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Abstract

Background: Learning the structure of microbial communities is critical in understanding the different community
structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many
subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of
this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix
Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the
existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable
information from classification problems.

Results: The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for
classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw
meaningful biological conclusions and discover hitherto unidentified patterns in the data.

Comparing whole metagenomes of various mammals, (Muegge et al,, Science 332:970-974, 2011), the biosynthesis of
macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in
veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data
from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for
one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift
is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and
healthy controls (Qin et al.,, Nature 464:59-65, 2010), we identify differences in a number of pathways (some known,
others new).

Conclusions: NMF is a powerful tool for identifying the key features of microbial communities. These identified
features can not only be used to perform difficult classification problems with a high degree of accuracy, they are also
very interpretable and can lead to important biological insights into the structure of the communities. In addition,
NMF is a dimension-reduction method (similar to PCA) in that it reduces the extremely complex microbial data into a
low-dimensional representation, allowing a number of analyses to be performed more easily—for example, searching
for temporal patterns in the microbiome. When we are interested in the differences between the structures of two
groups of communities, supervised NMF provides a better way to do this, while retaining all the advantages of
NMF—e.g. interpretability and a simple biological intuition.
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Background

Microbes affect human physiology and global nutrient
cycling, through the action of microbial communities
[1-3]. A microbial community usually consists of hun-
dreds or even thousands of different microorganisms [4, 5]
which survive through the interaction with each other and
environments and form metabolically integrated commu-
nities [6]. Although in some cases the abundance of a sin-
gle species can have a big effect on the overall state of the
community, for example some species of pathogens are
believed to single-handedly cause illnesses, in many cases,
differences between different types of microbial commu-
nities (for example, the communities in the guts of healthy
and IBD people) are attributable to the overall structure
of the community. It is therefore critical to devise models
which take into account this overall structure.

Next generation sequencing has generated a large
amount of microbial metagenomics data for the study
of microbial diversity of different environments. These
data consist of either marker-gene data (counts of OTUs)
or functional metagenomic data, i.e. counts of reaction-
coding enzymes. The OTUs or gene counts will be
referred to as variables, and a sample will be also referred
to as an observation in this paper. Considering the diffi-
culty of collecting data and the large number of variables,
the data always consist of hundreds or even thousands of
variables but only a few observations, which means p > n
(p is the number of variables and # is the number of obser-
vations). In addition, many species are only observed in a
few samples; thus, the data are highly sparse [7, 8]. This
makes it challenging to apply classical statistical analysis
methods.

Exploratory data analysis, such as principal component
analysis (PCA) [9], on the original data matrix, is not
appropriate for count data and has largely been replaced
by clustering analysis or principal coordinates analysis
based on UniFrac [10]. The UniFrac distance measures the
abundance difference between two samples, incorporat-
ing phylogenetic tree information between the organisms.
Although UniFrac is widely used, it has some drawbacks.
One is that it does not address the heterogeneity between
samples due to the different sequencing depths for differ-
ent samples. Subsampling techniques are sometimes used
to attempt to remedy this problem, but these do not fully
resolve the problem and involve throwing away a large
amount of information in the data and so are not recom-
mended [11]. UniFrac based methods are only applicable
to OTU data, not whole metagenome sequence data. Fur-
thermore, UniFrac is an ad hoc method in that it is not
based on a probablistic model and thus does not pro-
vide as much insight as an explicit statistical model-based
approach.

Early work on the probabilistic modeling of micro-
bial metagenomics data by [12] has represented the data
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as multinomial samples from an underlying multinomial
distribution which in turn is generated from one of sev-
eral Dirichlet mixture components. The hyperparameters
of each of the Dirichlet mixture components have been
assumed to follow a Gamma prior. This Bayesian proba-
bility framework seemed to be reasonable, though some
assumptions such as choice of prior are arbitrary; how-
ever, the analysis results of the two examples based on this
probability framework in [12] are not totally convincing in
that the clustering results of lean and obese samples do not
really show clustering patterns, and the method underper-
forms existing methods at classification. Another Bayesian
probabilistic framework models the contaminated sam-
ple as a mixture of several known microbial community
sources [13]. Bayesian Inference of Microbial Communi-
ties (BioMiCo) [14] is a more recent Bayesian hierarchical
mixed-membership model. BioMiCo takes OTU abun-
dances as input and models each sample as a two-level
hierarchy of mixtures of multinomial distributions which
are constrained by Dirichlet priors. This model identi-
fies clusters of OTUs which it calls assemblages and then
infers the mixing of assemblages within samples. Unlike
the Gamma prior used in [12], the Dirichlet priors are
used to control the sparsity of mixing probabilities for
both levels of the multinomial distributions which results
in more interpretable assemblages and a more parsimo-
nious model.

The above probability frameworks have been mainly
applied to the marker-gene data, but could easily be
applied to whole metagenomic data as well. Another hier-
archical Bayesian framework, BiomeNet [15], has been
developed to specifically model the structure of metage-
nomic data.

A common theme in these Bayesian probability mod-
elling frameworks is that each sample is modeled as a
mixture of several typical “types” These typical types are
mostly inferred from data by computational methods. The
Bayesian framework provides a natural vehicle for fitting
complicated models, but the resulting models are gen-
erally not easy to interpret because of the hierarchical
structure, and the computation usually takes a very long
time.

In order to provide an effective exploratory data anal-
ysis method that is suitable for both marker-gene and
functional metagenomic data and is based on a probabil-
ity model that can capture the subcommunity structure
information and can address the issues of heterogene-
ity among samples, we explore the application of Non-
negative Matrix Factorization (NMF) to microbiome data
in a likelihood framework. NMF has been widely applied
in many areas, such as image and natural language pro-
cessing, and also has found many applications in com-
putational biology [16]. More recently, it was applied in
the ocean microbes data to investigate the biogeography
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of microbial function and its correlation to environmen-
tal distance [17]. It has also been applied to metabolic
profile matrices [18]. This application is similar to the
unsupervised NMF we used here. They focused on func-
tional gene reads aggregated into pathways in that paper,
rather than direct reads or OTU data. It also seems that
they used NMF on the proportion data, rather than the
original counts. This is theoretically not correct, as using
the original counts allows the estimate to account for
the fact that samples with greater sequencing depth give
a more accurate estimate of the proportions. Conceptu-
ally, similar to the above Bayesian modeling frameworks,
NMF models each sample as a mixture of different types.
These types represent the structure of subcommunities.
Instead of using a multi-level hierarchical structure as in
BioMiCo [14] and BiomeNet [15], NMF uses one level of
subcommunities as building blocks which makes the con-
nection between the sample microbiome composition and
the OTUs or reaction-coding enzymes more direct; this
will provide better interpretability for the analysis results.
In addition, NMF is a natural method to use for dimen-
sion reduction and feature selection in microbiome data.
The commonly used unsupervised learning methods such
as PCA and vector quantization (VQ) for reducing dimen-
sion and picking up the main features of the data usually
result in linear combinations with negative coefficients
which are hard to interpret naturally in this context. We
want to find the main features (subcommunities) of the
data and at the same time keep all the elements in these
features non-negative. The features extracted by NMF are
somewhat different from those identified by PCA or other
variable selection methods; they are points in the high
dimensional space which form a convex hull to envelop
the observed points. Thus, they can involve much more
than a single variable or a few variables. As demonstrated
by Lee and Seung [19], NMF also tends to identify sparse
features, and thus, each sample is expressed as a non-
negative linear combination of a few sparse points (types),
which further facilitates the interpretation of the results.

Like PCA or BiomeNet, NMF is an unsupervised
method. Although NMF can extract the main features
from the data, it cannot guarantee that these features
are the best discriminant features to distinguish different
classes. For example, if two classes are described by simi-
lar features, NMF will extract an average of these features
to fit both classes, rather than separate features for the two
classes.

For the purpose of identifying differences between dif-
ferent types of communities, we develop a supervised ver-
sion of NMF in this paper. In cases where a single variable
(or a small number of variables) is the main discriminant
feature, this is often readily apparent from the types iden-
tified. In other cases, where the main differences are based
on smaller-scale community-wide structure differences,
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NMF is able to identify these. In the real-data exam-
ples, we study some examples where the main differences
between the classes come from a small number of key
variables, and other examples where the main differences
seem to arise more in the structure of the whole com-
munity. In these latter cases, the features extracted by
NMEF represent subcommunities of microbes that act as
building blocks for the whole community.

There are many off-the-shelf supervised learning meth-
ods that can perform a classification directly on such data
(areview is given by [8]). Since typically p>>n (the number
of predictor variables is substantially larger than the num-
ber of data points), we need to choose methods designed
for the p>n case. Directly applying these classification
methods often results in quite good classification. With
some classification methods (for example random forest
and the elastic net), variable selection is also possible.
However, the selected variables are often difficult to map
back to some discriminating community level features
between classes, particularly if the true discriminating fea-
ture is not a single variable. Some classification methods
(such as support vector machine, boosted trees or Neu-
ral network) can construct a very good classifier for such
data, but without any possibility of interpretation and thus
cannot provide any insight for the underlying community
structure. BioMiCo [14] builds a classifier on the discrim-
inant assemblages of the OTUs to predict the class labels
with these assemblages showing the subcommunity struc-
tures. The model complexity of BioMiCo is controlled by
the number of assemblages and the Dirichlet priors which
are both pre-specified. These pre-specified parameters
in principle can be adapted to the data through cross-
validation on the training data, but running these Bayesian
models needs a long time for each run which hurts the
wide applicability of BioMiCo to different data.

Since we are interested in the community level fea-
tures or systematic differences between different classes,
we first use NMF to identify features from each class and
then we build a classifier based on the weights distribution
of each sample on the combined features from different
classes. The features selected by this method will describe
the original data well and also contain classification infor-
mation. We can measure how well the features identified
relate to the differences between different types of com-
munities by looking at the prediction error of classifiers.
As mentioned above, the purpose of NMF is to provide
insights into the structural differences between different
types of microbial communities, rather than to produce
the most accurate classification possible. Classification is
however a good measure to gauge the extent to which
the subcommunities identified have important biological
roles in the overall community structure.

Supervised NMF has similar model structures to
BioMiCo but is fast to compute, and the only tuning



Cai et al. Microbiome (2017) 5:110

parameters are the number of features that are extracted
from different classes. Unlike BioMiCo which controls the
sparsity of variables within features by the Dirichlet priors,
the sparsity of NMF is decided by the number of features.
With fewer features used in the model, each feature tends
to be less sparse and conversely more features mean each
feature is more sparse.

Materials and methods

We will first give a review of NMF and its application to
metagenomic data under the Poisson likelihood frame-
work. We then describe the idea of supervised NMF
based on unsupervised NMF, with the computation of the
weight matrix over the combined features, followed by
the method used to choose the tuning parameters for the
supervised NMF. The details of the prediction method are
given in the next subsection.

