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Abstract

Background: Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e.,
rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls
microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually
enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the
rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question
using the citrus root-associated microbiome as a model.

Results: We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-
associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease
caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple
rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant.
Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional
attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated
more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired
the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by
decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance
and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting
more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification
in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the
healthy citrus root-associated microbiome could trigger the expression of genes involved in induced systemic resistance
in inoculated plants.

Conclusions: HLB causes decreased relative abundance and/or expression activity of rhizoplane-enriched taxonomic
and functional properties, collectively resulting in impaired plant host-microbiome interactions. Manipulation of the
citrus root-associated microbiome, for instance, by inoculating citrus roots with beneficial Burkholderia strains, has
potential to promote plant health. Our results provide novel insights for understanding the contributions of the
community enrichment process of the root-associated microbiome to the plant hosts.
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Background
Plants harbor a high diversity of microorganisms prox-
imal to, on, and inside their tissues. These microorgan-
isms, which mostly include bacteria, Archaea, and
fungi, form microbial communities that are associated
with various plant habitats, including the rhizosphere,
rhizoplane, phyllosphere, and endosphere, and the
communities are collectively known as plant micro-
biomes [1–3]. The plant microbiome can determine the
fate of plants in multiple ways, including (i) supplying
plants with nutrition, e.g., nitrogen fixation or phos-
phate solubilization; (ii) modulating plant growth or re-
lieving stress through phytohormone production or
degradation; (iii) maintaining plant health through com-
petition with pathogens or induction of plant resistance
[4–7]; and (iv) driving the evolution of multi-disease re-
sistance during long-term coevolution history [8]. Given
its importance, the microbiome is considered an integral
component of the plant-host assemblage, which is recog-
nized as a “holobiont” [4]. Understanding the plant micro-
biome will have important implications for the human
food supply and its security, biodiversity, and ecosystem
functionality [9, 10].
The plant microbiome is predominantly assembled

from external inoculum pools, including soil- and air-
borne microbial communities [6]. Soil is the largest
known reservoir of microbial diversity [11], and roots
are the primary site for plant-microbe interactions. Re-
cently, several studies were performed to reveal the assem-
bly mechanisms of the plant root-associated microbiome
[12–17]. Based on these studies, a three-step enrichment
model is proposed for the root-associated microbiome
assembly process. Briefly, a fraction of microorganisms in
the bulk soil inoculum pool are enriched toward the roots
by the general gradients of carbon source, phytochemicals,
pH, oxygen, and nutrients imposed by the roots, and these
form the rhizosphere microbiome. Secondly, a more
specialized community is further enriched on the rhizo-
plane; more intimate microbe-host interactions occur and
much stronger selection pressure from the plant host is
applied at the assembled rhizoplane microbiome than the
rhizosphere microbiome. Finally, certain microorganisms
enter and inhabit the endorhiza, and the established
endorhiza microbiome contributes significantly to plant
fitness, including immune system modulation [5]. There-
fore, among the three root-associated layers described
above, the rhizoplane is a key component serving a critical
gating role that controls microbial entry into plant roots.
However, these previous studies were mainly dedicated to
revealing the effects of the plant genomic background on
the microbial community assembly process [12–17]; how
the enrichment process of the microbiome is affected by
biotic stresses such as disease remains elusive. In addition,
the studies were conducted using annual plants including

Arabidopsis, soybean, barley, wheat, cucumber, and rice.
Compared to the short lifespan of annual plants, perennial
plants are subjected to longer periods of plant-microbe in-
teractions for a single generation, including complicated
root growth patterns and variable environmental factors.
Compared to annual plants, the microbiome assembly
cues of perennial plants are less studied. Here, we investi-
gated the microbial community assembly process of the
root-associated microbiome of citrus, a perennial plant,
and how Huanglongbing (HLB) affects the microbiome
enrichment process.
HLB is the most devastating citrus disease worldwide

[18, 19]. The disease is caused by the gram-negative,
phloem-limited, alpha-proteobacteria Candidatus Liberi-
bacter spp., i.e., Ca. L. asiaticus (Las), Ca. L. africanus
(Laf ), and Ca. L. americanus (Lam) [18, 19]. HLB im-
pairs phloem transportation of photoassimilates [18] and
causes root decline [20]. Las living in the phloem pre-
vents direct interactions with other microbes on the rhi-
zoplane and in the rhizosphere. Instead, Las causes
decreased photoassimilate transportation, likely reducing
plant resource availability for the root-associated micro-
biome. Our previous results suggested that HLB signifi-
cantly altered the structure or functional potential of the
citrus endosphere (leaves or roots) or rhizosphere bac-
terial community based on cultivation, 16S rDNA clone
library, PhyloChip, or the GeoChip method [21–24].
However, the low-throughput-based methods used in
these previous studies limited our understanding of the
citrus microbiome. Additionally, these studies focused
on the bacterial community colonized on a single layer,
either the rhizosphere or endosphere. How HLB affects
the microbiome assembly process, particularly the
process from the less tightly associated rhizosphere to
the rhizoplane component, of the citrus root-associated
microbiome remains unknown. In this study, we ob-
tained snapshots of the citrus root microbiome using
metagenomic (MG) and metatranscriptomic (MT) ap-
proaches to investigate the rhizosphere-to-rhizoplane-
enriched taxa and functions and how HLB affects those
enriched taxonomic and functional attributes.

