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Abstract

Background: Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories.
However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test
panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent
identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow
broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for
high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from
clinical samples.

Results: In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different
enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol
including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions
provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative
number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral
pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in
detecting the majority of the included viruses with high read numbers and compared well to other protocols in the
field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also
with other clinical samples such as urine and throat swabs.

Conclusions: The workflow for virus metagenomic sequencing that we established proved successful in detecting
a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection
strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine
diagnostic panels.
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Background
To date, sequence-specific PCR is the most common ap-
proach for virus identification and quantification in diag-
nostic laboratories as it is highly sensitive, rapid, and
cost effective. However, specific PCR requires prior
knowledge of the virus sequence, and a separate assay
needs to be designed for each individual virus or virus

type. Recently, high-throughput or next generation se-
quencing (NGS) technologies enabled metagenomic-
based identification of viruses by sequencing random
fragments of all genomes present in a clinical or
environmental sample [1–3]. As viral metagenomics is
virus-sequence independent, potentially any virus,
cultivable or uncultivable, known or novel, can be
readily detected and the method can be applied to all
types of virus genomes, including single-stranded DNA
and RNA. Several research studies have used this tech-
nology in recent years to explore the breadth of the
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virome in diverse biological and environmental samples
including human and animal feces [4–12], blood [13, 14],
animal and human tissues [15–17], and human respiratory
tract secretions [18–22] and highlighted the validity of the
approach to detect rare and novel viruses.
Despite the numerous promising attempts to apply

metagenomics to virology, direct sequencing of nucleic
acids obtained from biological samples results in a high
background of genetic material mainly derived from the
host and bacteria hampering the detection of viruses
[22, 23]. Sample type greatly influences the composition
of sequencing reads, and due to the complexity of clin-
ical materials, sample preparation and virus enrichment
methods need to be specifically adapted. Common steps
in sample preparation for unbiased metagenomic se-
quencing are virus enrichment, extraction of nucleic
acids, reverse transcription, and unbiased amplification.
Various virus enrichment methods for clinical samples

have been suggested. Commonly employed methods in-
clude filtration, ultracentrifugation, and nuclease treat-
ment [1, 24–31]. These methods rely on the small size
of viruses and the stability of their capsid. Several
approaches for virus genome amplification do exist:
Multiple displacement amplification (MDA) is often
used for whole genome amplification [32–34], e.g., in
the VIDISCA method for virus discovery [35]. Linker-
amplified shotgun library (LASL) was applied for virus
sequencing from marine water samples [8]. The an-
chored random PCR approach, as used in our study, has
been frequently used and described in detail in previous
studies [16, 36–42].
Here, we tested various conditions and methods for

virus enrichment, nucleic acid extraction, and unbiased
amplification with the goal to create a sensitive and ro-
bust workflow for metagenomic sequencing of clinical
samples in virus diagnostics. We spiked several virus
types into plasma from healthy donors to cover different
classes of viruses: small non-enveloped DNA (Human
adenovirus), large enveloped DNA (Human herpesvirus
4/EBV or Human herpesvirus 5/CMV), small non-
enveloped RNA virus (Poliovirus), and enveloped RNA
virus (influenzavirus A, Additional file 1: Table S1). We
validated our approach using a highly multiplexed viral
pathogen reagent containing 25 different viruses. Finally,
in experiments with different ratios of spiked viruses, we
show a good correlation of the relative number of
sequencing reads with the virus input.

Methods
Virus stock production
Human adenovirus 7, Human poliovirus 1 (strain LSa),
and Human herpesvirus 5 (HHV-5, ATCC VR AD 169)
were propagated on MRC-5 cells (human fetal lung
fibroblasts) obtained from the European Collection of

Cell Cultures (Salisbury, UK). Viruses were cultivated for
14 days, cells were sonicated for 5 s, centrifuged (5 min
at 1200 rpm), and the supernatant harvested and filtered
(0.45 μm). Human herpesvirus 4 (HHV-4) was propa-
gated on B-95 cells (marmoset B-lymphoblastoid cell
line) centrifuged (5 min at 1200 rpm), and the super-
natant harvested and filtered (0.45 μm). Influenzavirus
A/WSN/33 was propagated on A549 cells (human alveo-
lar basal epithelial cells) and Influenzavirus A/H1N1/
PR8 on MDCK cells (canine kidney epithelial cells) for
up to 4 days, and the supernatants were centrifuged
(10 min at 1200 rpm). Aliquots were stored at −80 °C.