The NMF model

Non-negative matrix factorization [19] is a dimension
reduction method for non-negative data. The idea is to
represent each data point as a linear combination of non-
negative features which are also computed from the data.
Given a non-negative pxn matrix X, we approximate X
by TW, where T is a non-negative pxk matrix, referred
to as the type (feature) matrix, and W is a non-negative
kxn weight matrix. Each column of X is approximated by
a non-negative linear combination of the types (columns
of T). Here, k is the number of types or features which
determines the complexity of the model; thus, it is a
tuning parameter in this context. Usually, k is chosen
such that (p + n)k<np, so that we reduce the dimension
significantly.

In our analysis, X is the microbes data with counts of
OTUs or genes. Specifically, Xj; is the number of times
the ith OTU or gene is observed in the jth sample. Thus,
each feature (column) in T describes a subcommunity and
each column in W contains the linear coefficients for the
corresponding sample (column) in X. The whole commu-
nity in a sample is thus approximated by a mixture of
the subcommunities. For count data, such as our X, we
model each element as an independent Poisson observa-
tion given its mean in the matrix TW. Note that because
the Poisson mean varies between samples, the propor-
tions of each OTU will exhibit the sort of overdispersion
commonly seen. The idea is that there is a latent propor-
tion of OTUs given as a weighted mean of the types, but
the observation is a Poisson sample with this mean. We
might argue that the sequencing procedure actually intro-
duces more variance, so introducing overdispersion to the
measurement distribution may have some value in future
work. The covariance structure between the variables in
X is implicitly given by the patterns in the type matrix 7.
The columns of the type matrix T are constrained to have
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the sum 1, and in this context, each column in T can be
interpreted as the composition of OTUs or genes for each
type. The different sequencing depths for the samples in X
are absorbed in the weight matrix W. To compute 7 and
W, we maximize the Poisson log-likelihood of the data [7],

L(T, W) =) (Xlog(TW);; — (TW);),
b

In most literature (e.g. [20]) Euclidean distance is used
as a criterion, assuming a Gaussian distribution for the
observations instead of the Poisson.

There are a number of algorithms available for fitting
NME, for example [19, 21-24]. A thorough discussion of
the algorithms available and their merits can be found in
[25]. We used the R package NMF by Renaud [26], which
implements the algorithm of Lee and Seung [19]. The
choice of algorithm can, in theory, influence the results
because the solution to NMF is not always unique, since
the criterion depends only on the product TW. Usually,
in practice, the non-negativity constraint will ensure that
there is a unique solution.

Another challenge in applying NMF is to choose, &, the
number of types. Generally, the log-likelihood increases
with k increasing. We can plot the log-likelihood values
versus k to find the “elbow point” after which the log-
likelihood increases more slowly. This means the increase
in the number of types will not add as much in model-
ing the data. Thus, we should choose the k value at the
elbow point. In cases where there is no such elbow point,
exploring multiple different k values by using our interac-
tive data exploration tool, SimplePlot which is described
later in this section, could help to find the k value based
on which some meaningful data structure can be shown.

Supervised NMF

For a supervised learning problem, we have observations
from different classes. Our objective is usually to find
the differences between the structures from the different
classes. We will approach this by separately identifying
the subcommunities in each class first and then com-
bine them into a single matrix of subcommunities. Each
sample now can be expressed as a mixture of all these
subcommunities. For example, if data X has g classes,

X — (X(l),X(Z),-~~ ,X(g)>

where XM, x@ ... X®© are g classes of observations.
From X®, we can calculate the non-negative type matrix
T® and weight matrix W® (i = 1, - - - ,g) by NME. To get
the hidden structure of different classes in the whole data,
we combine these type matrices together and denote this
combined type matrix for the whole data as

T = (T(U, T ... ,T(g))
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It is straightforward that T is non-negative since each
T® is non-negative. For fixed 7, to maximize the Pois-
son log-likelihood for the whole data X is equivalent to
maximizing the Poisson log-likelihood for each sample,
because the weight vectors in W associated with differ-
ent samples are independent. Thus, calculating the weight
matrix W can be reduced to performing a non-negative
Poisson regression of each sample in X on 7. The details
of the procedure are given in Appendix 1.

Method for choosing the number of types
The number of types for each class of observations should
be chosen to best describe its own class but not to describe
other classes or noise. For discrimination purposes, the
number of types for each class should be chosen to best
separate the classes in combination with the number(s)
of types in other classes. The most direct way to choose
number of types for all classes is to find the model mis-
classification errors on the validation sets for each com-
bination of the numbers of types for different classes.
However, the computation burden is heavy in such an
effort. Thus, we propose to choose the number of types
for each class separately first and try the selected com-
binations of number of types for different classes if the
results are not clear-cut. Full details of the method used
to choose the number of types, with some explanation are
presented in Appendix 2. The basic method is to fit an
NMF model on training folds from one class and com-
pare the deviances on the test fold from that class with
the deviances on a fold from each other class, using a
Wilcoxon Rank-Sum test, then combining the test statis-
tics for each fold into a single test statistic and estimating
the standard deviation from the results for different folds.
In easy cases, the number of types to choose is clear-
cut. Often, the number of types will be clear-cut for some
classes, but not others. In these cases, we fix the number
of types for the easy class(es) and use cross-validated error
to choose the number of types for the other class(es).

Prediction

For fixed T = (T(l), T, ... T(g)), we apply the non-
negative Poisson regression algorithm on training data
to calculate the training W and on test data to calculate
the test W. After getting the W matrix, we have effec-
tively reduced the dimension from p to k, in the sense
that for the fixed T feature matrix, each observation is
best approximated by the corresponding k vector in the
W matrix. We can use an off-the-shelf supervised learn-
ing method to predict the class labels since k < n.
Note that the sum of each column in the W matrix is
the same as the sum of corresponding column in the X
matrix, which means sequencing depth in microbiome
data. When we perform a supervised learning, the trans-
pose of the W matrix will be used as input for each
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observation. Geometrically this corresponds to projecting
all the data into the space spanned by the vectors in the T
matrix. The entries for different individuals on the same
input vector of T are not comparable due to the different
sequencing depth for the original data. We normalize the
W matrix so that its column sum is 1 before performing
a supervised learning method. This makes the entries in
each row of W comparable and also makes it possible to
show all the data in a plot. The normalization at this step is
different from the normalization on the X matrix directly,
because different sequencing depths result in heterogene-
ity in the original observations, and this has to be taken
care of in the likelihood calculation and in the estimation
of T and W.

We choose a suitable supervised learning method based
on the graphical display of NMF results as described
below. In the following sections, we most often perform
a logistic regression on W. We choose logistic regression
because our interactive exploration of the data suggests
that a linear classifier is appropriate for this classification,
and logistic regression is one of the simplest linear clas-
sification methods. The trained logistic regression model
can then be used to do prediction on the test W.

Graphical display of NMF results

To properly display the NMF results we need to project
down to two dimensions. A software package, SimplePlot,
has been developed by one of the authors in this paper. It is
available from Toby Kenney’s website www.mathstat.dal.
ca/~tkenney/SimplePlot/. Using SimplePlot, we can inter-
actively choose a projection. Since the projection of the
W -matrix is entirely determined by the projections of the
types, the program allows us to manually move the posi-
tions of the types (represented by crosses on the figure)
around the plane and watch how the relative positions
of vectors from the W-matrix change. The advantage of
using interactive software is that it is easier to identify
non-linear separation if that is more appropriate for a
particular dataset.

Results and discussion

We apply both unsupervised NMF and supervised NMF
on three datasets: whole metagenome sequences from
faecal samples from 39 mammals (the mammal dataset)
[27]; time sequences of 16S data from a range of body
sites across two individuals (the moving picture dataset)
[4]; and whole metagenome sequences from IBD patients
(some Crohn’s disease, some ulcerative colitis) and healthy
controls (the Qin dataset) [28]. We gain some biologi-
cal insight through the biological interpretation of the
features and graphical display of the weight matrices
from the NMF analysis. NMF is compared with UniFrac
[10] and supervised NMF with two commonly used
classification methods: Support Vector Machine (SVM)
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and Random Forest (RF). For the SVM, linear kernel,
polynomial kernel and radial basis kernel are used. We
use the R package e1071 [29] to apply SVM and the
R package randomForest [30] to apply RE. The two
tuning parameters for SVM—gamma and cost—are cho-
sen by minimizing the average cross-validation error as
the best combination for four values from 10~* to 0.1
for the gamma and three values from 1 to 3 for the
cost. We also compare the moving picture dataset results
with BioMiCo [14] and the Qin dataset results with
BiomeNet [15].

The mammal data

The mammal dataset [27] contains gut metagenomes
extracted from » = 39 mammals. The metagenomes
include 1239 different types of genes (categorized by EC
number). The mammals can be classified into four types:
carnivore, foregut fermenting herbivore, hindgut ferment-
ing herbivore and omnivore. There are 21 herbivores, 11
omnivores and 7 carnivores.

Unsupervised NMF results for mammal data

We calculate the log-likelihood for a range of k values and
then observe how the log-likelihood changes with the k
values. We choose the number of types for the mammal
data as nine and apply unsupervised NMF on the data. A
snapshot of the projected data on a plane is shown on the
left panel of Fig. 1. From the plot, we can see that the car-
nivores can be totally separated from others and the other
three types are mostly separated with a few overlapping
points. The dimension of the data is reduced from 1239 to
9 in this analysis.
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Supervised NMF results for mammal data

We first apply supervised NMF on the whole mammal
dataset. The supervised NMF did not improve the classi-
fication significantly from the unsupervised NMF in this
case. This is possibly because the metagenomic composi-
tion of omnivores is a mixture of that of herbivores and
carnivores. In order to find the most important discrimi-
nant features between herbivores and carnivores, we apply
supervised NMF only on the carnivores and herbivores
from the mammal dataset [27]. So the data we use here
contain metagenomic sequencing of fecal samples from 28
mammals: 7 carnivores and 21 herbivores. As the number
of observations is small, we perform a sevenfold cross-
validation on the whole data. Each time, we use six folds as
training data and the remaining observations as test data.

We find two types that suitably describe both classes.
Then, we calculate two types on each class using the train-
ing data and combine them to get the type matrix T Fixing
the type matrix, we obtain the weight matrices for the
training cases and test cases by the non-negative Poisson
regression method detailed in the appendix. We fit a logis-
tic regression using the training data weight matrices and
perform a prediction on the test data.

The projections of both training and test data in one
fold of the sevenfold cross-validation, relative to the posi-
tions of four types calculated from the training data, are
plotted in the right panel of Fig. 1. It shows that both
training carnivores and test carnivores could be well sepa-
rated from herbivores. Also, from the plot, we can see that
although we did not supervise the distinction between the
two types of herbivores, there is some reasonable degree
of separation between these two classes.