Methods
Sample collection
Three healthy and three Las-infected 11-year-old “mid-
sweet” sweet orange on Swingle citrumelo rootstock
from a grove at Auburndale (28.11 N, 81.79 W), Florida,
USA were identified based on visual symptoms and
qPCR results [24] from both leaf and root samples (Add-
itional file 1: Figure S1). The fine root cores (i.e., roots
with approximately 2-cm-thick adjacent soil layers) from
four corners of each tree were collected for DNA and
RNA extraction. The loosely attached soil on the roots
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was removed with gentle shaking. The rhizosphere soil
was carefully and quickly collected by gently brushing
the remaining soil adhering to the roots using brush
pencils. The soil collection step was performed on ice.
Then, the roots were placed in pre-cooled PBS (phos-
phate-buffered saline) buffer, and the rhizoplane soil
was extracted by ultra-sonication as described by
Edwards et al. [17]. The roots were sonicated twice for
20 s each (time interval 5 s) using a sonication bath
(power 130 W, 60 Hz, Fisher Scientific). The roots were
discarded, and the rhizoplane soil was collected by cen-
trifugation at 12,000×g for 1 min at 4 °C. Each rhizo-
sphere or rhizoplane soil sample was re-suspended in
LifeGuard soil preservation solution (Mobio Laborator-
ies) immediately after processing. The full procedure
was performed sample by sample and as quickly as pos-
sible (three persons worked together, total processing
time was <5 min for each sample). The soil samples
from the four corners of each tree were pooled into a
single sample. The samples were stored at −20 °C until
further processing.

Nucleic acid extraction and sequencing
DNA and RNA were extracted from 2 g of each soil sam-
ple using a RNA PowerSoil total RNA isolation kit and
the RNA PowerSoil DNA Elution Accessory Kit following
the manufacturer’s protocol (MO BIO Laboratories, Inc.).
In this extraction process, DNA and RNA were extracted
from the same sample simultaneously (i.e., DNA and RNA
were eluted from the same column with different elution
buffer), and thus, the RNA samples reflect the real-time
gene expression profiling of the corresponding DNA sam-
ples. Large-scale shotgun metagenome and metatrans-
criptome sequencing were performed on the Illumina
Hiseq4000 platform by Novogene (Novogene, Beijing,
China). Briefly, the DNA samples were randomly sheared
using Covaris Ultrasonic Processor into approximately
300 bp fragments, which were then used to construct the
sequencing libraries using the Illumina TruSeq® DNA
PCR-free sample preparation kit (Illumina, USA). For the
RNA samples, the ribosomal RNA was depleted using the
Ribo-Zero™ rRNA Removal Kit for Bacteria (Illumina,
Madison, USA) according to the manufacturer’s instruc-
tions. The remaining transcripts were fragmented and
reverse-transcribed. The messenger RNA (mRNA) librar-
ies were prepared using the TrueSeq Stranded mRNA
Sample Prep kit (Illumina, USA), and 2 × 125-bp paired-
end reads were generated for all samples. Approximately
10 Gb sequencing data for each DNA shotgun sequencing
sample and 8 Gb data for each RNA sample were ob-
tained. The DNA and RNA reads were deposited at NCBI
under the bioproject accession no. PRJNA324090 and
SRA accession no. SRP076109.

Bioinformatics analyses
The raw reads from metagenome sequencing were fil-
tered, trimmed, and quality-controlled to generate the
clean reads, which were further trimmed using Sickle
[25] with the parameters –q 20 and –l 80. On average,
4.85% of the clean reads were discarded from this trim-
ming step. The trimmed reads were aligned to the Swin-
gle citrumelo genome [26], sweet orange genome [27],
and Citrus clementina genome [28] using bowtie2 [29],
and the corresponding mapped reads were removed.
Only the reads that did not map to any of the three cit-
rus genomes were retained for further analysis.
The filtered reads from all 12 samples were pooled

and subjected to de novo assembly using megahit v1.03
[30]. The metagenes were predicted using MetaGene-
Mark [31]. The non-redundant gene categories (uni-
genes) were generated using CD-HIT-est with an
identity cutoff of 95% [32]. To obtain the taxonomic
annotation for the unigenes, the protein sequences were
aligned against the NCBI microbial NR database using
DIAMOND software [33] with an E value cutoff of 1e-5.
Then, the taxonomic annotations were assigned using
the MEGAN LCA annotation method [34]. The functional
annotation was assigned to the unigenes by blasting
against the KEGG orthology database using DIAMOND
software.
To generate taxonomic and functional abundance and

expression profiling, the short DNA and RNA reads
from each sample were aligned to the unigenes using
SOAP2 [35] with default parameters. The generated
alignments were parsed, and abundance and expression
profiling were obtained (reads count matrixes). Based on
the abundance and expression profiles, the features (gen-
era and KOs) with significantly differential abundance or
expression activity were determined using DESeq2 with
a negative binomial generalized linear model (p < 0.05)
[36]. For the rhizoplane-enriched feature detection,
paired DESeq2 comparison analysis was performed sep-
arately for healthy samples and HLB samples to prevent
the potential effects of health status on the results, and
the identified features were merged. Other comparisons,
such as healthy vs. HLB samples for differential rhizo-
plane taxonomic and functional feature determination,
were conducted using DESeq2, where the individual
samples from the healthy or HLB trees were treated as
biological replicates. The taxonomic and functional dis-
similarity analyses among samples were performed using
the R package VEGAN [37] with a Bray-Curtis distance
matrix. The variation partitioning analysis (VPA) was
performed based on the taxonomic and functional com-
position matrix calculated on the genus and KEGG
orthologue (KO) level of all 12 samples (rhizosphere and
rhizoplane, healthy and HLB) using VEGAN. The heat-
map and Venn diagram plots were drawn using the
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gplots and VennDiagram package [38, 39], respectively.
The average genome size (AGS) for the metagenomic
samples was estimated using MicrobeCensus v1.0.7
based on 10 million reads [40]. The bacterial secretion
system-based effector genes were identified by blasting
the unigenes against a custom-built type III, IV, and VI
effector library (T3SE: http://effectors.bic.nus.edu.sg/
T3SEdb/index.php; T4SE: http://sate.cirad.fr/; T6SE:
http://db-mml.sjtu.edu.cn/SecReT6/) with an amino acid
identity cutoff of 45% and a coverage of 80% [41]. To ex-
plore the relative contribution of taxa to the rhizosphere
to rhizoplane-enriched KOs, the taxonomic information
for each selected gene (at genus and family level) was
extracted, and their relationships were calculated using
the method described by Ofek-Lalzar et al. [15]. The
metagenome-assembled genome (MAG) extraction was
performed using MetaBAT [42], and the quality of the
generated MAGs was checked using CheckM [43]. The
genome similarity between selected MAGs and their re-
lated genomes was determined using the GGDC2.1 ser-
ver [44]. The MAGs were annotated using the RAST
server and blast2GO software [45, 46]. The annotated
bin.74 and bin.105 were deposited in the RAST server
with the job id 311713 and 312590, respectively.