Virus quantification by quantitative real-time PCR (qPCR)
Viral loads in spiked samples and amplicon concentra-
tions after random amplification were determined by
qPCR as described previously for HHV-5 [43], poliovirus
[44], adenovirus [45], and influenzavirus (CDC protocol
of real-time RT-PCR for swine influenza A H1N1, 28
April 2009). For HHV-4, real-time PCR was performed
as described previously [46], but with modified primers
(CTTCTCAGTCCAGCGCGTTT and CAGTGGTCCC
CCTCCCTAGA) and a modified probe (FAM-CGTAA
GCCAGACAGCAGCCAATTGTCAG-TAMRA). All re-
actions were performed on a ViiA7 Real-Time PCR
System (Life Technologies/Thermo Fisher Scientific,
Waltham, MA) with the TaqMan RNA-to-Ct 1-Step Kit.
One-microliter template (out of 25-μl extraction eluate
or 50-μl amplification reaction, respectively) was used
with 10-μl master mix, 0.25 μM of each primer,
0.125 μM probe in a total volume of 20 μl. Each sample
was tested in duplicates with the following cycling con-
ditions: 30 min at 48 °C, 10 min at 95 °C, 50 cycles of
15 s at 95 °C, and 1 min at 60 °C.

Absolute virus quantification by digital PCR
For experiments using different ratios of virus input,
virus stocks were quantified by digital PCR using the
QuantStudio 3D Digital PCR System (Life Technologies/
Thermo Fisher Scientific), which allows for absolute
quantification without the need of a standard. Reactions
were performed in a final volume of 15 μl with 7.5 μl 2×
QuantStudio 3D Digital PCR Master Mix, 0.25 μM of
each primer and 0.125-μM probe (same primer and
probes as used in the qPCR assays described above). The
template was diluted as necessary for optimal digital
PCR readout. For RNA virus quantification, the reaction
additionally contained 0.4 μl 40× TaqMan RT Enzyme
Mix and an initial reverse transcription step for 15 min
at 48 °C followed by 10 min at 96 °C. Cycling conditions
were 50 cycles of 2 min at 60 °C, 30 s at 98 °C, and 60 °C
for 2 min. After read-out on the QuantStudio 3D Digital
PCR instrument, the raw data was imported into
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QuantStudio 3D AnalysisSuite Cloud Software (version
3.0.2.2) to calculate absolute copy numbers.

Virus spike preparation and sample pre-processing
Human clinical samples were obtained from healthy
blood donors (Zurich blood donor service, Schlieren,
Switzerland) or from diagnostic samples (tested negative
for poliovirus, HHV-4, HHV-5, influenzavirus A, and
adenovirus) and stored at −20 °C. Samples were centri-
fuged at 2000 rpm for 10 min (Heraeus Multifuge X3 R,
Thermo Fisher Scientific), spiked with viruses to achieve
quantitative PCR threshold cycles (ct values) of 22–25,
which are considered as high positive samples in diag-
nostic tests for most viruses. Filtration was done using a
0.45-μm PES filter (TPP, Trasadingen, Switzerland).
Freeze-thaw cycles, if applicable, were performed by
freezing the samples at −20 °C.

Nuclease treatment
Nuclease treatment with DNase and RNase was per-
formed as previously described [47] with reagent volumes
scaled up for 1000 μl of clinical sample. Briefly, a nuclease
mix containing 120 μl DNase (0.92 mg/ml, Roche, Basel,
Switzerland), 10 μl RNaseA (0.77 mg/ml, Qiagen, Hilden,
Germany), 130 μl 10× nuclease buffer (400 mM Tris-HCl,
100 mM NaCl, 60 mM MgCl2, 10 mM CaCl2; pH 7.9),
30 μl PBS, and 10-μl water was added. The reaction was
incubated for 1 h at 37 °C in a thermoshaker at 1400 rpm.
Samples were treated with protease (0.71 mg/ml, Qiagen)
for 30 min at 37 °C to remove nuclease activity.

Nucleic acid extraction
QIAamp Viral RNA Mini Kit (Qiagen), PureLink Viral
RNA/DNA Mini Kit (Life Technologies/Thermo Fisher
Scientific), and NucliSENS EasyMAG system (BioMérieux,
Craponne, France) were used according to the manufac-
turer’s instructions. Two input volumes of spiked plasma
were tested, 500 and 1000 μl, and eluted into 25 μl to
achieve a high sample concentration. Large starting vol-
umes were loaded into the extraction columns in multiple
steps according to the manufacturer’s instructions, if
necessary.