Hindgut_fermenting_Herbivore
M Carnivore

Omnivore
W Foregut_fermenting_Herbivore

The mammal data
(a) (b)

M Camivore

M Foregut_fermenting_Herbivore

W Hindgut_fermenting_Herbivore
Carnivore_te
Hindgut_fermenting_Herbivore te
Foregut_fermenting_Herbivore_te

Fig. 1 Left: Unsupervised NMF can totally separate the carnivores (blue) from the other three types of animals. The foregut-fermenting herbivores
(red), the hindgut-fermenting herbivores (green) and Omnivores (yellow) are largely separated with a few mixed. Right: supervised NMF for
separation of the carnivores from the herbivores. Both training carnivores (dark blue) and testing carnivores (light blue) are easily separated from the
herbivores. The model was not trained to separate two types of herbivores, but a good degree of separation is shown for the foregut-fermenting
herbivores (dark red for training and light red for testing cases) and the hindgut-fermenting herbivores (dark green for training and light green for
testing cases). a A SimplePlot for unsupervised NMF, b A SimplePlot for supervised NMF
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Both the training and test errors are 0 in each fold of
the sevenfold cross-validation data split. The prediction
errors are all 0 meaning our algorithm could separate the
two classes of mammals perfectly. The huge number of
variables in the original data could be reduced to four
features (two for each class), which means the classes of
mammals can be easily determined by four features.

To compare the supervised NMF with support vector
machine and random forest, we choose the best tun-
ing parameters for SVM by the same sevenfold cross-
validation as in supervised NMF. The best cost value for
all kernels is 1. The best gamma value for polynomial ker-
nel is 0.01, for sigmoid kernel 0.001 and for radial basis
kernel 0.1. We also compare with Random Forest with the
sparse variables removed. (We remove the 50% of the vari-
ables with lowest abundance in all samples.) The mean
and standard deviation of prediction errors for models
with these best tuning parameters on different folds are
summarized in Table 1. The table shows that supervised
NMEF is among the methods which perform perfectly on
the mammal data.

Interpretation of the features in the mammal data

We map the features extracted separately from herbi-
vores and carnivores to the metabolic pathways in KEGG.
We find that most of the features from herbivores and
carnivores involve the same metabolic pathways except
that herbivores have more reactions in the biosynthesis of
macrolides pathway, shown in Fig. 2. The most significant
difference is found in one of the features of herbivores,
which corresponds to the feature (cross) in the upper left
corner of the right panel of Fig. 1. (This feature has been
highlighted in purple on this plot.) Macrolides are a group
of drugs belonging to the polyketide class of natural prod-
ucts. Macrolides are not to be used on non-ruminant
herbivores: they rapidly produce a reaction causing fatal
digestive disturbance [31]. This explains the results that
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8 out of 10 herbivores which have highest weight on
this feature are non-ruminants. These correspond to the
8 hindgut-fermenting herbivores (green) in Fig. 1b. This
shows that the inferred differences in the microbial com-
munities of mammals relate well to the known different
phenotypes for different mammals.

The moving picture data

The moving picture data [4] is the most detailed investiga-
tion of temporal microbiome variation to date. It consists
of a long-term sampling series from two human individ-
uals at four body sites: gut, tongue, right and left palm.
Person 2 was measured for a longer time than person
1 (336-373 samples from each body site for Person 2
over a period of 443 days, compared to 131-135 sam-
ples from each site for Person 1 over a period of 186
days). The total number of variables (different OTUs)
across all samples was more than 15,000. After remov-
ing all O’s, the total number of different OTUs for the gut
data is around 3000, for the tongue data is around 2000,
for the left palm data and right palm data are around
13,000. In spite of this extensive sampling, no temporal
core microbiome was detected, with only a small subset
of OTUs reoccurring at the same body site across all time
points [4].

Unsupervised NMF results for gut data in the moving picture
data

First, we apply NMF to the gut data. The gut data consists
of 131 observations from person 1 and 336 observations
from person 2. We find the number of types is 6 based on
the plot of log-likelihood values versus number of types.
And we see that the data from two individuals can be
well separated—see the left panel of Fig. 3. It can be seen
that the four types seemed to be used to mainly describe
individual 2 and two types are mainly related to individ-
ual 1. It also shows that the observations for individual 2

Table 1 Comparison of test errors for support vector machine with linear kernel (SVM 1), with polynomial kernel (SYM p), with sigmoid
kernel (SVM s), with radial basis kernel (SVM r), RandomForest (RF), RandomForest with sparse variables removed (RFrm) and Supervised

NMF
Dataset SVM | SVM p SVM s SVM r RF RFrm Supervised NMF
Gut 0 0.2335 0 0.0661 0 0 0
Tongue 0.0202 0.2694 0.0202 0.0484 0.0081 0.0242 0.0040
Left Palm 0.1245 0.2691 0.1446 0.2691 0.1285 0.0643 0.0924
Right Palm 0.3455 0.2724 0.3455 0.1667 0.0732 0.0488 0.1789
Mammal 0.0714 0.1428 0.0714 0.1071 0.1429 0.1071 0
[0.0461] [0.0505] [0.0461] [0.0505] [0.0505] [0.0505] [0]
Qin 03178 0.3359 0.2592 0.2853 02299 0.2299 0.2333
[0.0567] [0.0530] [0.0516] [0.0494] [0.0573] [0.0467] [0.0515]

The first four rows are the prediction errors on the test data. The last two datasets are cross-validated errors with standard errors given in brackets on the line below. Best

prediction for each dataset is presented in italics
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NMF and Unifrac results on the moving picture data

(b)

UniFrac. j R. Palm NMF. k R. Palm supervised NMF. I R. Palm UniFrac

Fig. 3 Top row shows results from the gut dataset (with 6 types/coordinates used for the unsupervised methods); second row shows results from
the tongue dataset (with 9 types used for the unsupervised methods); third row shows results from the left palm (with 6 types/coordinates); fourth
row shows results from the right palm (with 6 types/coordinates). Blue points are from person 1; green points are from person 2. Left: unsupervised
NMF; middle: supervised NMF on both training and testing data— darker blue and green points are testing data; right: UniFrac. a Gut NMF. b Gut
supervised NMF. € Gut UniFrac. d Tongue NMF. e Tongue supervised NMF. f Tongue UniFrac. g L. Palm NMF. h L. Palm supervised NMF. i L. Palm

are separated into two groups, the reason for which will
become clear later in this paper.

Supervised NMF results for gut data in the moving picture
data

As the gut data is time based, we choose the first 70 time
points’ observations out of 131 observations of person 1
and the first 170 time points out of 336 observations of
person 2 as training data. If the system changes slowly,
we might expect samples from the same individual sepa-
rated by only a short time might be more closely related.
By choosing this separation into training and test data,
we minimize the correlation between training and test

data, ensuring that we only test the method’s ability to
pick up long-term microbial signatures of each individ-
ual. A 10-fold cross-validation with the training data split
into 10 folds sequentially over time is applied for choos-
ing the number of types and we find two types for each
person is the best according to our method. This is an
easy classification problem: based on two types for person
1, all deviance values for person 2 are much larger than
the deviance values from person 1. A total separation is
almost achieved for each fold of the cross-validation for
any value of k (k > 2). This is the same based on two
types for person 2. Thus, we choose two types for each
person. Then, we fit a logistic regression model on the
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training W matrix and perform a prediction on the test
data. The results are shown in the right panel of Fig. 3 and
the prediction error is O for the test data.

We see that both training and test data are almost per-
fectly separated between the two individuals which means
the distinguishing features of the gut data are included
in a matrix consisting of four features. These four fea-
tures contain sufficient information for classification and
will be examined in detail in the interpretation section
together with the features computed from the tongue data
from these two individuals, because some interesting con-
nections between the tongue data features and gut data
features can be detected within individual 2.

Unsupervised NMF results for tongue data in the moving
picture data

Next, we apply NMF to the tongue data. For the tongue
data, there are 135 observations from person 1 and 373
observations from person 2.

It is not obvious what the appropriate value for the
number of types should be by looking at the plot of log-
likelihood versus number of types. We try NMF on nine
types and ten types. Neither achieves good separation
between samples from the two individuals. A SimplePlot
for unsupervised NMF for nine types is shown Fig. 3d
as an example. Here, we see that samples from the two
individuals are somewhat separated, but there is a lot of
mixing: we cannot achieve a great classification from these
features.

Although standard NMF works for the animal dataset
and the gut dataset, it does not perform as well on the
tongue dataset. The reason is that with unsupervised
methods, the signal that is identified is not always the sig-
nal we are interested in. Using supervised NMF, we will be
able to identify the different features for different classes.
This allows us to more easily distinguish samples from
different classes.

Supervised NMF results for tongue data in the moving picture
data
For the tongue data, as above, we choose the first 70 time
points’ observations out of 135 observations of person 1
and the first 190 time points out of 373 observations of
person 2 as training data. The remaining data are test data.
We split the training data over time and perform a 10-fold
cross-validation on the training data to find the number
of types for both individuals. Our method shows that two
types are appropriate for person 1, but is not so clear
for person 2 (possibly suggesting nine types). Fixing two
types for person 1, and comparing cross-validated error,
we choose three types for person 2. This results in a test
error of 0.04.

For illustration purposes, we show the SimplePlot of
both training and test data based on two types for person 1
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and three types for person 2 in Fig. 3f. Through these five
features, most of the observations in tongue data could
be correctly classified according to which individual they
come from.

Unsupervised NMF results for left palm data in the moving
picture data
For the left palm data, there are 134 observations from
person 1 and 365 observations from person 2. We try
NMF for several different numbers of types on the
left palm data. None of them achieve good separations
between samples from the two individuals. A SimplePlot
for unsupervised NMF for six types is shown in Fig. 3g
as an example. Here, we see that samples from the two
individuals are somewhat separated with a considerable
amount of mixing.

Standard NMF does not perform well on the left palm
dataset. Using supervised NMF allows us to more easily
distinguish samples from different classes.

Supervised NMF results for left palm data in the moving
picture data

For the left palm data, we choose the first 67 time points’
observations out of 134 observations of person 1 and the
first 183 time points out of 365 observations of person 2 as
training data. The remaining data are test data. Using the
same procedure as for the tongue data, we find two types
for person 1 and three types for person 2 can best separate
the two individuals.

We show the SimplePlot of both training and test data
based on two types for person 1 and three types for person
2 in Fig. 3h. Most of the observations in left palm data
could be correctly classified with a test error of 0.092.

Unsupervised NMF results for right palm data in the moving
picture data

For the right palm data, there are 134 observations from
person 1 and 359 observations from person 2. Similar to
the results for the left palm, there is not a good separation
between samples from the two individuals. A SimplePlot
for unsupervised NMF for six types is shown in Fig. 3j as
an example. Here, we see that most samples from the two
individuals cannot be separated using these features.

Supervised NMF results for right palm data in the moving
picture data
For supervised NMF on right palm data, we choose the
first 67 time points from person 1 and the first 180 time
points from person 2 as training data. The remaining data
are test data. We find two types for each person can best
separate the two individuals.

We show the SimplePlot of both training and test data
based on two types for each person in Fig. 3k. Most of
the observations in the right palm data could be correctly
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classified according to which individual they come from
with a test error of 0.179.

Comparisons with other methods

These datasets have also been extensively analysed by
BioMiCo [14]. To enable comparison with their results, we
reran our analysis with individual months as training data.
(Rerunning BioMiCo with our splits into training and test
data is infeasible due to its excessive running time.)