Burkholderia sp. isolation and survival assay
Bacterial strains were isolated from the rhizosphere of
healthy citrus plants in a relevant study (Riera et al., Un-
published). Based on the 16S rDNA gene sequencing re-
sults using the universal primers 27F and 1492R [47],
the strains were identified. Burkholderia strains were se-
lected for the antagonistic activity test against several
known citrus pathogens. Two representative Burkhol-
deria strains, namely, Burkholderia metallica (strain
A53) and Burkholderia territori (strain A63), which
showed the best antagonistic activities among the tested
strains, were selected for further analysis.
The two strains were transformed with the pUFR034-

gfp plasmid by electroporation. Positive GFP (green
fluorescent protein)-labeled strains were verified by
fluorescent microscopy and qPCR results. Each trans-
formed Burkholderia strain was applied by soil drench
(15 mL of 1 × 108 cfu/mL) to five 1-year-old potted
“Valencia” sweet orange plants grown in a quarantine
greenhouse facility at the Citrus Research and Education
Center, University of Florida, in Florida, USA, with con-
trolled temperature (28–35 °C) and a relative humidity
of 80%. The rhizosphere and rhizoplane soil samples
were collected as described above (but without the Life-
Guard soil preservation solution resuspension step) 1 h
after inoculation (0 days post inoculation (dpi)), 2, 5,
and 9 dpi. The genomic DNA was extracted using a
PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc.). The population dynamics of the inoculated strains

inside the rhizosphere and rhizoplane bacterial commu-
nity (calculated as relative abundance change compared
to the 0 dpi data) were calculated [48], with the total
bacteria population serving as the reference. A primer
pair targeting the GFP gene (GFPF 5′-TCCATGC
CATGTGTAATCCC-3′, GFPR 5′-CCATTACCTGTC
CACACAATCT-3′) was used for the detection of the in-
oculated strains. qPCR assays were conducted on a 7500
Fast Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA) using a Quantifast® SYBER® Green PCR
kit (QIAGEN) following the manufacturer’s instructions
with the following cycling conditions: an initial dena-
turation step of 5 min at 95 °C and 35 cycles of 10 s at
95 °C and 30 s at 60 °C. The primer set Eub338 and
Eub518, which targets the conserved region of the 16S
rRNA gene, was used for the detection of total bacteria,
and qPCR assays were performed as described by Fierer et
al. [49]. Furthermore, the long-term survival rate of the
strains was also determined using 2-year-old Duncan
grapefruit plants with three plants/replicates grown under
the same growth conditions described above. One gram of
rhizosphere soil from each tree was collected, and colony-
forming units (CFU) were calculated using nutrient agar
plates supplemented with 50 μg/ml kanamycin (strain na-
tive resistance for both strains). The CFU formation was
determined at 0, 46, 60, 72, 91, 110, 131, 150, and 224 dpi.

Expression of plant defense-related genes in response to
beneficial bacteria treatment
Fifteen milliliters of 1 × 108 cfu/mL of strains A53 and
A63 were inoculated onto 1-year-old Valencia plants.
Application of 15 mL of acibenzolar-S-methyl (ASM)
(active ingredient in Actigard 50WG) at 0.33 mg/ml
was used as a positive control. The active ingredient of
Actigard is an analogue of salicylic acid and systemic
elicitor of plant defense [50]. A water only inoculation
was used as a negative control. For each treatment, nine
seedlings were used, with each seedling as a replicate.
To determine whether the treatments induced plant

defense, we measured the expression of three defense-
related genes: SAM, encoding S-adenosyl-L-methionine-
salicylic acid carboxyl methyltransferase; PR1, encoding
pathogenesis-related protein 1; and PR2, encoding
pathogenesis-related protein 2 [50] using quantitative re-
verse transcription PCR (qRT-PCR). The primer se-
quences for SAM and PR1 are SAMF 5′-GGACGCAT
CTTCTTGGGATAA-3′/SAMR 5′-CGTGACAGTTTC
CTTGACGA-3′ and PR1F 3′-CAGGGTCTCCAAGCA
ACTATG-5′/PR1R 5′-CCACCTCGCGTATTTCTCTAA
-3′, respectively. The primer sequences for PR2 were de-
scribed previously [50]. Gene expression was determined
at 0, 3, 5, and 7 dpi. For each time point, three biological
repeats were sampled by collecting one leaf from three
different plants. RNA was extracted using an RNeasy
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Mini Kit (QIAGEN) following the manufacturer’s instruc-
tions. Samples were treated with Ambion® DNA-free
DNase Treatment and Removal Reagents. The qRT-
PCR was performed using a Verso 1-step RT-qPCR Kit
(ThermoFisher), and the fold change was calculated
using the ΔΔCt method as previously described [48].