Unbiased nucleic acid amplification: combined and
separate protocols
In a first protocol for unbiased nucleic acid amplification
[38], we processed RNA and DNA viruses combined in a
single reaction, called here the “combined protocol.” We
changed our protocol to include separate amplification
steps for RNA and DNA and replace T7 polymerase with
DNA Polymerase I Large Klenow Fragment (NEB Biolabs,
Ipswich, MA), called the “separate protocol” [9, 42]. For a
direct comparison, Klenow fragment was used for both
workflows.

For the RNA workflow, cDNA was generated by re-
verse transcription with a primer containing a random
octamer linked to an anchor sequence ATCGTCGTCGT
AGGCTGCTCNNNNNNNN [16, 36, 37]. Five microli-
ters of eluate was used as template in a total volume of
20 μl, with 5 μM of random primer, 1 mM of dNTPs, 1×
first strand buffer, 20 mM DTT, and 20 U/μl of Super-
Script III (Invitrogen/Life Technologies). The template
and random primers were heated at 65 °C for 5 min,
followed by reverse transcription at 42 °C for 60 min
and inactivation at 96 °C for 5 min. Prior to second
strand synthesis, cDNA was denatured at 94 °C for
2 min and cooled down to 10 °C for 5 min. The second
strand was synthesized with 5 U/μl DNA Polymerase I
(Klenow) in 10× NEB buffer in a final volume of 10 μl,
at 37 °C for 30 min followed by an enzyme inactivation
step at 75 °C for 20 min. An additional step of second
strand synthesis used in the initial, combined protocol
was omitted.
The DNA workflow started at the denaturation step at

94 °C for 2 min and was performed with the same
random primer as used in the RNA workflow prior to
second strand synthesis. Second strand synthesis was
performed using the same conditions as described for
the RNA workflow. Further amplification with the
anchor primer and AmpliTaq Gold (Thermo Fisher
Scientific) was performed as previously described [38],
but separately for the RNA and DNA workflow.

High-throughput sequencing and bioinformatic analysis
The quality and size of the anchor PCR products were
assessed by capillary gel electrophoresis (Fragment
Analyzer, Advanced Analytical, Ames, IA). PCR products
were quantified with PicoGreen (Invitrogen/Thermo
Fisher Scientific) and diluted to 0.2 ng/μl. DNA and
RNA preparations were pooled in equal concentrations
for constructing sequencing libraries with the NexteraXT
protocol (Illumina, San Diego, CA). Individual samples
were dual indexed during the library preparation and
pooled for sequencing. Libraries were sequenced on a
MiSeq (Illumina) for 1 × 150 cycles with version 3 re-
agents and the “FASTQ only” workflow. Samples were
demultiplexed using MiSeq Reporter v2.4.60. Raw sequen-
cing reads are available from the Zenodo repository
(10.5281/zenodo.814807). Reads were processed with a
dedicated bioinformatic pipeline “VirMet” version 0.3.3
developed in our laboratory (https://github.com/ozagordi/
VirMet/releases/tag/v0.3.3) [38]. Briefly, reads were
quality-filtered by removing low quality bases (average
PHRED score below 20), reads shorter than 75 bp and
reads with low entropy (i.e., consisting mainly of repeats).
Read passing quality filters were cleaned from non-viral
reads by aligning with STAR [48, 49] against, in this order,
human, bacterial, bovine, and canine genomes. Reads not
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matching any of the above genomes were aligned with
BLAST [50] against an in-house viral database that con-
tains approximately 46,000 different virus sequences. For
each sequencing read that passed the quality filter, the
BLAST hit with lowest e value was reported, given the
identity was higher than 75%. Reads which did not match
genomes used in the cleaning step and did not match viral
genomes included in the database were reported as of un-
known origin.

Analysis of virus enrichment
Optimization of the protocol was assessed by comparing
the virus amplicon concentrations after random amplifi-
cation by qPCR, by evaluating the fractions of reads of
different taxonomic categories after sequencing, and by
counting the absolute number of reads and the fraction
of the total quality filtered reads for each individual
spiked virus. All sequencing experiments were per-
formed in duplicates or triplicates. Statistical analysis
was done in R version 3.3.2 using linear models [51].
Coverage plots for viruses used for spiking were gener-
ated by mapping virus reads reported by our VirMet
pipeline with smalt (http://www.sanger.ac.uk/science/
tools/smalt-0, default thresholds) against the following
reference genomes: Human adenovirus 7 (GenBank
AY495969.1), Human poliovirus 1 Mahoney (V01149.1),
and HHV-5 strain AD169 (X17403.1).