We train supervised NMF on different months and pre-
dict the identity of the two individuals of all other months.
The number of types used for each dataset is the same
as we mentioned above. Even though a smaller number
of samples are used to train the model, we still get very
high-classification accuracy. The accuracy is between 98.1
and 99.8% when using the gut dataset and 85.4 and 92.9%
when using the tongue dataset. This is almost the same as
BioMiCo’s accuracy, between 98.6 and 99.3% for the gut
dataset and between 85 and 93% for the tongue dataset.
However, we also get very high accuracy when using the
palm data, between 88.9 and 93% when using left palm
dataset and between 77.8 and 83% when using right palm
dataset. This is significantly higher than BioMiCo’s results
(40 to 75%). Palm data are more challenging because
human palms are exposed to the external environment.
The comparison with BioMiCo concludes that the super-
vised NMF is not only efficient in terms of computation
but also better at finding discriminant features of individ-
uals even with very noisy data.

We also compared supervised NMF with support vector
machine, random forest and random forest with sparse
variables removed on this moving picture data. We split
each body part’s data in the same way as that in supervised
NME. A 10-fold cross-validation is applied to the training
part to calculate the best tuning parameters. Models with
the best tuning parameters then are trained on the whole
training data and used to predict the test data. The results
are summarized in Table 1. The comparison for moving
picture data shows that supervised NMF gives comparable
or better classification results than other methods except
for the left and right palm dataset. For these datasets, ran-
dom forest on the most abundant OTUs performed better
than NMF. For the left palm data set, random forest on all
variables performed better than NMF.

UniFrac is a widely used unsupervised method. To
compare the separation of two individuals, we project
the samples on principal coordinates of the unweighted
UniFrac distance matrix (based on rarefied samples) in
the right-hand column of Fig. 3 with the numbers of
the principle coordinates equal to the numbers of types
we have used for each case, presented using Simple-
Plot. We can see a clear separation of the two indi-
viduals from the gut dataset. Plots of tongue data and
palm data show separations to some degree, but not as
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clear as in our unsupervised NMF plots (left panels in
Fig. 3). This shows NMF is an alternative and possibly
more useful data exploratory method for such data. In
addition, NMF has a natural interpretation in terms of
mixtures of communities, but the results from UniFrac are
hard to interpret, as they cannot show what causes the
grouping effects or where the differences in microbime
composition lie.

Interpretation of the results

To examine the main aspects of the features identified, we
plot the relative abundance of OTUs for different features
in Fig. 4. The feature vectors are of the same dimension
as the original observations. A natural side effect of NMF
is that the resulting feature vectors are usually sparse. The
feature vectors consist of non-negative elements with each
vector sum equal to 1. The non-zero values can be inter-
preted as the percentages of the OTU composition in a
particular feature. To get a better illustration, we use a cut-
off of 3% for each feature vector in Fig. 4. That is, only
those OTUs with above 3% composition in at least one
feature are included in the plot.

Figure 4a shows the main OTUs for the gut data. We
find only 17 out of more than 3000 OTUs are larger than
the cut-off of 3%. Among these major OTUs, the two fea-
tures within each individual bear some similarities. But
the features between two different individuals are quite
different. This is reflected by the fact that several of the
most common OTUs in individual 1’s features are not
present in individual 2’s features and vice versa. Since
each individual’s data can be best represented by his/her
own two features and their two features are largely dif-
ferent, this partially explains why the classification of two
individuals based on the gut data is an easy problem.

Figure 4b shows the main OTUs for the tongue data.
There are only around 20 OTUs in tongue features above
the cut-off of 3%. Again the type matrix of the tongue data
is highly sparse. Unlike the features of the gut data, the
features of the tongue data for these two individuals are
more similar. By looking at the compositions of the most
dominant OTUs in each feature, we can easily see simi-
larities between person 1’s type 1 and person 2’s type 1.
Also person 1’s type 2 is similar to person 2’s type 2 for
OTUs in the classes Fusobacteria and Gammaproteobac-
teria and similar to person 2’s type 3 for OTUs in the class
Bacilli. This suggests that there are similar variation pat-
terns between the two individuals, with the same groups
of OTUs increasing or decreasing together. Naturally, the
classification for the tongue data is a harder problem.

Figure 4c shows the main OTUs for the left palm
data. Seventeen out of more than twelve thousand OTUs
in the left palm features are larger than the cut-off of
3%. Among these major OTUs, the two features within
individual 1 have OTUs present and absent together
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Fig. 4 Outstanding OTUs in features of moving picture data: The light
and dark red bars are two features from person 1 and the blue bars
are features from person 2. The OTUs from the same class are in the
same block which is labeled by their class name and the bars are
labeled by the genus of the OTUs. The two unlabeled bars in left palm
data are the same OTUs with these unlabeled bars in the right palm
plots. They are two different unclassified classes in Cyanobacteria
phylum. a Outstanding OTUs in features of gut data. b Outstanding
OTUs in features of tongue data. € Outstanding OTUs in features of
left palm data. d Outstanding OTUs in features of right palm data

with some variations in their values. The features within
individual 2 show a different pattern with each OTU
mainly represented by one of the three features. Left
palm features within each individual are quite differ-
ent because the palm’s microbial environment is more
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variable. Features between individuals are also quite dif-
ferent for most of these major OTUs. Several OTUs in
individual 2’s features are not present in individual 1’s
features. This may explain why the left palm data can
achieve high classification accuracy but lower than the
gut data.

Figure 4d shows the main OTUs for the right palm data.
There are only 13 OTUs in right palm features above the
cut-off of 3%. The patterns of features within each individ-
ual are similar to their left palm data. But features between
individuals are more similar except differences in the two
unlabeled OTUs. This explains the difficulty in separat-
ing two individuals from the right palm data. We also
find major OTUs in the right palm features are nearly all
present in the left palm features. We do not find the same
situation in gut and tongue features. This may be because
an individual’s left and right hands are usually exposed to
the same environment. It could also be caused by contact
between the two hands.

In many of the examples, NMF can act like a vari-
able selection method—identifying individual reactions
or OTUs which show different abundances in the two
groups of samples. However, in the moving picture tongue
dataset, we do not obtain such good classification by look-
ing at individual OTUs. Instead, we look more deeply at
the community structure identified by NMF. By examin-
ing community-level differences, we were able to classify
the individuals with a very high degree of accuracy. We
now look in more detail at the communities involved, in
an attempt to understand why unsupervised NMF was
less effective in this case, and why supervised NMF was
able to resolve this problem. This also demonstrates more
of the range of interpretability offered by NMF. In addi-
tion to highlighting individual OTUs or reactions that
differ between the two classes, it is able to isolate bacte-
rial subcommunities from which the microbiome is built
up and offer insights into the different structures of these
communities.

Figure 5 shows the profiles of the types extracted from
the two individuals, with graphs of abundance of each
genus in that type. For individual 1, we see that type 1 con-
tains higher abundances of Neisseria, Haemophilus, Por-
phyromonas, Fusobacterium and the unclassified genus
from the Pasteurellaceae family, while type 2 includes
higher abundance of Streptococcus, Prevotella, Rothia,
Actinomyces and Veillonella. This may well be associated
with the action of Porphyromonas. One species, Porphy-
romonas gingivalis, has been shown in [32] to manipulate
the host immune system, allowing pathogens to colonise
the community. While the OTU from the genus Porphy-
romonas in this dataset is unclassified at species level, it
could have a similar effect to the studied species P. gin-
givalis. This would seem consistent with type 1 having
higher levels of various Proteobacteria and Fusobacteria
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Fig. 5 Major genera for tongue feature matrix. The light and dark red bars are two features from individual 1 and the blue bars are features from
individual 2. Each bar is labeled by the name of the genus or family

closely related to known pathogens. When we look at
the features for individual 2, we see a similar picture,
with types representing varying levels of Porphyromonas.
Again, we see with increased Porphyromonas, we have
an increase in Neisseria, Haemophilus, Fusobacterium,
and the unclassified genus of the Pasteurellaceae fam-
ily, and a corresponding decrease in Streptococcus, Pre-
votella, Actinobacteria and Veillonella. Type 2 may show
that the effect of Porphyromonas is non-linear with Pre-
votella actually increasing in abundance with low levels of
Porphyromonas.

We also examine the types in the absence of Porphy-
romonas (type 2 for individual 1 and type 3 for individ-
ual 2). For both individuals, we see that these types are
dominated by Streptococcus, Prevotella and Veillonella.
However, Fig. 4b shows the differences between these
types. We see that individual 2 has more Actinomyces and
a different distribution between OTUs within the genus
Veillonella. Similarly, there are subtle differences between
the types with high abundance of Porphyromonas (type 1
for both individuals). Individual 1’s type 1 has higher lev-
els of Streptococcus than individual 2’s. This might be
partially explained by the use of three types to model
individual 2, allowing separate types to model both high
and low levels of Streptococcus in cases with high lev-
els of Porphyromonas. However, in Fig. 4b, we see the

presence of higher abundance of a second OTU from
the genus Neisseria in individual 2’s type 1. This cannot
be explained by the different numbers of types used to
analyse the two individuals. Supervised NMF is able to
identify these subtle differences and use them to identify
the individuals, even in situations where the large-scale
community structure varies a lot between samples within
each individual.

We also consider the idea that the types correspond
to communities of microbes. When we look at the type
without Porphyromonas, we can see the makings of a com-
munity structure, with a number of microbes (such as Pre-
votella, Streptococcus and Actinobacteria) that metabolise
glucose into pyruvate, which is later metabolised into
lactate, and other microbes such as Veillonella which
metabolise lactate.

Temporal dynamics

To investigate the temporal dynamics of the four body
sites’ microbiomes, the weight matrices for the gut data
and the tongue data are plotted in Fig. 6. When we apply
NMEF to person 2 with three types for the gut data (see the
upper panel of Fig. 6), there is a clear shift at around 2009-
08-14. This timepoint is highlighted in Fig. 6. For the gut
weight matrix, the dominant weight is initially type 2 and
changes to type 3 after this time. For person 2’s tongue
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Fig. 6 Gut and tongue weight matrix time series plot for person two. The top plot shows the gut weight matrix on the second type (red line) and
third type (blue line) from NMF with 3 types. The bottom plot shows the tongue weights on the first type (red line) and the third type (blue line)

data, this shift is not very clear when we use only three
types. However, with four types, we can identify a more
apparent shift in their weight matrix time series plots.
For this data one more feature can bring out more details
in the variation of the data. In the lower panel of Fig. 6,
the weight matrix time series plots for the tongue data
relative to these two features show that type 1 is consis-
tently more represented than type 3 in the early part of the
study although not always dominant due to the effects of
types 2 and 4; type 3 is more represented than type 1 after
the changing point (highlighted on the plot). The shift
occurs first in the tongue weight matrix and then can be
detected about 4 days later in the gut weight matrix. This
suggests that some significant change has taken place in
person 2’s system at around this time and that the change
has influenced both the gut and the tongue microbiomes.

In order to compare the changes which we have iden-
tified as taking place in these microbiomes, the distribu-
tions of different phyla and classes of OT Us in each feature
are presented in Fig. 7. The top features in this plot are the
ones that are more represented in the earlier part of the
data (i.e. type 2 for the gut data, and type 1 for the tongue
data). The bottom features in this plot are those that are
more represented in the later part of the data.