Results
Structure and function of citrus root-associated
microbiome
We collected the rhizosphere and rhizoplane soil samples
from three healthy and three HLB-diseased citrus trees for
MG and MT analyses. We generated 515,129,383 paired-
end clean reads, which is equal to 129 Gb for MG, and
413,225,469 paired-end clean reads, which is equal to
103 Gb for MT, for the 12 samples. The citrus host-
originated MG reads were depleted by aligning the reads
to the three available citrus draft genomes to com-
prehensively remove the host-originated reads, and 0.039
to 1.79% clean reads were removed (Additional file 1:
Table S1). We pooled the MG reads from all 12 samples
in total of 501,171,627 paired-end reads (approximately
120 Gb) for de novo assembly and obtained an assembly
of 10.84 Gb across 17,676,569 contigs, with the longest
contig at 536,098 bp and N50 at 651 bp (based on all
contigs ≥200 bp) (Additional file 1: Table S2). In total,
22,192,564 putative protein-coding genes were predicted
from the assembly. After removing redundant se-
quences (identity >95%), 21,380,400 unigenes were gener-
ated. The unigenes represented more rhizoplane reads
(46.48 ± 4.98%, mean ± SD, same herein) than rhizosphere
reads (35.44 ± 2.34%) (p = 0.0006).
Taxonomy annotation was successfully assigned to

70% of the total unigenes. Bacteria comprised the pre-
dominant domain (99.30 ± 0.37%, mean relative abun-
dance ± SD, n = 12), with small fractions of Archaea,
eukaryotes, and viruses detected based on the anno-
tated unigenes. Proteobacteria (74.56 ± 8.59%), Actino-
bacteria (16.80 ± 6.95%), Bacteroidetes (2.86 ± 0.97%),
and Acidobacteria (2.42 ± 0.69%) were the dominant
phyla (relative abundance ≥1%) (Additional file 1: Fig-
ure S2). Thaumarchaeota was the dominant phylum in
the Archaea domain (0.41 ± 0.31%), and Ascomycota
represented the most abundant phylum affiliated with
fungi (0.14 ± 0.06%). Using Diamond BLASTP against
the KEGG KO database, 53% of the unigenes were
assigned KO function annotation, with most of the KO-
annotated genes (94.3%) mapped to the KEGG
pathways. In total, 8816 KOs were identified from the
unigenes. KOs involved in amino acid metabolism
(9.56 ± 0.06%), carbohydrate metabolism (8.65 ± 0.09%),
membrane transport (8.51 ± 0.37%), and energy me-
tabolism (5.67 ± 0.10%) were dominant (relative

abundance ≥5%) based on KEGG level 2 pathway
annotations.
Approximately 3.05 ± 1.39% of the metatranscriptomic

reads were identified as rRNA, as derived by the Sort-
MeRNA ver. 2.1 program [51], indicating a high-
efficiency rRNA depletion strategy during the MT library
construction. In addition, 32.94 ± 8.36% of the RNA
clean reads from the rhizoplane samples and
27.38 ± 4.91% from the rhizosphere samples could be
mapped to the unigenes. On average, 24.26% (ranging
from 18.01 to 41.14%) of the unigenes identified in
each sample were actively expressed (Additional file 1:
Table S3). The community composition results from
the MG and MT analyses revealed a similar structure
when tested at the genus level (correlation coefficient
r = 0.90, p < 0.005).

Effects of HLB on the rhizosphere- to rhizoplane-enriched
taxa
The alpha diversity (Shannon index) of the rhizosphere
samples was significantly increased compared to the
rhizoplane samples at low (e.g., phylum) or high (e.g.,
genus) resolution (Additional file 1: Table S4). The
AGS of the rhizoplane microbiome was slightly but sig-
nificantly increased compared to the rhizosphere
microbiome (6.31 ± 0.52 Mb for rhizoplane and
5.87 ± 0.26 Mb for rhizosphere, mean ± SD, n = 6,
paired t test, p = 0.01). However, no significant differ-
ence in alpha diversity or AGS due to HLB was ob-
served for the rhizosphere and rhizoplane samples. We
also performed a variation partitioning analysis to re-
veal the contribution of the sample layer (rhizosphere/
rhizoplane) and health status (healthy/HLB) to the
observed taxonomic composition difference between
samples. The sample layer was the major determinant
of the citrus root-associated microbiome (accounting
for 78.87% of the variation observed in the entire mi-
crobial community, p = 0.024), whereas the contribu-
tion of health status was minor (9.32%, p = 0.501). The
results collectively suggested that the rhizoplane micro-
biome harbored a distinct, less complex microbial com-
munity, in which microorganisms with larger genome
size were more abundant than the rhizosphere micro-
biome. In addition, HLB did not significantly alter the
overall structure of the root-associated microbiome
(Additional file 1: Figure S2).
Owing to the intimate relationship between microbes

and hosts in the rhizoplane, certain microbes are
enriched from rhizosphere-to-rhizoplane, as driven by
plant selection [5]. The relative abundance of Proteobac-
teria was significantly higher in the rhizoplane samples
than the rhizosphere samples, and Actinobacteria and
Acidobacteria were depleted from the rhizosphere to
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rhizoplane samples (Additional file 1: Figure S3). A more
detailed pairwise comparison at the genus level between
the rhizosphere and rhizoplane microbial community
was performed. Among the 1950 genera identified in all
samples, 119 genera exhibited significantly increased
relative abundance in the rhizoplane microbiome com-
pared to the rhizosphere microbiome. Among them,
Bradyrhizobium and Burkholderia whose genome sizes
are 8.57 ± 0.87 Mb (n = 8) and 7.15 ± 0.84 Mb (n = 124)
based on the available complete genomes in MBGD,
respectively (accessed September 13, 2016) [52], were
ranked as the top two dominant genera. The average
relative abundance of Bradyrhizobium and Burkholderia
were 50.10 ± 5.22% (mean ± SD, n = 6) and 10.36 ± 4.60%
for the rhizoplane samples and 36.96 ± 6.07% and
5.66 ± 3.99% for the rhizosphere samples, respectively. A
positive correlation between AGS and the relative abun-
dance of Bradyrhizobium was also observed (Spearman’s
rank-order correlation, rs = 0.49, p < 0.1, n = 12). No obvi-
ous correlation was observed for Burkholderia and AGS,

