR products were purified using
the MinElute 96 UF PCR Purification Kit (Qiagen,
Valencia, CA, USA). DNA sequencing was performed
using an Illumina HiSeq 2500 (Illumina, Inc., San
Diego, CA, USA), in paired-ended mode. Clusters
were created using template concentrations of 4 pM
and PhiX at 65 K/mm?® Sequencing primers targeted
101 base pair reads of the 5° end of the amplicons
and 7 base pair barcode reads. Reads were filtered
using the following parameters: minimum Q-
score—30, maximum number of consecutive low-
quality base calls allowed before truncating—3, and
maximum number of N characters allowed—O0. All
filtered V4 reads had a length of 150 bp.

Analysis of 16S rRNA amplicon sequencing data

De-multiplexing and paired-end joining of 80 sequen-
cing libraries was performed in QIIME [70] using default
parameters. Sequencing reads were classified and sum-
marized at different phylogenetic levels down to Oper-
ational Taxonomic Units (OTUs) [71, 72] using a
similarity threshold of 97% within the GreenGenes [73]
v13_8 reference database. One sample with less than
60,000 classified sequences was removed. The average
number of OTUs detected per sample was 862.4 + 88.4,
and the mean counts per sample was 100,745.5. The
number of detected OTUs (counts >0 in at least one
sample) was 7377, for an OTU table density of 0.117.
Therefore, independent filtering was applied as recom-
mended for Illumina amplicon data [74] by removing
low abundance OTUs (those with <0.0005% of reads in
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the total dataset). The resulting matrix provides a
highly replicated, deeply sequenced dataset with 1260
OTUs (average number of OTUs detected per sample
718.1 £ 60.0, mean counts per sample = 100,536.4, final
OTU table density of 0.57), which allowed us to per-
form differential abundance analysis with increased de-
tection sensitivity. Downstream analysis (see below)
was always performed from randomly rarefied tables at
a depth of 60,000 reads per sample.

In light of the distinct effect that different doses had
on microbial diversity, we were primarily interested on
modeling ordered, monotonic changes to radiation.
Downstream analysis of 16S rRNA amplicon data was
therefore always carried out in terms of categorical vari-
ables for Time and Dose. QIIME [70] was employed for
the ecological analysis of 16S rRNA data, including rela-
tive abundance of taxa, and alpha and beta diversity ana-
lysis. Alpha diversity was estimated using Faith’s
phylogenetic diversity metric (PD) as the average across
ten different rarefactions of the OTUs count matrix. Dif-
ferences in diversity levels between groups were tested
using a nonparametric two-sample ¢ test (999 Monte
Carlo permutations). Samples ordination based on beta
diversity was examined by means of principal coordinate
analyses (PCoA) with phylogeny-based (UniFrac) un-
weighted distances. Jackknifed analysis on randomly rar-
efied data along with PERMANOVA and ANOSIM were
used to test for significant differences in beta diversity
between factors of the experimental design. Similarly,
the Kruskal-Wallis test was used to evaluate the effect of
the experimental factors on the relative abundance at
different taxonomic levels. Additional ordination and
discriminant analysis was performed by means of dis-
tance-based redundancy analysis (db-RDA) using the
vegan [75] package in R. Negative binomial statistics
were employed to identify differentially abundant taxa
and classify them in groups with similar abundance pro-
file, with increased detection sensitivity for rare taxa. In
particular, DESeq?2 [76] was first used to fit the count data
to different models: an additive model (~ Time + Dose),
two reduced models (~ Time or ~ Dose) and a full interact-
ing model (~ Time + Dose + Time:Dose). The results from
these models were compared for each taxa using
ANODEYV to capture statistically significant responses to
experimental factor, their combination and/or their
interaction. All taxa that tested significant (adjusted
p-value <0.05) in at least one contrast were pooled.
This target pool was then subjected to model-based
clustering using MBCluster.Seq [77] to classify taxa
based on their overall abundance profile.

PICRUSE [78] was used to predict the metagenome in
terms of Kegg Orthology (KO) terms for each 16S rRNA
sample. The output from PICRUSt was further normal-
ized using MUSICC [79] for downstream analyses,
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obtaining both intra- and inter-sample corrections.
Microbiome functional shifts and phylotype-level contri-
butions to functional shifts were obtained using the
FishTaco framework [15]. Input for FishTaco included a
pre-computed OTU-KO table from the PICRUSt
analysis, output from MUSICC, and OTU relative abun-
dances. FishTaco was run on multi-taxa mode for each
pairwise comparison between irradiated and non-
irradiated samples. For each KEGG pathway, we
estimated both positive and negative functional shifts
using two different metrics (Wilcoxon and log-ratio
tests). In order to overcome the computational cost of
the FishTaco deconvolution approach, we estimated the
functional shifts for the top 100 phylotypes with the
maximum relative abundance across our dataset, and
the set of all possible independent tests were analyzed in
parallel in a computer cluster. FishTaco deconvolves
each functional shift in pairwise case vs. control compar-
isons into four different modes: (1) case-associated taxa
driving functional shift (taxa over-represented in cases
with enzymatic activity in pathway); (2) case-associated
taxa reducing functional shift (taxa over-represented in
cases but with no enzymatic activity in pathway); (3)
control-associated taxa driving functional shift (taxa
over-represented in controls with no enzymatic activity
in pathway); and (4) control-associated taxa reducing
functional shift (taxa over-represented in controls with
enzymatic activity in pathway). Figure 4a shows the net
functional shift in terms of Wilcoxon test statistics. For
greater clarity, Fig. 4b summarizes taxon-level percent
contributions to the net functional shifts only for phylo-
types with functional activity in the pathway.