Figure 7 shows a similar shift of composition between
the two features for both gut and tongue. In both cases, the
type which was more represented in the earlier part of the
study has a lower proportion of Bacteroidia and a higher
proportion of Clostridia. The proportion of Bacteroidia
increases and the proportion of Clostridia decreases for
both representative features of gut and tongue data in the
later part of the study. The consistency of these changes

Person 2's gut

type 2 |F type 1 I -
0 0.75

type 3 F
0

type 3
00 025 050 0.75 1.00 0.0

Fig. 7 Class and phylum proportions in gut and tongue type matrices. The left panels contain two types from person 2's gut data and the right
panels are for his tongue data. The top plots present the dominant types at the beginning in the time series plot. The bottom plots present the
dominant types after the shift in the time series plot. Similar colours in classes are from the same phylum
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between the two datasets gives further support to our
conjecture that this represents a systematic change at
this time. The differences between the types are more
pronounced in the tongue data. This could be because
the tongue is more exposed to external influences, so
its microbiome may be more variable. It might also be
because we were using four types to model the tongue data
and only three for the gut data. Fitting more types gives
the types more room to spread out, allowing for more
extreme types and amplifying the differences between the
fitted types.

We see that the changes shown in Fig. 7 are consistent
with the earlier interpretation of the types in Fig. 5. We
used four types here to model the microbiome, but we
can see in Fig. 7 that the dominant type after the tran-
sition includes much higher abundances of Bacteroidetes
(including Porphyromonas and Prevotella, which has been
associated with Periodontal disease [33]) and Proteobac-
teria (including Neisseria and Haemophilus) and lower
levels of Firmicutes (including Streptococcus and Veil-
lonella) and Actinobacteria (including Rothia and Actino-
myces). Note that the types in Fig. 5 are fitted from the
training data, which is entirely before the state change in
person 2.

Having identified the state change using NMF, we ask
whether NMF was a necessary tool for identifying the
change. First, we compare a naive examination of the com-
position of the microbiome by class. Figure 8 shows the
smoothed proportion of each class over time in person 2’s
gut and tongue microbiomes. We see that there are no
clear changes in composition at this level, indicating that
this is not an obvious change to identify.

For comparison, we also use UniFrac and PCoA for per-
son 2’s gut and tongue data. We see that the first three
principal coordinates for the gut data and the first four
coordinates for the tongue data do not reveal this change.
It is only when we examine the 4th principle coordinate
for the gut data and the 5th principle coordinate for the
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tongue that we are able to detect the changes. The dif-
ficulty of finding this explains why this pattern was not
found in the many previously published analyses of these
data. This is made more difficult by the common practice
of examining only the first three principal coordinates. It
is possible to find the pattern using UniFrac, if one knows
what to look for, but NMF certainly makes the pattern
much easier to find.

The Qin data

The Qin dataset [28] contains human gut metagenome
samples extracted from 99 healthy people and 25 IBD
patients. The data include 2804 different reactions.

Unsupervised NMF results for Qin data

We choose the number of types for the Qin data as six
and apply unsupervised NMF on the data. A projection of
the data onto a plane is shown on the left panel of Fig. 9.
From the plot, we can see that about 19 of the IBD patients
can be separated from healthy people. The separation is
similar to the results of BiomeNet [15]. The plot shows
that two of these features are more related to IBD patients
and the other four more related to healthy people. This is
consistent with what we find using supervised NMF.

Supervised NMF results for Qin data
The sample size of patients is much smaller than the sam-
ple size of healthy people. So we perform a classification
giving the patients a weight of 4 to balance the class sizes.
(For supervised NME, these weights do not affect the fitted
matrices T and W, only the classifier applied to the weight
matrix W.) This means that the classifier that assigns all
samples to one class will have an accuracy of about 50%.
We perform a 10-fold cross-validation on the whole data.
Each time, we use nine folds as training data and the
remaining observations as test data.

We find two types are enough for patients and four
types for healthy people. We perform supervised NMF
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Fig. 9 Left: unsupervised NMF based on 6 types. The blue points are from IBD patients and the green ones are from healthy people. Right: supervised
NMF on both training and test data. The blue points are training data from patients, and green points are training data from healthy people; the dark
blue points are test data from patients, and the dark green points are test data from healthy people. a Unsupervised NMF. b Supervised NMF

and fit a logistic regression using the training data weight
matrices (with patients given weights of 4) and perform a
prediction on the test data. The average of the weighted
prediction error over the 10 folds is 0.233 with a standard
error of 0.0487.

The projections of both training and test data in one
fold of the 10-fold cross-validation are plotted in the
right panel of Fig. 9. It shows a quite good separa-
tion between these two groups. The classification is not
perfect, but is an improvement upon previous methods,
such as BiomeNet [15].

The comparisons with support vector machine and
random forest methods are summarized in Table 1.
The dataset is split to the same 10 folds as supervised
NME. The best parameters are tuned by a 10-fold cross-
validation on the whole dataset. The best cost parameter
in SVM function is 3 for radial basis kernel and 1 for
other three kernels. The best gamma parameter is 10~ for
radial basis kernel, 0.1 for polynomial kernel and 0.001 for
sigmoid kernel. No method performed significantly better
than supervised NMF.

Interpretation of the results

The six type vectors are highly sparse with each vec-
tor sum equal to 1. We use a cut-off of 0.5% for each
type to find the distribution of each type over the major
reaction groups. Here, each reaction group includes the
different reactions that correspond to the same enzyme-
coding gene; thus, each category can also be understood as
corresponding to one enzyme-coding gene. The type dis-
tribution over 17 enzyme-coding genes or reaction groups
is shown in Fig. 10. We can observe that the IBD Type 2 is
quite different from other types, with large abundance on
the fourth and fifth enzyme-coding genes and that both
IBD types have weight zero on the second enzyme-coding
gene. Each individual’s metagenome profile is expressed

as a linear combination of these six types; the weight dis-
tribution over each type is shown in Fig. 11, where the top
part of each bar presents the distribution of the weights
for healthy individuals for the corresponding type, and the
bottom part of each bar is for the weight distribution of
IBD patients with each patient counted as four times to
make the results comparable to the healthy individuals.
From Fig. 11, we can see the IBD patients mainly have
non-zero weights on IBD Typel, IBD Type2, Healthy Type
1 and Healthy Type 2, and healthy individuals mainly have
non-zero weights on Healthy Type 1, Healthy Type 2 and
Healthy Type 4. It seems that the IBD Type 2 typically
represents a group of IBD patients and Healthy Type 2 rep-
resents a group of healthy individuals with these two types
distributed very differently over the enzyme-coding genes
shown in Fig. 10.

According to Fig. 10, the first three reaction groups con-
tribute more to healthy types and the fourth and fifth
reaction groups contribute more to IBD patients (mainly
to IBD Type 2). Reactions in the first group are all in
macrolide biosynthesis. Macrolides are protein synthesis
inhibitors and can be used as an antibiotics treatment
of inflammatory diseases including inflammatory bowel
disease [34—36]. The second reaction group is involved
in polycyclic aromatic hydrocarbon degradation and the
third group is in carotenoid biosynthesis. Polycyclic aro-
matic hydrocarbons (PAHs) are one family of ubiquitous
environmental toxicants. This family has contributed sig-
nificantly to the development of colorectal cancer (CRC),
a disease highly linked to IBD [37]. Carotenoids can
enhance the human immune system’s effectiveness [38].
As IBD is a kind of autoimmune disease, this could explain
why these two compounds are lower in IBD patients’ fea-
tures. The fourth group in IBD Type 2 is involved in
ascorbate and aldarate metabolism and the fifth group in
amino sugar and nucleotide sugar metabolism, fructose
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Fig. 10 Qin data: the distribution of each type over major enzyme-coding genes: IBD Type 2 typically represents a group of IBD patients and Healthy
Type 2 represents a group of healthy individuals with these two types distributed very differently over the enzyme-coding genes
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and mannose metabolism, glycolysis and gluconeogene-
sis and additional pathways. These are concordant with
BiomeNet’s findings in subnetworks 38, 64 and 73. Com-
paring our reaction groups with the three subnetworks,
we notice that reaction group 4 can be found in subnet-
work 64 and group 5 has some overlaps with subnetwork
38 and subnetwork 73. These three subnetworks were dis-
covered to have a larger contribution to IBD samples than
healthy ones.

Simulations

Simulation based on NMF

We perform simulations in this section to evaluate the
performance of our proposed method with regard to the
number of types selected and prediction accuracy. We
use types estimated from the Qin data [28] to do the
simulation. We simulate data according to our proposed
model. The data follows a Poisson distribution with mean
(TW);;. To generate these data, we first generate the
mean TW.

The mean is a linear combination of different features
(different columns of T). We fix T to be the features
obtained by applying NMF to the two classes in the Qin
dataset [28].

We generate the W matrix by generating each entry
from a uniform distribution on [0, 1], then normalizing

the column vectors so that the column sums of W are
equal to the column sums of the IBD data.

The product TW gives us the mean, and we add four
levels of noise to the product TW. The noise is normally
distributed with mean 0 and four different standard devi-
ations, to study the effects of different signal-noise ratios
(SNR).

SNR =+o00:sdp =0
SNR =4 :sdy = sd(T)/4
SNR = 2 : sdy = sd(T)/2
SNR = 1: sd3 = sd(T)

Here, the sd(T) is a vector of standard deviations for
each row of T. This is a vector of length p (the number of
genes or OTUs) which measures the variability for each
gene or OTU across different features in 7.

The column of TW plus the noise is the Poisson mean
we use in the simulation. Each element of X is generated
following an independent Poisson distribution with the
mean given by the mean matrix described above.

We simulate data with number of types equal to 2, 5, 10
for class 1 and 3, 6, 9 for class 2. So the number of dif-
ferent combinations is 9 in total. They are 2&3, 2&6, 2&9,
5&3, 5&6, 5&9, 10&3, 10&6, 10&9. Considering the differ-
ent noise levels, we have 36 scenarios. For each scenario,
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Fig. 11 The weights distribution over each type for heathy individuals (top for each bar) and IBD patients (bottom for each bar): the IBD patients
mainly have non-zero weights on IBD Typel, IBD Type2, Healthy Type 1 and Healthy Type 2, and healthy individuals mainly have non-zero weights on

we simulate 25 replicates. In each replicate, we simulate
200 observations for each class. Then, we separate the data
into two parts: the first 200 observations (100 from each
class) as the training data and the other 200 as the test
data.

We choose the number of types from the training data
using a 10-fold cross-validation. After the number of types
is chosen, we perform a prediction on the test data using
the trained logistic regression model on the training data
based on the chosen number of types for each simulated
data set.

The NME, RF and SVM prediction errors are shown in
Tables 2, 3 and 4 respectively for different noise levels.
We find when the true numbers of types get larger, the
NMEF prediction errors tend to increase but the RF pre-
diction errors tend to decrease. That may be because we
have more accurately estimated the number of types in
the cases when the true numbers of types are small. But
overall, the prediction errors are quite small for all cases
which means our supervised NMF method works well in
prediction. NMF performs better in prediction than RF
when number of types is small and better than SVM in all
scenarios.