possibly because of its relative low abundance in the sam-
ples. Given the large genome size and significantly in-
creased relative abundance in the rhizoplane microbiome
compared to the rhizosphere microbiome, we reasoned
that Bradyrhizobium was the main contributor of the in-
creased AGS observed in the rhizoplane microbiome.
Fifty-two of the 119 rhizoplane-enriched genera exhib-

ited significantly different relative abundance between
healthy and HLB rhizoplane samples. Notably, 50 of
these 52 genera were more abundant in healthy rhi-
zoplane samples than HLB samples (Fig. 1 and Additional
file 1: Figure S4), and the other two genera, Inquilinus and
Aureimonas, contain known human pathogens [53, 54]
and exhibited increased relative abundance in HLB rhizo-
plane samples compared to healthy samples. Among these
50 genera, Bradyrhizobium and Burkholderia [55, 56]
together with several other known root-associated micro-
organisms such as Variovorax [57], Bdellovibrio [58],
Chryseobacterium [59, 60], Dyadobacter [61], and Peni-
cillium from the fungi kingdom [62] were observed.

Fig. 1 Top rhizoplane-enriched genera with different relative abundances between healthy and HLB rhizoplane samples (displayed by pie chart).
The average relative abundance of each taxon in the rhizoplane samples is displayed as a percentage. HLB.P (blue): rhizoplane samples from HLB
trees; H.P (red): rhizoplane samples from healthy trees. The genome size for each genus was calculated as the average genome size based on the
available complete genomes from MBGD. The full list is shown in Additional file 1: Figure S4
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Cellvibrio, which is rhizoplane-enriched and has plant
growth-promoting capacity [15, 63], exhibited significantly
increased relative abundance in healthy rhizoplane sam-
ples compared in HLB samples (Additional file 1: Figure
S5A). A nearly complete genome (genome size 5.7 Mb,
completeness 99.14% and contamination 0.23% by
checkM [43], composing of 41 contigs) representing a
novel species of Cellvibrio (Additional file 1: Table S5)
was generated using the metagenome-assembled gen-
ome (MAG) extraction approach [42]. Plant cell wall
polysaccharide-degrading enzymes are key features in
rhizoplane microbiome [15]. In total, 350 of 4794 genes
in the assembled Cellvibrio bin were involved in
carbohydrate utilization as suggested by dbCAN [64],
which was significantly increased compared to the non-
plant-associated relatives, such as Escherichia coli K12
(132 of 4372 genes are identified, Fisher’s exact test,
p < 0.0001). Multiple plant growth-promoting-associated
genes, such as genes involved in IAA synthesis, were
present and actively expressed (Additional file 1:
Figure S5B).
Ninety-four rhizoplane-depleted genera were identi-

fied, which were mainly affiliated with Actinobacteria,
Acidobacteria, and Archaea, including Thaumarch-
aeota. The majority of rhizoplane-depleted taxa with
significantly different relative abundance between
healthy and HLB samples (36 of 39 genera) exhibited
significantly increased relative abundance in the HLB
rhizoplane microbiome compared to healthy samples
(Additional file 1: Figure S6). Thaumarchaea repre-
sents an autotrophic microorganism in the soil micro-
bial community [65]. The relative abundance of
Thaumarchaea significantly decreased from the rhizo-
sphere to the rhizoplane (p < 0.05) and exhibited
significantly increased relative abundance in the rhizo-
plane microbiome of HLB plants compared to healthy
trees (Additional file 1: Figure S7A). One high-quality
Thaumarchaeota MAG was extracted from the meta-
genome assembly (3.17 Mb, completeness 93.2%, and
contamination rate 0.97%). The amoA gene-based
phylogenetic tree demonstrated that the Thaumarch-
aeota MAG (bin.105) was affiliated with the Thau-
marchaeota group I.1b (Additional file 1: Figure S7B).
The low similarity between bin.105 and the other three
available Thaumarchaeota group I.1b genomes
demonstrated that bin.105 represents a novel member
of the Thaumarchaeota phylum (Additional file 1:
Table S6). Multiple genes involved in the autotrophic
life cycle, including nitrification-associated genes (in-
cluding amoA and amoB, urease-encoding genes
ureABCEFGD) and carbon fixation-associated genes
(including 4-hydroxybutyrate-CoA dehydratase, acetyl-
CoA carboxylase, and methylmalonyl-CoA), are present
in bin.105.

Effects of HLB on rhizosphere-to-rhizoplane-enriched
functional properties
Both the KO presence/absence and relative abundance
profiling demonstrated that all samples shared very
similar functional attributes (Fig. 2a, b). In total, 89.7%
of the identified KOs (7938 of 8816) were found in all
samples, and the composition similarity among these
samples was greater than 98.7%, suggesting that the
functional composition of the citrus root-associated
microbiome was more conserved than the taxonomic
composition (p < 2.2E−16) (Fig. 2a, b and Additional
file 1: Figure S2). The sample layer contributed signifi-
cantly to the functional composition variation (80.84%,
p = 0.036) with a minute contribution from health sta-
tus (9.57%, p = 0.497). We performed the layer KO en-
richment analysis to identify the rhizoplane-enriched
functional properties. We then determined how HLB
affected these rhizoplane-enriched properties at both
the genetic potential and gene expression levels. In
total, 2218 rhizoplane-enriched KOs were identified. The
KOs belonging to the transporter, two-component system,
ABC transporter, secretion system, transcription factors,
and bacterial motility proteins were the top six enriched
functional attributes, highlighting the importance of these
functions for microorganisms to adapt to the plant-root
surface niche. All identified rhizoplane-enriched KOs were
actively expressed, as revealed by the metatranscriptomic
data (Additional file 2).
QseC, an important quorum-sensing gene controlling