Results
Extraction with the NucliSENS EasyMAG resulted in the
highest virus concentrations
First, three different methods of total nucleic acid ex-
traction were tested: QIAamp Viral RNA Mini Kit,
PureLink Viral RNA/DNA Mini Kit, and the automated
NucliSENS EasyMAG system. Plasma from healthy do-
nors was spiked with different viruses (adenovirus, polio-
virus, HHV-4, influenzavirus A) and extracted, and the
concentration in the eluate determined by qPCR. Easy-
MAG extraction was most efficient for both RNA vi-
ruses, while virus concentrations for DNA viruses were
similar to PureLink extraction. The Qiagen extraction
kit led to the lowest recovery of viral genomes for all
tested viruses (Additional file 1: Figure S1 and Table S2).
Thus, the EasyMAG system was selected as standard ex-
traction method for all further experiments.

Filtration substantially enriches for viruses and decreases
non-viral reads
In order to assess the effect of sample preparation on
the sensitivity of metagenomic sequencing, we spiked
plasma from healthy donors with both RNA and DNA
viruses (poliovirus, adenovirus, and HHV-4). All viruses
were spiked at a qPCR threshold cycle (ct value) in the
range of 22–25. Different orders of sample processing

corresponding to different pre-analytical situations were
then tested using the virus-spiked plasma: the condition
“same day” extraction comprised filtration, extraction, and
short-term storage before further processing at −20 °C;
“pre-processed” comprised filtration, storage at −80 °C,
and later extraction; “archived” samples comprised storage
at −20 °C, filtration, and extraction. In all three conditions,
each sample was processed filtered as well as non-filtered.
In all conditions, the fraction of virus reads signifi-

cantly increased as a result of filtration. Same day extrac-
tion with filtration and extraction followed by freezing
showed the highest enrichment of virus reads (Fig. 1a).
Considering individual viruses used for spiking, for all

three viruses, significantly more reads were reported for
filtered samples, both in numbers and in the fraction of
total reads passing quality filtering (Fig. 1b, c; Additional
file 1: Table S3). Conditions pre-processed and archived
(including a freezing step before extraction) proved bet-
ter for DNA viruses (adenovirus and HHV-4) than “same
day extraction”. Of note, in all conditions, the highest
number of spiked virus reads was reported for poliovirus
and the lowest number for HHV-4 (Fig. 1b, c), although
the ct values of the input for each virus were similar. For
all further samples, we chose pre-processed as standard
method.

Nuclease treatment significantly enriches for virus reads
Next, we tested the effect of nuclease treatment, which
takes advantage of the presence of a stable virus capsid
that protects the viral genome from digestion, in metage-
nomic sequencing of plasma spiked with two RNA viruses
(poliovirus and influenzavirus A) and two DNA viruses
(adenovirus and HHV-4). Spiked plasma incubated at 4 °C
without reaction buffer and nucleases served as a control.
In samples that were treated with nucleases, we ob-

served an increase in the fraction of reads passing qual-
ity filtering (Fig. 2a, Additional file 1: Table S4). This is a
result of the digestion of human DNA containing a lot
of repetitive (low entropy) sequences and therefore fewer
reads to be removed in quality filtering.
With nuclease treatment, reads of viruses increased

significantly, while human background reads decreased
(Fig. 2b). Freeze/thaw cycles did not improve virus en-
richment by nuclease treatment (Fig. 2b).
Considering sequencing reads from the individual vi-

ruses, nuclease treatment enriched all viruses, except the
large, enveloped DNA virus HHV-5 (Fig. 2c, Additional
file 1: Table S5). Incubation alone, without the enriching
effect of nuclease treatment, resulted in a reduced re-
covery of the RNA viruses influenza and polio.

Optimization of unbiased nucleic acid amplification
In order to optimize unbiased amplification of nucleic
acids to represent the entire virus population in a
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sample, we divided the workflow to process RNA and
DNA in two separate reactions and changed the enzyme
for second strand synthesis from T7 DNA polymerase to
Klenow Large Fragment [42]. For comparison, sample
volumes were kept identical for both workflows. Using
qPCR after random PCR amplification, higher amplicon
concentrations were obtained for DNA viruses processed
in the separate DNA workflow, when compared to the
combined protocol (data not shown). After sequencing,
the fraction of virus reads was enriched in the separate
protocol for DNA when compared to the combined re-
action as well (Fig. 3a). Most importantly, higher num-
bers of sequencing reads were obtained for all viruses in
the separate workflows compared to the combined
workflow, especially also for HHV-4 and influenzavirus
(Fig. 3b, Additional file 1: Table S6).
As shown before [30], sample preparation can influ-

ence the coverage of viral genomes. We therefore
aligned virus reads reported by the combined and
separate workflow for each virus to its reference gen-
ome. Reads were uniformly distributed along the ref-
erence genomes in both workflows (Additional file 1:
Figure S2).
We further tested if a higher input volume into the