Table 5 summarizes the results of the number of types
chosen. It shows that the algorithm tends to output
slightly larger values than the true number of types in

most scenarios, but the true numbers of types mostly are
within one standard deviation of the mean of the chosen
number of types. Note also, the number of types are cho-
sen only by performing the Wilcoxon Rank-Sum test for
each class (see the appendix), the results are not modified

Table 2 NMF mean prediction test errors for 25 data sets with
the standard errors for the mean prediction errors (mean/SE)

SNR  class 1\class2 2 types 5 types 10 types

+o00  3types 0.0002/0.001 0.004/0.0066 0.0104/0.0126
4 0.0002/0.001 0.005/0.0085 0.0092/0.0102
2 0.0002/0.001 0.0048/0.0071  0.0102/0.0104
1 0.0002/0.001 0.0022/0.0041  0.0084/0.0079
400 6types 0.0012/0.0036  0.0054/0.0071  0.0082/0.0089
4 0.0012/0.0030  0.0052/0.0076  0.0154/0.0114
2 0.001/0.0029  0.0056/0.0082  0.0058/0.0067
1 0.0014/0.0037  0.0058/0.0081  0.0126/0.0107
+oo  9types 0.0106/0.0132  0.0068/0.0084  0.0108/0.0126
4 0.0088/0.0102  0.0066/0.0100  0.0132/0.0100
2 0.0078/0.0101  0.0072/0.1011  0.0128/0.011

1 0.0046/0.0058  0.0062/0.0092  0.0124/0.0089

The rows are the true number of types for class 2, and the columns are the true
number of types for class 1
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Table 3 RF mean prediction test errors for 25 data sets with the
standard errors for the mean prediction errors (mean/SE)

SNR  class 1\class2 2 types 5 types 10 types

+oo  3types 0.0024/0.001 0.0012/0.0007  0.0012/0.0005
4 0.0014/0.0004  0.0002/0.0002  0.0012/0.0005
2 0.0016/0.0006  0.0016/0.0006  0.0006/0.0003
1 0.0018/0.0006  0.0008/0.0004  0.001/0.0005
400 6types 0.0022/0.0007  0.0026/0.0009  0.0008/0.0005
4 0.002/0.0007 0.0018/0.0008  0.001/0.0006
2 0.002/0.0008 0.0014/0.0005  0.001/0.0005

1 0.002/0.0008 0.0024/0.0008  0.0006/0.0004
+o00  9types 0.0028/0.001 0.0014/0.0007  0.001/0.0006
4 0.0022/0.001 0.0014/0.0006  0.0014/0.0007
2 0.0022/0.0009  0.001/0.0005 0.0008/0.0004
1 0.0022/0.0007  0.0008/0.0004  0.001/0.0005

through optimizing the classification results based on
combined types.

Table 5 also shows that in most replicates, when the
noise level becomes higher, the difference between the
mean and the true number of types will increase. Never-
theless, these results demonstrate that our method is quite
effective in finding the appropriate number of types.

Further simulation results (not shown in this paper)
have shown that when we apply NMF with the true num-
ber of types on the simulated data, the features computed
from the data can match very closely with the true features
that were used to generate the data. Applying NMF with
the wrong number of features can recover a space with the
true features embedded in it. The study of consistency of

Table 4 SYM mean prediction test errors for 25 data sets with
the standard errors for the mean prediction errors (mean/SE)

SNR  class 1\class2 2 types 5 types 10 types

400 3types 0.1462/0.0173  0.13/0.0167 0.1276/0.0156
4 0.1356/0.0176  0.1784/0.0169  0.1616/0.0153
2 0.1356/0.0176  0.1784/0.0168  0.146/0.0124

1 0.1356/0.0176  0.185/0.0151 0.146/0.0125
+oo  6types 0.1794/0.018  0.1214/0.0146  0.162/0.0154
4 0.1774/0.0191  0.1626/0.0154  0.1738/0.0164
2 0.1772/0.0191  0.1498/0.0147  0.159/0.0172

1 0.1392/0.0173  0.1632/0.0154  0.1248/0.0151
+oo  9types 0.1344/0.0193  0.1656/0.0179  0.174/0.0177
4 0.121/0.0158 0.1558/0.0166  0.1846/0.0162
2 0.121/0.0158 0.1552/0.0181  0.1824/0.0177
1 0.121/0.0159 0.1652/0.0198  0.1794/0.0178
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Table 5 Simulation summary of the estimated numbers of types

SNR 2 5 10

Mean sd Mean sd Mean sd
+oo 3 2/34 0/1.0 5/3.1 0.3/03 89/35 1.9/13
4 2/38 0/15 5/33 03/12 89/37 22/20

2/3.7 0/14 5/3.1 03/03 89/37 22/20
1 2/3.6 0/14 51/30 05/02 85/38 1.9/2.0
+oo 6 2/64 0/0.8 5/6.4 05/0.7  9.8/66 1.2/1.2
4 2/64 0/0.6 52/66 08/09 95/64 1.3/0.6
2 2/64 0/0.6 52/66 05/08 94/63 1.5/0.5
1 2/6.3 0/0.6 50/66 05/08 94/6.2 1.1/0.5
4+o0 9 24/84 15/15 51/89 1.7/08 87/9.2 1.8/0.8
4 2/8.2 0/1.7 5/9.8 04/1.1  88/9.2 1.8/0.6

24/9.1 1.5/0.7  7.0/93 15/08 11.0/109 12/14
1 25/90 1.1/10 0 69/87  18/09 9.7/108 1.7/1.8

For example, the first entry 2/3.4 means when the true number of types is 2 for class
1,3 for class 2 and SNR = 400, the mean numbers of types our method chooses are
2 forclass 1 and 3.4 for class 2

the NMF method is not a trivial topic and deserves further
research.

Simulation with outliers

We designed this simulation to measure how our method
performs when the data contain outliers. We perform this
simulation based on data generated in the last section.
We use the generated data of scenarios 2&3 types, 5&6
types and 10&9 types, with SNR = 1. We gener-
ate outliers by mislabeling the class of observations in
the training data. We run simulations with 5, 10 and
20% of observations in the training data mislabeled. We
used the same procedure as in the previous section to
calculate the prediction errors. The results in Table 6
show that while RF is more robust in this simulation,
NMEF still predicts fairly well when there are outliers in
the data.

Simulation with zero inflated weight matrix

In the previous simulations, we generated the weight
matrix of the Poisson mean from the uniform distribu-
tion. The sparsity of the generated datasets is around 24%,
which is less than is typically observed in practice. We
therefore use a Dirichlet distribution with all parameters
0.005 for the weights, in order to generate zero-inflated
data. This results in a sparsity of around 39%. We follow
the same steps from the first section of the simulations, to
generate 36 scenarios and 25 replicates in each scenario.
The prediction errors and the associated standard errors
of NMF, RF and SVM are shown in Tables 7, 8 and 9.
The results show that NMF and SVM are robust when
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Table 6 Mean prediction test errors and the associated standard errors (mean/SE) for simulation with outliers
Number of types

Outliers proportion Method 2&3 types 5&6 types 1089 types

5% NMF 0.015/0.0029 0.0396/0.0054 0.0582/0.0063
RF 0.0042/0.0012 0.0036/0.0009 0.0028/0.0009
SVM 0.1874/0.0102 0.187/0.0117 0.2114/0.0145

10% NMF 0.0266/0.0040 0.0564/0.0050 0.089/0.0061
RF 0.0098/0.0024 0.0094/0.0020 0.008/0.0018
SVM 0.2404/0.0101 0.2298/0.0120 0.2694/0.0126

20% NMF 0.075/0.0088 0.1424/0.0083 0.161/0.0084
RF 0.0338/0.0037 0.0264/0.0042 0.0308/0.0036
SVM 0.3066/0.0110 0.302/0.0147 0.3118/0.0158

the data become more sparse. RF performs worse in this
simulation than in the original simulation.

Simulation based on Dynamic Ecology Models

The interpretability of NMF is based on the assumption
that the microbial community can be interpreted as a
mixture of subcommunities. In this section, we study the
question of whether realistic community dynamics can
give rise to this assumption. Current knowledge of the
community dynamics of the microbiome is woefully inad-
equate; with a few available suggested models, none of
which fit the data very well. In this section, we simulate
community dynamics under a Holling type II model [39],
given by

daM;
dt

bijd,’ij
1+ ajj THL’ij

=M; | ri(1 —ciM;) + Z
J#i

(1)

Table 7 NMF mean prediction test errors and the associated
standard errors for simulation with zero-inflated weight matrix

Here, for OTU i, r; is the intrinsic growth rate; ¢; is the
coefficient of negative intraspecific interaction, which is
the inverse of the carrying capacity of this OTU in isola-
tion; a;; is attack rate; Ty is handling time; and b;; is the
interaction coefficient between OTUs. When a;j Th M

is very small, the 1 term dominates the denominator, so
the derivative approximately follows generalised Lotka-

Volterra type dynamics for these OTUs; when a;; Ty ;;M; is
large such that it dominates the denominator of the frac-

. . bij
tion, then the term becomes approximately -+ H’ -, and the
ij

influence of OTU j on OTU i is limited by this quantity.
The reason we choose the Holling Type II model,
rather than the more commonly used generalised Lotka-
Volterra dynamics is that the Holling model seems to
have more capacity for overlapping communities to coex-
ist without influencing one-another excessively, because
the Holling type II model incorporates a limit on the
effect of one OTU on another. This makes intuitive sense
when the interaction consists of one OTU providing some

Table 8 RF mean prediction test errors and the associated

SNR  class T\class2 2 types 5 types 10 types standard errors for simulation with zero-inflated weight matrix
+oo  3types 0/0 0.0048/0.0016  0.0158/0.0023  SNR  class 1\class2 2 types 5 types 10 types

4 0/0 0.005/0.0016 0.0154/0.0023 400 3types 0.0072/0.0015  0.0062/0.0015  0.0046/0.0012
2 0/0 0.005/0.0016 0.015/0.0024 4 0.0054/0.0013  0.0026/0.0010  0.0042/0.0015
1 0/0 0.005/0.0016 0.0148/0.0021 2 0.0048/0.0013  0.0058/0.0012  0.0044/0.0012
400  6types 0.0016/0.0009 0.0062/0.0017  0.0148/0.0025 ! 0.0068/0.0021  0.0056/0.0013  0.005/0.0012
4 0.0016/0.0009  0.0058/0.0076  0.0144/0.0024 +o0o0  6types 0.0074/0.0013  0.0122/0.0021  0.0082/0.0018
2 0.0014/0.0008 0.0066/0.0018  0.0148/0.0024 4 0.009/0.0017 0.0118/0.0014  0.0066/0.0013
1 0.0018/0.0010  0.0062/0.0016  0.0144/0.0025 2 0.0112/0.0021  0.0148/0.0024  0.0076/0.0018
+o00  9types 0.0033/0.0013  0.0068/0.0017  0.0148/0.0024 +o0o0  9types 0.0102/0.0019  0.015/0.0024 0.0118/0.0023
4 0.011/0.0018 0.0058/0.0015  0.0134/0.0022 4 0.011/0.0018 0.0168/0.0024  0.0104/0.0021
2 0.0036/0.0013  0.0066/0.0015  0.0142/0.0026 2 0.0104/0.0017  0.015/0.0030 0.0122/0.0028
1 0.0032/0.0011  0.0078/0.0024  0.0156/0.0023 1 0.01/0.0019 0.0126/0.0022  0.014/0.0026
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Table 9 SVM mean prediction test errors and the associate
standard errors for simulation with zero-inflated weight matrix