Fecal metabolomics using UPLC-ESI-QTOF-MS

Fecal samples were processed by initially homogeniz-
ing in extraction solvent containing 50% methanol,
30% isopropanol, and 20% chloroform and internal
standards [80]. The samples were centrifuged and
chilled 1:1 acetonitrile was added to the Eppendorf
vials. The samples were incubated at —20 °C overnight
to allow protein precipitation followed by centrifuga-
tion. The supernatant was combined and dried under
vacuum and resuspended in water containing 50%
methanol for MS analysis. The sample queue was ran-
domized to avoid bias. Each sample (2 pl) was
injected onto a reverse-phase 50 x2.1 mm Acquity
1.7 pm BEH C18 column (Waters Corp, Milford,
MA) using an Acquity UPLC (Waters Corporation,
USA) system online with an electrospray quadrupole
time-of-flight tandem mass spectrometer (ESI-Q-TOF)
(Xevo—G2, Waters Corporation USA) operating in
positive and negative ion mode, the details of tune
page parameters have been described before [81-83].
A 0.2 ng/ul/pL solution of Leucine-Enkaphlin in 50%
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acetonitrile in water ((M + H] ¥, m/z 556.2771 and
[M-H]", m/z 554.2615) was infused at 5 pL/min flow
rate as the reference mass (lock mass) for accurate
mass measurements. The quality control (QC) sam-
ples for each matrix comprised an aliquot of all sam-
ples in the study set, thus representing a universal set
of metabolites. Initially the column was conditioned
using this QC sample and thereafter it was injected
after every ten injections to account for reproducibil-
ity of the LC-MS data [84]. The overlay of total ion
chromatograms showing chromatographic reproduci-
bility and mass error using mixture of standards
(metmix) is detailed in Additional file 4: Figure S4.

All initial analyses were performed with putative anno-
tated metabolites; however, a subset of significantly dys-
regulated metabolites was subsequently confirmed by
tandem mass spectrometry (see Computational analysis
of metabolomics data). The UPLC-QTOF raw data files
were converted into NetCDF format (Network Common
Data Form) using the data bridge function incorporated
in the MassLynx software (Waters Corp, Milford, MA).
Subsequently, the LC-MS data were preprocessed using
XCMS software, as has been described [85]. R script
used for data pre-processing is provided in Additional
file 4. The data were normalized to the ion intensity of
the internal standards (debrisoquine and 4, Nitrobenzoic
acid) and weight of the fecal pellet.

Computational analysis of metabolomics data
Normalized LC-MS data were employed for all down-
stream analyses. We employed mass search to assign puta-
tive metabolite identifications from the Metlin and
HMDB databases [86, 87]. We performed searches for
both positive and negative modes with mass tolerance
thresholds in the range 1 to 7.5 ppm. The final identifica-
tion was based on either minimal mass difference or man-
ual curation using the fragmentation spectrum of the
standard metabolites. The identities of all significantly
dysregulated metabolites were confirmed using tandem
mass spectrometry. The fragmentation information for a
subset of metabolites that were significantly dysregulated
is included in Additional file 11: Table S10. For metabolic
network modeling and metabolite class enrichment, all
putative annotations were tested in order to maximize
enrichment and overlap with reactions encoded by the
inferred metagenome [24], with little differences for differ-
ent mass tolerance thresholds. Multivariate linear
regression, ordination and discriminant analysis were per-
formed as before in R. Enrichment on metabolites classes
was performed using chemical taxonomies downloaded
from the HMDB database version 3.6.

Metabolic network modeling was performed using the
Predicted Relative Metabolic Turnover framework [23]
in terms of KEGG enzymatic reactions. We computed
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Community-wide Metabolic Potential (CMP) scores [24]
using in-house scripts in Matlab (R2015a, The
MathWorks Inc.). Our implementation was based on a
database of irreversible enzymatic reactions from the
KEGG database [26] (release 77.1) obtained using the
KEGG REST APIL The reaction database was represented
in terms of a stoichiometric matrix M, which links KEGG
compound with KO terms. The final normalized form
[23] of the matrix M (where all positive coefficients are re-
scaled to sum 1, or -1 for negative coefficients) represents
the relative contribution of each KO gene to the produc-
tion or depletion of each compound. CMP scores were
computed as the matrix multiplication of M and G, where
the latter represents MUSICC-corrected KO-relative
abundances. Final integration with metabolomics data was
performed by comparing CMP scores to actual LC-MS
normalized metabolite abundances, by matching metabol-
ite putative ids with KEGG compound ids. For each me-
tabolite, we performed a Mantel test between the vector
of CMP scores and normalized abundance across all sam-
ples as before [24]. P values from the Mantel test were fur-
ther corrected for multiple testing using bootstraps to
estimate false discovery rates (FDR). Compounds were
classified as well predicted if Mantel p value <0.01 and
FDR <0.01. Identification of key phylotypes contributing
to a particular CMP score was based on the correlation
between community-wide and single-phylotype CMP
scores. These were computed as before using a matrix G
representing the enzymatic content of a single phylotype.
Key contributors associated to a given metabolite were se-
lected as the phylotypes with the maximum correlation
between community-wide and single-phylotype scores.
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