reverse transcription reaction and the downstream an-
chor PCR would increase virus recovery. Using the
separate protocol, input strategy 1 used 5 μl of the ex-
tract into the reverse transcription reaction and 3 μl of
the reverse transcription reaction into the anchor PCR;
input strategy 2 used double the amount (10 and 6 μl, re-
spectively). Viral amplicon concentrations after the anchor
PCR were higher for input strategy 2 (Additional file 1:
Figure S3A). However, the fraction of virus reads and
reads assigned to each spiked virus were at similar levels
for both input strategies (Additional file 1: Figure S3B and
S3C, Additional file 1: Table S7).
Our final workflow is depicted in Fig. 4.

The optimized metagenomic sequencing protocol detects
the majority of virus species in a highly multiplexed viral
pathogen reagent
After establishing a workflow for unbiased, metagenomic
sequencing using spiked plasma samples, we used our

a

b

c

Fig. 1 Filtration substantially enriches for virus reads. Plasma samples
were spiked with three different viruses (adenovirus, HHV-4, poliovirus)
and prepared under the three following conditions: same day comprised
filtration, extraction, and freezing at −20 °C; pre-processed comprised
filtration, freezing at −80 °C, and extraction; archived included freezing at
−20 °C, filtration, and extraction. All conditions were tested with and
without filtration. The experiment was performed in duplicates.
a Distribution of sequencing reads into the taxonomic categories
viral, human, bacterial, and unknown origin. b Number of reads
obtained for each individual virus. c Fraction of all quality passing
reads obtained for each individual virus
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new protocol for testing a highly multiplexed viral
pathogen reagent (11/242-001, National Institute for
Biological Standards and Control, South Mimms, UK)
containing 25 different human viruses from different
virus families [52] (Table 1). We processed and se-
quenced 1000 μl of the reagent. As our bioinformatic
pipeline VirMet determines the taxonomic origin of each
individual read, we summed up reads at the species level
and noted the most commonly reported strain. Of the
25 viruses expected in the reagent, we detected 17 and
15 different viruses in two replicates, respectively, with
high numbers of reads (Table 1). Previous studies have
sequenced the same viral pathogen reagent [30, 52]. We
randomly subsampled our raw reads to match the num-
bers analyzed in these studies. Using 2,000,000 reads, we
still detected 17 viruses in one of the replicates. Seven of
the eight viruses we did not detect (Coronavirus 229E,
Norovirus GI and GII, Influenzavirus A and B, Human
parainfluenza virus 3) were missed by 15 to 79% of other
methods as well [52]. Comparing our results to similar
workflows (filtration, nuclease treatment, random ampli-
fication, NexteraXT, MiSeq) as, for instance, the sample
preparation methods N1-N4 presented in Li et al. [30],
our numbers of reads were higher as reported and we
identified more virus species (Table 1, 150,000 reads). As
previously shown, additional non-targeted viruses are
present in the reagent and were detected by us as well
(e.g., Bovine viral diarrhea virus, Bocavirus, Enterovirus;
Table 1).

Ratio of virus reads correlates with concentration of
viruses in spiked plasma
In order to confirm that our protocol detects viruses in
a reproducible and quantitative manner, we sequenced
plasma samples spiked with different ratios and concen-
trations of an RNA virus (poliovirus or influenzavirus)
and a DNA virus (adenovirus). First, we spiked a con-
centration of 50,000 copies/μl of both viruses; we then
spiked ten times more and ten times less of one virus
while keeping the other virus constant at 50,000 copies/μl,
and vice versa for the other virus.
After extraction, viral amplicons were quantified in the

eluate and the ratio of spiked viruses was perfectly

a

b

c

Fig. 2 Nuclease treatment significantly enriches for virus reads. To
test nuclease treatment in metagenomic sequencing, plasma samples
were spiked with four different viruses (adenovirus, HHV-5, influenza-
virus, poliovirus) and processed with and without incubation at 37 °C
(I +/−), nuclease treatment (N +/−) and freeze-thaw cycles (FT +/−),
respectively. The experiment was performed in duplicates. a Fraction
of sequencing reads that passed quality filtering. b Distribution of
sequencing reads into the different taxonomic categories viral, human,
bacterial, and unknown origin. c Number of reads (upper panels) and
fraction of all quality passing reads (lower panels) obtained for each
individual virus
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maintained (Additional file 1: Figure S4). After random
amplification and sequencing with the separate work-
flow, we calculated the ratio of the number of reads of
the two viruses, as the number of total reads in each
sample varied and the viruses are amplified differentially.
The ratio of the virus reads in a sample correlated well
with the difference in ct values in the initial sample,
showing that our method amplifies and detects both vi-
ruses in a reproducible and quantitative manner (Fig. 5).