bacterial flagella and motility [66], was rhizoplane-
enriched and exhibited significantly increased abundance
and expression levels in the healthy rhizoplane micro-
biome compared to the HLB samples. A similar pattern
was observed for multiple root surface niche adaption-
associated genes, such as bacterial chemotaxis sensor-
related genes (including aer (aerotaxis (oxygen-sensing)
receptor), tsr (serine receptor), tar (aspartate/maltose
receptor), and trg (ribose and galactose chemoreceptor));
flagellar assembly-associated genes (Fig. 2c and
Additional file 1: Figure S8); the surface contact signal
sensing and biofilm formation regulation-associated
genes wspABCDR [67]; and the chemosensory complex
genes involved in pilus synthesis, including pilILJ, pilus
assembly genes (Fig. 2c and Additional file 1: Figure S9),
and LPS synthesis and transporter genes (Fig. 2c and
Additional file 1: Figure S10). Multiple genes belonging
to the secretion systems, including T1SS (hlyBD and
raxAB), T2SS (gspCFHIJLM), T3SS (yscCJRSTUVNQ),
T4aSS (virD4 and virB1-11 except virB7), and T4bSS
(icmQ) and T6SS (ppkA, clpV, impKL, vasD and hcp,
and its secreted substrate vgrG), were enriched on the
rhizoplane. The majority of the identified secretion
genes exhibited significantly increased relative abun-
dance and expression activity in healthy rhizoplane
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samples compared to their HLB counterparts (Figs. 2c
and 3). Concomitantly, effector genes, including xopAS,
nolX, and hpa2, and several Rhs element vgr family
genes exhibited significantly increased relative abun-
dance and expression levels in the healthy rhizoplane
microbiome compared to HLB samples (Fig. 2c).
The yesM-yesN two-component system, which is in-

volved in carbohydrate utilization for bacteria [68], was
enriched from the rhizosphere to rhizoplane mi-
crobiome. Several transporter-encoding genes whose
products are responsible for importing plant-derived
polysaccharide sources to bacterial cells including

togBMNA (pectin-associated), fucP (fucose-associated),
dgoT (D-galactonate-associated), araJ (arabinose-associ-
ated), nagE (N-acetylglucosamine-associated), lacE (lac-
tose-associated), and dctS (C4-dicarboxylate sensor
kinase) were enriched in the rhizoplane microbiome.
Furthermore, the relative abundance of all these genes
(expect togM) was increased in healthy rhizoplane sam-
ples. Significantly, increased expression was observed for
togBNA and dctS in the healthy rhizoplane microbiome
compared to HLB samples. Consistent with this observa-
tion, genes involved in “starch and sucrose metabolism”
were enriched in the rhizoplane and exhibited increased
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abundance and expression levels in the healthy rhizo-
plane microbiome compared to HLB samples (Fig. 2c
and Additional file 1: Figure S11). In contrast, genes in-
volved in “carbon fixation pathways in prokaryotes,”
which were depleted in the rhizoplane microbiome, ex-
hibited increased relative abundance and expression
activity in HLB rhizoplane samples (Figs. 2c and 4). In-
creased relative abundance was observed for nitrification-
associated key genes (identified as rhizosphere- to
rhizoplane-depleted), including amoA, amoB, amoC, and
hao (hydroxylamine oxidoreductase), in HLB rhizoplane
samples compared to healthy samples. The urease-
encoding genes ureA, ureB, and ureC involved in degrad-
ing urea to ammonia, which contributes to both nitrifica-
tion and carbon fixation, and the transporter genes for the
coenzyme nickel metal for the urease [69], nikA and nikB,
also exhibited significantly increased expression levels in

HLB rhizoplane samples compared to healthy samples
(Fig. 2c and Additional file 1: Figure S12).

Linking the rhizoplane-enriched taxonomic and functional
properties
To visualize the association between rhizoplane-
enriched taxonomic and functional properties, we deter-
mined the taxonomic origin of rhizoplane-enriched
functional attributes for all samples. The rhizoplane-
enriched KOs were clustered at KEGG pathway level 3,
and the clustered categories involved in host-microbe in-
teractions identified in the above section, including the
bacterial secretion system (BSS), flagellar assembly (FA),
pilus assembly (PA), bacterial chemotaxis (BCh), and
LPS synthesis (LPS), were analyzed, as were the
rhizoplane-enriched KOs involved in starch and sucrose
metabolism (SSM). Proteobacteria were the main

Fig. 3 The relative abundance and expression profiling of rhizoplane-enriched genes involved in bacterial secretion systems. Affiliation of each
KO with secretion system types (I–VI) is indicated in brackets based on KEGG annotation. Red denotes “higher in healthy samples,” while blue
denotes “higher in HLB samples.” The asterisk denotes P < 0.01; the plus sign denotes P < 0.05. MG, metagenome data, MT metatranscriptome
data, P rhizoplane, S rhizosphere
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contributor of these functions and contributed signifi-
cantly more to the rhizoplane samples (95.3 ± 0.15%
of the normalized total relative contribution for the
six functional categories) than the rhizosphere samples
(86.6 ± 1.27%) (paired t test, p < 0.01). A reduced contri-
bution by taxa belonging to Acidobacteria and Actino-
bacteria was also observed (two taxa together
accounting for 2.98 ± 0.14% of the normalized total
relative contribution for the rhizoplane samples and
9.59 ± 1.43% for the rhizosphere samples, paired t
test, p < 0.05) (Fig. 5). The relative contribution of
Bradyrhizobium and Burkholderia to the six func-
tional categories for the rhizoplane samples ranged
from 6.2 to 38.1% and 2.9 to 19.2%, respectively, and
their relative contribution to the rhizoplane samples
significantly increased compared to the rhizosphere
samples (p < 0.05 for Bradyrhizobium and p = 3.4E−5
for Burkholderia, respectively). The genes involved in
the type IVb secretion system identified from our

samples were mostly from unclassified bacteria
(Additional file 1: Figure S13).