SNR  class 1\class2 2 types 5 types 10 types

400 3types 0.1224/0.0166  0.2022/0.0193  0.1622/0.0171
4 0.113/0.0150 0.1776/0.0188  0.1884/0.0162
2 0.1324/0.0163  0.169/0.0205 0.1948/0.0144
1 0.1222/0.0134  0.204/0.0158 0.1896/0.0134
+o00  6types 0.1246/0.0146  0.1818/0.0179  0.1596/0.0144
4 0.1254/0.0141  0.2048/0.0112  0.22/0.0125

2 0.1262/0.0149  0.2088/0.0129  0.2366/0.0093
1 0.1206/0.0147  0.2084/0.0120  0.2058/0.0128
400 9types 0.1744/0.0127  0.2274/0.0157  0.223/0.0123
4 0.175/0.0096  0.1472/0.0173  0.1794/0.0125
2 0.1858/0.0083  0.213/0.0144  0.1882/0.0096
1 0.207/0.01 0.1664/0.0144  0.1742/0.0137

metabolite to another OTU. We expect the growth of an
OTU to be limited by multiple metabolites, and when one
metabolite is used up, increasing the supply of another
metabolite would not be expected to have a significant
increase on the growth rate. This limit on the effect
allows overlapping subcommunities to mix in an approx-
imately linear way. We anticipate that a detailed model
based on flux balance equations could be developed which
would both model community dynamics more accurately
and follow the assumptions behind NMF more closely.
However, developing new models for the dynamics of
microbial ecology is beyond the scope of this paper.

We use the fixed network structure shown in Fig. 12 for
the simulations. We can see that the network used is made
up from three overlapping clusters (M1-M10, M9-M18
and M17-M26). The intuition is that for each cluster there
is a metabolic subcommunity, representing the stable state
of the system when restricted to that cluster, and that the
overall community is made up as a mixture of these sub-
communities. For each black link in the network in Fig. 12,
we simulate the species interaction coefficient b;; as fol-
lowing a uniform distribution between 0 and 0.008. For
the blue links in the network, we simulate b;; from a uni-
form distribution between —0.002 and 0.008, and for the
red ones, we simulate b;; from a uniform between —0.08
and 0. We set Tp; around 107> by generating ﬁl/ from

10° x beta(5, 1). This scale of Ty allows the Holling type
Il dynamics to take effect—if Ty;; is much larger, the effect
of one OTU on another is limited, so the OTUs become
almost independent, losing the subcommunity structure.
If Ty is much smaller, then the interspecific interaction
term is approximately linear, so we get gLV dynamics,
which are less suited for overlapping clusters. We allow
r; and ¢; to vary between samples in each dataset, with r;
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Fig. 12 Network used for community dynamics simulations. The red
nodes represent OTUs from cluster 1, blue nodes are OTUs from
cluster 2, green nodes are from cluster 3 and yellow nodes are
isolated OTUs not in any subcommunity. The purple and cyan nodes
are overlapping OTUs of cluster 1 and cluster 2, or cluster 2 and
cluster 3, respectively

simulated from a uniform distribution between 0 and 1,
and % — 1 simulated from 99 x beta(1,2). The idea is
that these parameters are related to the suitability of the
environment for OTU i, so different samples would have
different values. The other parameters are kept fixed for
all samples, since these represent the inherent ability of
these OTUs to interact, so should not be expected to vary
greatly between environments. We simulate 10 values of
the parameters b;; for the given network. For each of these
simulated values, we simulate one data set with 50 sam-
ples, one with 100 samples and one with 200 samples. To
construct each sample, we simulate values of r; and ¢; for
each OTU and simulate the dynamics from Eq. 1, using
1,000,000 iterations with a stepsize of 0.001.

For each dataset, we apply NMF with four types. We
compare the fitted types with the known subcommunities,
both visually and using a formal loss function.

We also calculate the co-occurrence networks [40] of
the simulated data and compare the results with NMF.
The co-occurrence network is produced by calculating the
correlation of each pair of nodes in the simulated data. A
null distribution for each pair is generated by permuting
the abundance of one of the pair and re-calculating the
correlation. The resampling is performed 1000 times, and
the distribution is used to calculate p values. The p val-
ues are then corrected using Benjamini-Hochberg [41] to
control the false discovery rate.
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Neither NMF nor co-occurrence networks are designed
exactly to identify the network structures or parameters
of the Holling model. However, from the network struc-
ture in Fig. 12, we see that the network can be reasonably
decomposed as containing three large subcommunities
(shown in red, blue and green in that figure, with nodes
in multiple subcommunities coloured in mixed colours,
purple and cyan). Both NMF and co-occurrence networks
have some capacity to recover these subcommunities. For
NME, these subcommunities would be recovered as the
most abundant OTUs in a type, while for co-occurrence
networks, they would arise as connected components in
the networks. We can attempt to compare the extent to
which the two methods succeed at recovering these sub-
communities. This extent is somewhat subjective. For an
NMEF type, we form clusters of OTUs as the OTUs with
abundance above some threshold in that type. For co-
occurrence networks, we form clusters as the connected
components of the network at a certain significance level.
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We then choose unions of these clusters to recover the
subcommunities used for simulation. To allow compari-
son, we have defined the following loss function for each
true subcommunity to measure how far each such union
is from the true subcommunity.

e For each OTU in the subcommunity, but not in the
union of clusters, the loss is 1.

e For each OTU in the union of clusters, but not in the
subcommunity, the loss is 1.

e For each additional cluster after the first in the union,
the loss is 1.

For example, the loss for the red, green and blue sub-
communities in Fig. 13 are respectively 1, 1 and 5, and
the loss for the red, green and blue subcommunities in
Fig. 14 are respectively 6, 7 and 9 (the blue community
being best approximated by a singleton connected com-
ponent). The abundance thresholds in the NMF type and
the significance levels in the co-occurrence networks are

First type
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Fig. 13 NMF features extracted from data simulated under a Holling type Il model
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Fig. 14 Co-occurrence network calculated from data simulated under
a Holling type Il model

chosen to minimise the total loss for each subcommu-
nity. We allow different significance levels for different
connected components here. Note that the example cal-
culation above was meant to demonstrate how the loss
function is calculated for a given set of clusters, based on
the single figure, not on clusters with different p values, so
the values calculated may not be the actual loss function
for that dataset.

Table 10 shows that NMF most often is able to recover
the subcommunities used to simulate the data, especially
when sample size is large. Note that the blue subcommu-
nity (M9-M18) has weaker interactions between OTUs,
so is less clearly a subcommunity, and is therefore not
identified as well as the others. Since the loss function is
somewhat ad hoc, Figs. 13 and 14 show typical examples
of the recovered types from one simulation with 200 data
points, to allow more direct comparisons visually. As we

Table 10 Mean/standard deviation of the optimum loss scores
for each true subcommunity under two different methods, with
10 simulations for each sample size

M1 —M10 M9 —M18 M17 — M26

Sample size Cluster

n=50 NMF 3/1.8 7.2/2 24/19
Co-occurrence network 5.4/2.4 7.5/0.8 3.5/1.6
n=100 NMF 27/1.3 6.8/2.2 21/14
Co-occurrence network 6.7/2.2 6/1.6 45/1.7
n=200 NMF 2.7/09 6.1/2 15/1.2
Co-occurrence network 6.9/1.7 6.6/2.1 6.3/1.3
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can see, NMF has done a better job in recovering the sub-
communities. It is also worth noting that co-occurrence
networks tend to create many small clusters, which gives
the method an advantage over NMF for the above defined
loss function, particularly for subcommunities which are
not identified well.

The fact that NMF is able to recover the true subcom-
munities in the simulated data does not necessarily mean
that the subcommunities found by NMF on real data are
genuine subcommunities, because the dynamics of the
real microbial community could be different from those
in this simulation. We have however shown that vaguely
realistic models of microbial community dynamics can
produce subcommunity structures similar to those mod-
eled by NME. Given that NMF is able to uncover these
structures, we have better justification to support that the
true community dynamics might also be well represented
in terms of the subcommunities identified by NMF and
that these subcommunities have meaningful biological
structure.

Simulation for the performance of NMF as a clustering
method

We construct the simulation following the method in
McMurdie and Holmes simulation A [11]. The real micro-
bial data ocean and feces from the GlobalPatterns dataset
are used to obtain two basic sets of multinomial proba-
bilites. We then produce new multinomial probabilites for
two classes as linear mixtures of the original two sets. The
ratio of these mixtures is determined by the parameter
effect size, se > 1. One class mixes the basic sets in the
ratio 1 : s,, the other mixes them in the ratio s, : 1. When
se = 1, the classes are identical, so we expect no sepa-
ration. As s, increases, the difference between the classes
becomes larger, so the clustering problem becomes easier.
We simulate 200 samples for each class with effect size
set to 1.01, 1.05, 1.1, 1.3 and 1.5 and sequencing depth set
to 10000. For each value of the effect size, we simulate 30
replicates.

For each simulated data set, we calculate the NMF
weight matrix on the original count data using two
types and then calculate the Euclidean distance between
samples based on the NMF weight matrix. For com-
parison, we also calculate Bray-Curtis dissimilarity,
Euclidean distance, weighted UniFrac and rarefied
Unweighted UniFrac on proportional data. We per-
form clustering analysis using Partitioning Around
Medoids (PAM) with the number of clusters fixed as
two and measure the performance of the methods by
the mis-clustering errors. The results are shown in
Table 11.

From the table, we see that NMF performs generally
better than other methods except weighted UniFrac. This
simulation was based on phylogenetically very different
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Table 11 Mean/standard error of the mis-clustering errors from the 30 replicates
Effect size

Method 1.01 1.05 1.1 13 1.5

NMF 0.4732/0.0042 0.134/0.0104 0.0003/0.0002 0/0 0/0
Weighted UniFrac 0.469/0.0035 0.0195/0.0012 0/0 0/0 0/0
Unweighted UniFrac 0.4827/0.0034 0.4798/0.0025 0.4887/0.0077 0.4916/0.0082 0.2823/0.0203
Bray-Curtis 0.4683/0.0033 0.2411/0.0128 0.0089/0.0020 0/0 0/0

Euclidean 0.4596/0.0053 0.1607/0.0084 0.0053/0.0010 0/0 0/0

classes, which gives UniFrac an advantage, and fixed
sequencing depths, which nullifies one of UniFrac’s limita-
tions. Despite this, the results are mostly comparable, and
NMF outperforms other commonly used methods. This
shows that the dimension reduction by NMF could help
to filter out the noise and retain the major dissimilarity
signals of the data.