Sample preparation of clinical samples other than plasma
In order to test if our method established with plasma
also works for other clinical samples, we spiked the same
volume of plasma, urine, throat swab, and two different
stool suspensions with the same amount of viruses. After
sequencing, the fraction of virus reads in urine and
throat swab was similar as for plasma (Fig. 6, Additional
file 1: Table S8). For stool samples, however, the amount
of unknown background reads was substantially higher
and virus reads, if detected, were mostly bacteriophages.
For the individual viruses that were spiked, the number
and fraction of virus reads were significantly decreased
in both stool samples. A more stringent virus enrich-
ment protocol is therefore needed to sequence stool
samples to achieve the same sensitivity [53, 54].

Discussion
In this study, we developed and validated a sample prep-
aration protocol for unbiased amplification and high-
throughput metagenomic sequencing of viruses in

routine diagnostic use. In an unbiased metagenomic ap-
proach, prior knowledge of the virus sequence is not re-
quired. In principle, it can therefore detect any virus.
However, sample processing needs to be optimized for
recovery and amplification of viral genomes that might
be present only in very small amounts in clinical sam-
ples. We optimized such a protocol using plasma sam-
ples spiked with different classes of viruses.
First, we tested filtration, extraction, and nuclease di-

gestion procedures in order to find optimal conditions
for virus enrichment and reduction of unwanted, non-
viral reads. Filtration proved to be indispensable, as the
number of virus reads after sequencing significantly in-
creased. Additionally, sample pre-processing including a
freeze thaw cycle showed the best enrichment (Fig. 1),
and for best integration into the daily laboratory work-
flow, we chose pre-processed for further experiments.
Two of the extraction methods tested here have been
compared before with a higher scoring for the QIAamp
Viral RNA Mini Kit compared to the PureLink Viral
RNA/DNA Mini Kit [27]. Other studies reported limited
coverage of the genome using a magnetic bead-based
method similar in principle to the EasyMAG [30]. How-
ever, we did not observe this as we obtained good cover-
age of the entire genome (Additional file 1: Figure S2).
Nuclease treatment, which takes advantage of the

stable virus capsid that shields the viral genome from di-
gestion, significantly reduced the fraction of human
reads and increased the amount of reads passing the
quality filter in our analysis pipeline. This is a result of

a b

Fig. 3 Separate workflows for RNA and DNA yielded higher sequencing reads for DNA viruses. Plasma samples were spiked with four different
viruses (adenovirus, HHV-4, influenzavirus, poliovirus) and processed and sequenced with the combined and the new separate workflow. In the
separate workflow, random amplification products were pooled before NexteraXT library preparation in equal concentrations. The experiment was
performed in triplicates. a Distribution of sequencing reads into the different taxonomic categories viral, human, bacterial, and unknown origin.
b Number of reads (upper panels) and fraction of all quality passing reads (lower panels) obtained for each individual virus
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the digestion of human DNA containing high numbers
of repetitive (low entropy) sequences and important for
maximizing the amount of quality reads to increase sen-
sitivity. Nuclease treatment enriched for all viruses, ex-
cept HHV-5, which might, probably due to its size or
envelope, not be as stable as smaller viruses. While the
combination of low-speed centrifugation, filtration, and
nuclease-treatment also showed the greatest increase in
the proportion of viral sequences in other studies [29]
and filtration and DNase treatment lead to dramatic im-
provements [25], some studies only found minor differ-
ences among the methods with or without filtration and
nuclease digestion [30]. The reason for these discrepan-
cies might be that some studies compare pre-sequencing
nucleic acid concentrations while others compare

sequencing reads. Enrichment methods in general de-
crease the absolute concentration; however, in our
hands, the overall gain of nuclease treatment to increase
the ratio of virus over host prevails.
Poliovirus reads were recovered in highest numbers in

our experiments, although the amount of spiked viruses
was adjusted to similar levels (ct values). This might be
due to the fact that poliovirus has the smallest virion
and genome size among the spiked viruses, what might
have facilitated its efficient enrichment and amplifica-
tion. In contrast, HHV-4 virus is a large virus in respect
to virion and genome size and often only single reads
could be detected. It was suggested that filtration might
actually have an adverse effect on large virus genomes
such as herpesvirus and mimivirus [28]. In other studies
of virus profiling in clinical specimens, lower numbers
of HHV-4 reads as expected were also reported [55].
However, experiments using HHV-5, which belongs to
the same virus family as HHV-4, resulted in many more
virus reads. Therefore, it is conceivable that other factors
than virus and genome size are influencing the number
of recovered viral genomes.
Separating the random amplification into two separate