Expression activity comparison of Bradyrhizobium and
Burkholderia between rhizosphere and rhizoplane
samples
Bradyrhizobium and Burkholderia were the top two
dominant and rhizoplane-enriched genera. To reveal
the mechanisms underlying their highly efficient
colonization, particularly in the rhizoplane, we ex-
tracted all genes originating from the two genera from
the KO-annotated genes. In all, 2228 Bradyrhizobium
and 2603 Burkholderia KOs were identified. These
identified KOs exhibited overall higher relative abun-
dance in the rhizoplane microbiome than the rhizo-
sphere microbiome on a functional potential level
(Additional file 1: Figure S14), further demonstrating
rhizosphere-to-rhizoplane enrichment for both genera.
The differentially expressed (DE) KOs between the

Fig. 4 Relative abundance and expression profiling of the rhizoplane-depleted genes involved in carbon fixation. The affiliation of each KO with
different carbon fixation pathways is indicated in brackets based on KEGG annotation. CC Calvin cycle, RCAC reductive citric acid cycle, RAC reductive
acetyl-CoA pathway, PCC/ACC 3-hydroxypropionate bicycle, HHC hydroxypropionate-hydroxybutyrate cycle. Red denotes “higher in healthy samples,”
while blue denotes “higher in HLB samples.” The asterisk denotes P < 0.01; the plus sign denotes P < 0.05. MG metagenome data, MT
metatranscriptome data, P rhizoplane, S rhizosphere
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rhizoplane and rhizosphere samples for the two genera
were further determined using metatranscriptomic
data. In total, 287 and 185 DE KOs were identified for
Bradyrhizobium and Burkholderia, respectively, includ-
ing 163 rhizoplane-upregulated and 124 rhizoplane-
downregulated KOs for Bradyrhizobium and 89
rhizoplane-upregulated and 96 rhizoplane-downregulated
KOs for Burkholderia. The majority of these rhizoplane-
upregulated KOs (153 of 163 for Bradyrhizobium and 83
of 89 for Burkholderia) were not identified when compa-
ring the rhizoplane and rhizosphere samples at the whole
community level using metatranscriptomic data. Overrep-
resentation of multiple KEGG pathways involved in me-
tabolism was observed for the rhizoplane-downregulated
KOs for Bradyrhizobium and Burkholderia, and consistent
enrichment of the categories “energy metabolism” and
“carbohydrate metabolism” for both genera was also ob-
served (p < 0.05, Fisher’s exact test, two-tail). The Bradyr-
hizobium rhizoplane-upregulated KOs were enriched in
the categories of “transcription” and “metabolism|unclas-
sified,” and the Burkholderia rhizoplane-upregulated KOs
were enriched in the categories of “signal transduction”
and “cell motility” (Table 1). All Burkholderia rhizoplane-
upregulated KOs involved in “cell motility” were respon-
sible for flagellar and pilus assembly; the KO representing
the flagellar transcriptional activator flhD was found in

the “signal transduction” category. Several other efflux
system-associated genes, such as mdtA and mdtC, were
also present in the Burkholderia “signal transduction” cat-
egory. The majority of the Bradyrhizobium rhizoplane-
upregulated KOs belonging to “metabolism|unclassified”
were associated with cell wall synthesis. Interestingly, the
gene encoding salicylate hydroxylase which converts sali-
cylic acid, a critical phytohormone for plant systemic ac-
quired resistance, to nonfunctional compound catechol
was expressed at a significantly increased level in the rhi-
zoplane compared to the rhizosphere for Bradyrhizobium.

Effects of inoculated Burkholderia strains on plant fitness
Members of Burkholderia have been known to benefit
plants. Because Burkholderia are enriched from the
rhizosphere to rhizoplane and it is one of the most
abundant bacteria associated with citrus roots, we deter-
mined the contribution of Burkholderia to the citrus
hosts. We isolated multiple Burkholderia strains from
the rhizosphere of healthy citrus plants in a relevant
study (Riera et al., unpublished data). We selected two
representative strains A53 (Burkholderia metallica) and
A63 (Burkholderia territori), which showed the best an-
tagonistic activities against Sinorhizobium meliloti, a
relative of the HLB causal agent Las, and several other
citrus pathogens, such as Phytophthora spp. and

Fig. 5 Relative contribution of different taxa (family or genus levels) to identified rhizoplane-enriched functional attributes in different samples.
BSS bacterial secretion system, FA flagellar assembly, PA pilus assembly, BCh bacteria chemotaxis, LPS lipopolysaccharide assembly, SSM starch and
sucrose metabolism
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Alternaria alternate (Riera et al., unpublished data), to
inoculate citrus plants using the soil drench method.
The results demonstrated that the two strains success-
fully colonized the root surface and maintained signi-
ficantly higher relative abundance inside the rhizoplane
bacterial community than inside the rhizosphere bac-
terial community (Student’s t test, p < 0.05 for both
strains when detected at 5 and 9 dpi) (Additional file 1:
Figure S15), demonstrating that the two strains were
more adapted to the rhizoplane niche than that to the
rhizosphere. The inoculated strains survived well, even
7 months after inoculation (Figs. 6a, b). We then con-
ducted a greenhouse study to evaluate the effects of the
selected strains on plant fitness. Salicylic acid (SA)-medi-
ated induced systemic resistance (ISR) is an important
benefit of beneficial bacteria to the plant host [70]. We
determined the expression of three SA-mediated ISR
marker genes, SAM, PR1, and PR2, for the inoculated
trees. Plants treated with strain A53 exhibited a signifi-
cant upregulation of PR2 gene at 3 dpi compared to
negative control plants. A63 induced expression of the
SAM gene at 5 dpi and the PR1 gene at 7 dpi. Similarly,

Actigard, an analogue of SA, induced PR1 and SAM
gene expression at 5 and 7 dpi (Fig. 6c).