Conclusion

The NMEF analysis can provide a range of interpretable
conclusions about the data sets. For metagenomic data,
the features extracted can be mapped to metabolic path-
ways. For OTU data, the features correspond to com-
munities of OTUs and can be studied in terms of the
proportion of each phylum, class or genus. In any case,
looking at the results of the NMF can reveal important
patterns or differences between individuals that are not
apparent from the original data. We were able to iden-
tify this type of pattern in all three real data sets—the
difference in macrolide synthesis pathways for the non-
ruminant herbivores; the change in composition of the gut
and tongue microbiomes for person 2 in the moving pic-
ture data; and the differences in various pathways for the
Qin data.

The simulation results show that supervised NMF can
recover the right number of types based on which a
good classification result can be achieved. Supervised
NMEF can effectively reduce the dimensionality of the data
to a non-negative and most often sparse data matrix,
which contains sufficient discriminative information for
classification purposes. In addition to the accuracy for
classification, these typical features are the community
signatures for each class of objects and their interpretation
can often uncover important information about the differ-
ences between different classes of objects. Simulations of
community dynamics under a Holling type II model show
that plausible models of community dynamics can lead
to the type of additive subcommunity structure assumed
by NME, and that in such a case, NMF is able to identify
biologically meaningful types representing the subcom-
munities.

There are a number of ways the work could be extended
in future. The following are some of the most promising
and related problems:

Choosing the number of types is still a difficult prob-
lem. The method used in this paper can give an answer
based on what is needed to make each class different from
other classes. However, the non-parametric method has
limited efficiency and, as was shown in the simulation, can
be quite far from the true values.

NMEF fitting does not always have a unique solution.
There are a variety of methods in the literature to fix
a “best” solution, based on decisions of which aspects
of the solution should be penalised. For example, spar-
sity constraints can be added [42] to make T or W
even more sparse. More work is needed to determine
which form of penalty is most appropriate for micro-
biome data. This penalty could be used to incorpo-
rate the phylogenetic structure into NMF. There is a
strong intuition in the field that the phylogenetic struc-
ture should be important in analysing microbiome data,
although there is no clear idea of exactly how it should
be used. A penalty could be added to encourage closely
related OTUs to be included in the same type. By exam-
ining the structure of types for unpenalised NMFE, we
could gain insight into the appropriate form for this
penalty.

As yet, there is no goodness-of-fit test for NMF. That
means that we are not certain whether the features iden-
tified really represent biologically meaningful entities.
There is support for this belief from the fact that they
allow us to accurately classify samples and also because
the features have a biological interpretation which makes
sense. However, a formal test to confirm that NMF fits the
model well would be a valuable tool. It would also help
with the next topic in our future work.

More theoretical work is needed to justify that NMF can
recover the true underlying communities. This is com-
plicated by the non-uniqueness of the solution. Once a
method for resolving this non-uniqueness is chosen, it
should be possible to identify conditions under which it
will recover the true subcommunities, given enough data.
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Appendix A

Non-negative Poisson regression

Our purpose is to find the non-negative coefficients
for a Poisson regression with identity link and with-
out intercept, by maximizing the Poisson log-likelihood.
We now focus on the regression of one sample X; =
(X1j, X2j, -+ , Xpj) on T. The resulting coefficients W; =
(wyj, - -, wy;) thus will be either positive or 0, with 0 coef-
ficients corresponding to the variables in T removed from
this regression. We aim to find a list of positive coefficients
with the corresponding variables, so that adding another
variable to the list cannot improve the likelihood and still
maintain the non-negative constraint. This is achieved
through a backwards-forwards Poisson regression proce-
dure as follows.

We start by recursively fitting a Poisson regression on T'
and removing the variables corresponding to the negative
coefficients in W; = (wy, - - - , wy;) until all the coefficients
are positive. Using the remaining variables, we calculate
the log-likelihood value. Then, we test each removed vari-
able by adding it back with a small positive coefficient, if
this increases the log-likelihood value, we add this vari-
able back to the remaining variables and repeat the above
steps; otherwise, we remove this variable and test the next
one.

The algorithm follows these steps:

1. Fit a Poisson regression with identity link but
without intercept on T with the initial value of W;
set as the coefficients of linear least square regression
of Xj on T. Eliminate those variables corresponding
to negative coefficients.

2. If any variables were removed, go back to step 1 until
all the coefficients are positive. In the end, the matrix
consisting of remaining variables is Tj"’. Since X, T

and W are all non-negative, the resulting T;r cannot
be empty unless X is a zero vector.
3. Calculate the log-likelihood for T]f

p
L(777) = 22 (ates (1), ~ (17w),).
i=1
where (T+ ) denotes the ith element of the
i
vector Tj+ i
4. Add one variable in the removed pool to Tj+, denote

the new feature matrix as T]fnew and calculate the

log-likelihood again.

L(17,) =2 (xrtee (17, W0,

i=1

+ f
a (Tl new%”ew)) ’
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where W; = (W;(1 — ¢),¢), ¢ is a very small
positive number close to 0. For this paper, we use
1077 as the value of .

5. Compare L (Tﬂ') with L (Tﬂ' ), if
] ] new
L (T]"’) <L (T]+ ), use this new 77
new ] new

composed of Tj+ and the new variable to repeat steps
1 to 5. Otherwise, remove this variable and try to add
another variable in the removed pool to T;" and
repeat steps 4 to 5, until all removed variables have
been tested.

In step 4, we add back one removed variable each time
into the positive T matrix and calculate the new log-
likelihood value. To decide if this variable should be added
back, we do not need to refit the Poisson regression when
calculating the new log-likelihood value. As the old coeffi-
cient matrix is a local maximization for the log-likelihood
function with the remaining variables, the derivative of the
log-likelihood at that point should be 0 with respect to all
remaining variables. When we add another variable with
a small positive coefficient into the system, if we are near
to the original maximum, the log-likelihood for the new
point will either increase or decrease, depending whether
the derivative with respect to the newly added variable is
positive or negative. So if we want to see whether a vari-
able could increase the log-likelihood, we can just add a
very small weight ¢ for the new variable, then calculate the
new log-likelihood with the new rescaled weight matrix.
We need to rescale the W} vector, so that W’ A= X1,
where1 = (1,---,1). ThlS is because we assume the data
follow the Poisson distribution, so the sum of the obser-
vations X; should be equal to the sum of the mean vector
TW;. As each column of T has unit sum, Wj’l = Wj’ T1=
X]f 1.

We compare this new log-likelihood value with the
old one. If it decreases, the derivative is negative which
means points with positive weight on the new variable
will decrease the log-likelihood. Then, the new vari-
able should not be added. If the new one is larger
than the old one, add this variable into the positive T’
matrix and do a Poisson regression on this new posi-
tive T matrix again and repeat the above steps until no
variable can be added. In this way, we can make sure
that each time we decide to add a new variable to the
positive T matrix, the likelihood becomes larger. This
procedure keeps the log-likelihood function increasing
under the constraints that all elements in W; remain non-
negative.

To see that the algorithm will converge, a key point
is that our algorithm is only dealing with the discrete
part of the optimization, and the Poisson regression takes
care of the continuous optimization. Since we are opti-
mizing over a finite number of possible sets of positive
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variables, convergence is guaranteed by the fact that each
step increases the likelihood.

Appendix B

Method for choosing the number of types

In order to choose the best number of types for the
first class, we will look at the deviance statistics to see
how well the chosen types will fit the first class bet-
ter than other classes. (Deviance is a measure of fit
between data and model, given by the difference in log-
likelihood between the current model, and a saturated
model. Smaller deviance corresponds to better fit.) Since
the types are chosen from the first class, to make the
comparison objective, the deviance statistics need to be
calculated on a test set of the first class. We obtain one
deviance statistic for each data point in the test set. We
use cross-validation, so that every data point is in one
test set. The deviance statistics are not normally dis-
tributed; thus, we will use the Wilcoxon Rank-Sum test
[43] based on the deviance statistics to test how well the
classes are separated. The idea is to rank the deviance
statistics from the test data points. If there is no dis-
crimination between the classes, then the ranks should be
distributed randomly between the classes. The Wilcoxon
Rank-Sum test computes a statistic which measures how
unevenly the ranks are distributed between the classes.
This statistic is then standardised so that it (approx-
imately) follows a standard normal distribution under
the assumption that the ranks are randomly distributed
between classes. We refer to this standardised statistic as
a Z-value. We obtain one Z-value for each fold of the
cross-validation. Our overall measure of difference is the
sum of the Z-values for each fold, divided by /7, where
r is the number of folds. (Dividing by /7 ensures that
if the model is equally good at fitting the data from the
two classes, then this overall measure follows a standard
normal distribution.) We have one Z-value from each
fold of the cross-validation, so by calculating the stan-
dard deviation of these Z-values, we are able to obtain a
standard error for our overall statistic. For each class, we
will try a sequence of values for the number of types and
find the best value to discriminate this class from other
classes.

We use a 2-class data case as an example to illustrate the
ideas. We use an r-fold cross-validation on training data
for both classes. In each cross-validation, we separate the
training data into a training fold and a test fold. To choose
the number of types for class 1, we apply the following
steps to a range of values for k:

1. For each fixed value k, fit k types on the training
folds from class 1 to get the type matrix T.

2. Fit the remaining test fold data from class 1 and one
fold of data from class 2 on T.
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3. Calculate the deviance for each fitting (one deviance
value for each data point in the test folds).

4. Use a Wilcoxon Rank-Sum test on these deviances to
get one Z-value for each fold.

5. Sum the values of Z statistics from each fold of the
cross-validations and divide by 4/7; denote this
statistic as Z,;. This statistic should follow a normal
distribution with mean of zero and standard deviation
of 1 under the null hypothesis that the distributions
of deviance values from both classes are the same.

6. Choose the smallest k for which Z,; is within one
standard deviation of the largest Z,;-value, where
the standard deviation is calculated as the sample
standard deviation of the Z-values from the different
folds for each k.

Note that the purpose is to choose k such that the
deviances from two classes are best separated, not a
hypothesis test to test the equality of means. Thus, the
sample standard deviation of Z,; is calculated from the
different folds in the last step, instead of using 1, which
is the standard deviation under the null hypothesis. By
using r-fold cross-validation and combined Z-values, we
can effectively increase the power of this test, which is par-
ticularly important when the number of observations is
small.

When the classification problem is an easy one, there is
a clear separation between the deviances resulting from
the class for which we are selecting the number of types
and that from other classes. The near complete separa-
tion often results in the almost equal Z-values from the
different folds; thus, the sample standard deviation of Z,;
is small. When the classification problem is hard, the
resulting Z-values from different folds tend to have larger
variance. The number of types selected in the easy case
usually is small and clear cut; the number of types selected
in the harder case usually tends to be large. After we run
the above procedure to select numbers of types for all
classes, we will fix the number of types for the easy case
and select the best matching number of types for the other
class so that the misclassification error is minimized.
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