workflows for RNA and DNA was more advantageous
for the DNA viruses than for the RNA viruses. This
could be either a result of concomitant amplification of
DNA viruses in the RNA workflow or an indication that
DNA genome amplification was negatively affected dur-
ing the reverse transcription and second strand synthesis
in the previous combined workflow. Yet, for both the
combined and separate workflow, reads were uniformly
distributed across the reference genomes and we did not
observe differences.
In order to validate our method, we sequenced a mul-

tiplexed viral pathogen reagent that was expected to
contain 25 viruses across different families, genome
types, and sizes [52]. At most, we identified 17 different
viruses (Table 1). We did not detect any reads for eight
viruses supposed to be in the reagent, all of them single-
stranded RNA viruses (Coronavirus 229E, Norovirus GI
and GII, Influenzavirus A and B, Metapneumovirus, Hu-
man Parainfluenzavirus 3). However, most of these vi-
ruses were present at very low concentration in the viral
pathogen reagent (undetectable by qPCR after mixing of
the reagent) and were also frequently not detected by
other groups that probed this reagent. In the study by
Mee et al. [52], a wide range of different sample volumes
and enrichment, amplification, and sequencing methods
were used. Stochastic effects in detection of very low
abundant viruses and differences in analysis thresholds
could have played a role as well. Comparing our results
to more similar workflows (filtration, nuclease treat-
ment, random amplification, NexteraXT, MiSeq), our
numbers of reads were higher than reported and we

Fig. 4 Optimized workflow for metagenomic virus sequencing. A
workflow for metagenomic virus sequencing for diagnostic use was
developed. Sample pre-processing included low-speed centrifugation,
0.45-μm filtration, storage at −80 °C, and DNase and RNase digestion.
Random reverse transcription with an 8N primer including an anchor
sequence, second strand synthesis, and anchor PCR amplification was
performed separately for an RNA and DNA workflow. The two
workflows were pooled in equal concentration for library preparation
with NexteraXT
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identified more virus species [30]. Therefore, we think
that our method, which might still have potential for im-
proved sensitivity, shows no bias against a certain virus
family or genome type (e.g., ssRNA).

To assess how robust our sample preparation is, we
correlated different ratios of spiked viruses with the
number of corresponding sequencing reads. In both
virus combinations and experiments performed, there

Table 1 Number of reads reported from sequencing a multiplexed viral pathogen reagent

Replicate 1 Replicate 2

Virus species (most frequent strain) All 3,505,318
reads

2,000,000
reads

150,000
reads

All 2,676,604
reads

2,000,000
reads

150,000
reads

25 target viruses

Human astrovirus (Human astrovirus 1) 27,622 15,783.2 1184.1 8040.6 596.2 8040.6

Enterovirus B (Human coxsackievirus B4) 27,252 15,539.0 1161.3 22,707.3 1704.4 22,707.3

Human herpesvirus 1 67 39.0 3.5 81.4 5.5 81.4

Human herpesvirus 2 2 1.3 0.4 7.0 0.4 7.0

Human herpesvirus 3 (Human herpesvirus 3 strain Dumas) 34 17.4 1.4 84.2 6.4 84.2

Human herpesvirus 4 166 98.1 8.2 104.7 8.7 104.7

Human herpesvirus 5 8327 4743.1 352.1 7028.5 524.4 7028.5

Human mastadenovirus C (Human adenovirus 2) 23 11.5 0.8 299.1 19.6 299.1

Human mastadenovirus F (Human adenovirus 41) 2 2.0 0.0 13.9 1.7 13.9

Human metapneumovirus 0 0.0 0.0 0.0 0.0 0.0

Human parainfluenza virus 1 21,387 12,170.8 921.2 9601.2 718.6 9601.2

Human parainfluenza virus 2 2879 1651.5 119.6 33.1 1.6 33.1

Human parainfluenza virus 3 0 0.0 0.0 0.0 0.0 0.0

Human parainfluenza virus 4 (Human parainfluenzavirus 4b) 21,858 12,478.6 924.3 10,089.8 760.2 10,089.8

Human respiratory syncytial virus 0 0.0 0.0 229.4 15.5 229.4

Human Rhinovirus A (Human rhinovirus A39) 0 0.0 0.0 2238.4 158.6 2238.4

Influenzavirus A H1N1 0 0.0 0.0 0.0 0.0 0.0

Parechovirus A (Human parechovirus 3) 1,492,756 851,560.6 63,862.7 565,228.5 42,434.5 565,228.5

Rotavirus A 6 2.8 0.3 8.5 0.8 8.5

Sapporovirus (Sapovirus Hu/GI.2/BR-DF01/BRA/2009
and Hu/G1/BE-HPI01/DE/2012)

1019 575.5 45.2 62.8 5.1 62.8

Human coronavirus 229E 0 0.0 0.0 0.0 0.0 0.0

Norovirus GI 0 0.0 0.0 0.0 0.0 0.0

Norovirus GII 0 0.0 0.0 0.0 0.0 0.0

Influenza virus B 0 0.0 0.0 0.0 0.0 0.0

Influenza virus A H3N2 0 0.0 0.0 0.0 0.0 0.0

Non-target viruses

Bovine viral diarrhea virus 1 1446 820.6 63.6 1891.8 140.3 1891.8

Bovine viral diarrhea virus 2 1 0.4 0.4 0.0 0.0 0.0

Primate bocaparvovirus 1 0 0.0 0.0 0.0 0.0 0.0

Primate bocaparvovirus 2 208 118.2 7.5 91.6 6.8 91.6

Human enterovirus (Enterovirus CA55–1988) 3199 1834.7 140.6 380.6 28.7 380.6

Aichi virus 0 0.0 0.0 0.0 0.0 0.0

Ungulate bocaparvovirus 1 0 0.0 0.0 0.0 0.0 0.0

Porcine/other circovirus 0 0.0 0.0 0.0 0.0 0.0

Total virus reads 1,608,254 917,448.3 68,797.2 840,888 628,222.4 47,138.0

Number of detected target viruses 15 14.4 11.7 17 17.0 15.7

For subsamples of reads, the average number of virus reads and detected target viruses in 10 random samplings is shown
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Fig. 5 Ratio of virus reads correlates with concentration of viruses in spiked plasma. Poliovirus/adenovirus and influenzavirus/adenovirus were
spiked in healthy donor plasma in different concentrations: at the same concentration for both viruses, ten times more of one virus (keeping the
other virus constant) and ten times less of one virus (keeping the other virus constant). The ratio of the sequencing reads for each virus combination
was correlated with the concentration ratio (ct value difference) in the input sample. Two independent experiments are shown (circles and triangles,
respectively). Shaded areas show the 95% confidence interval. R2 = 0.74, 0.59, 0.79, and 0.69 and pvalues = 0.04, 0.08, 0.02, and 0.05 for influenza/
adenovirus experiments 1 and 2 and polio/adenovirus experiments 1 and 2, respectively

a b

Fig. 6 Sequencing of the same virus spike in different clinical samples. The same volume of plasma, urine, throat swab, and two different stool
samples were spiked with the same amount of four different viruses (adenovirus, HHV-4, influenzavirus, poliovirus) and sequenced. The experiment
was done in duplicates. a Distribution of sequencing reads into the different taxonomic categories viral, human, bacterial, and unknown origin.
b Number of reads (upper panels) and fraction of all quality passing reads (lower panels) obtained for each individual virus
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was a good correlation between the ratio of spiked vi-
ruses and the ratio of the resulting reads (Fig. 4). Direct
correlations of viral copies with percentages of sequen-
cing reads have been suggested [18, 54]. However, a dir-
ect quantification of input copy numbers based on
sequencing reads seems not applicable. Viruses have dif-
ferent properties such as the presence of an envelope,
types of genomes, and virion sizes, and certain virus or
genome types are amplified preferentially as we have
seen with Poliovirus in our experiments. Adding to the
complexity, different composition of the genetic back-
ground in clinical samples will strongly influence the yield
of virus reads. Nevertheless, the correlations showed that
the ratio of sequencing reads is preserved over different
input ratios and concentrations, signifying that the ampli-
fication method itself preserves the relative contribution
of different viruses in a sample.
Finally, spiking the same amount of viruses in different

samples showed that the protocol presented here could
be applied not only for plasma, but also for other clinical
samples such as urine and swabs. A more stringent virus
enrichment protocol is needed to sequence stool sam-
ples or biopsies, as those contain a lot of bacterial or
human background reads, respectively [53, 54].

Conclusions
A metagenomic virus sequencing protocol, as pre-
sented here, allows diagnostic laboratories to poten-
tially identify any virus present in clinical samples
with a single analysis. Such an approach reduces the
time and cost spent today on multiple tests per-
formed for each distinct virus and allows detecting
rare or novel viruses not accounted for in routine test
panels. Characterization of the virome and its alter-
ations in specific disease settings might help to better
understand and manage infectious diseases. Finally,
our analysis highlights the need for validation me-
thods and standards for metagenomic sequencing ap-
proaches in clinical diagnostics.
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