Discussion
Our data demonstrated reduced genetic and microbial
complexity in the citrus rhizoplane microbiome com-
pared to that in the rhizosphere communities, indicating
the filter effect of plant hosts on the closely associated
rhizoplane microbiome assembly [5]. This finding is
consistent with previous findings based on annual plants
[13, 17], indicating that the rhizosphere-to-rhizoplane
enrichment of microbiome occurs in both annual and
perennial plants. Our data further suggested that the
niche enrichment process is fine-tuned by the plant host
for the desired functions, resulting in dramatic structural
changes of the microbiome (Fig. 5). Bacteria were the
most dominant domain and accounted for more than
99% of the citrus root-associated microbiome, whereas
minimal Archaea and fungi were found. The taxonomic
composition of the citrus root-associated microbiome
identified here was very similar with that of wheat and
cucumber, where the relative abundance of bacteria is

Fig. 6 Survival rates of Burkholderia spp. inoculation and effects on expression of the citrus ISR-associated genes. Colony-forming units were
represented in log10 scale for a strain A53 and b strain A63. Colonies were counted in NA plates supplemented with kanamycin (50 μg/mL) since
both strains are kanamycin-resistant. Days post inoculation (dpi) was calculated up to 225, approximately 7 months post inoculation. Error bars
represent standard deviation for three biological repeats performed independently. c Relative gene expression of three defense-related citrus
genes PR1, PR2, and SAM. Fold change of gene expression is represented at 3, 5, and 7 days post inoculation in root system. Fold change was
calculated using ΔΔCt method. Boxplots represent fold change compared to non-treated plants for three biological replicates. Each biological
replicate contains three technical repeats
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more than 99% [15]. Proteobacteria, which was domi-
nated by Bradyrhizobium and Burkholderia (Fig. 1), was
enriched on the rhizoplane, and depletion of Actinobac-
teria and Acidobacteria was observed in this process.
We demonstrated that the genes involved in utilizing
the root-derived carbon source were enriched from the
rhizosphere to the rhizoplane, further suggesting the im-
portance of plant cell wall polysaccharide utilization-
associated genes for the rhizoplane microbiome. These
genes were gradually enriched from the free living bulk
soil inoculum, the rhizosphere to the rhizoplane [15].
However, the genes involved in “carbon fixation path-
ways in prokaryotes,” which are critical for autotrophic
microorganisms, were depleted in rhizoplane samples,
collectively highlighting that the plant-derived carbon
sources are an important driving force for citrus rhizo-
plane microbiome assembly. This finding is consistent
with the notion that the microbiome on the rhizoplane
enjoys superior access to plant exudates compared to
the microbiome in the rhizosphere.
Functional features, such as motility, chemotaxis, two-

component system and secretion systems, LPS, and type
IV pilus synthesis, were rhizoplane-enriched, indicating
more active plant-microbe interactions on the rhizoplane
than on the rhizosphere. We envision that following
chemotaxis sensing, the active motility mediated mainly
by flagella and pili allows the microbes to rapidly reach
the preferred root surface niches to form biofilms or ag-
gregates with the help of adhesions such as LPS and pili.
Interestingly, several secreted effectors were actively
expressed in the rhizoplane microbiome that may benefit
the microbiome by modulating the plant immune sys-
tem. Rhizoplane enrichment of Bradyrhizobium and
Burkholderia was observed in this study. Similar enrich-
ment patterns were also observed when analyzing sam-
ples collected from 27 important citrus-growing areas
worldwide, suggesting the ubiquity and importance of
these two genera for the citrus root-associated micro-
biome (Zhang and Wang, unpublished data). The en-
richment of Bradyrhizobium and Burkholderia on the
rhizoplane indicated their successful strategy for rhizo-
plane adaption. The metatranscriptomic data demon-
strated that the functions involved in metabolic activities
were more actively expressed in the rhizosphere than
the rhizoplane for both genera, further suggesting that
nutrient resources were more easily accessed for the rhi-
zoplane microbiome than the rhizosphere microbiome.
In addition to common rhizoplane-enriched genes, mul-
tiple Bradyrhizobium and Burkholderia specific genes,
such as efflux system-associated genes, cell motility-
associated genes, and plant defense-resistant-associated
genes, were more active on the rhizoplane than the
rhizosphere for Bradyrhizobium and Burkholderia but
were not identified for the remaining microorganisms.

The efflux system-associated genes contribute to suc-
cessful interactions with host plants [71]. The salicylic
acid-degrading enzyme salicylate hydroxylase encoding
gene from Bradyrhizobium exhibited significantly in-
creased expression activity on the rhizoplane and might
contribute to the colonization of Bradyrhizobium by
suppressing the plant defense response [72].
The relative abundance of the rhizoplane-enriched

taxa and functional properties, as well as the expression
profiling of the rhizoplane-enriched functional features
were significantly reduced by HLB. Bradyrhizobium
and Burkholderia, the two most dominant rhizoplane-
enriched genera, exhibited reduced relative abundance
in HLB rhizoplane samples compared to healthy
samples. Our previous cultivation-based results de-
monstrated that the Burkholderia population was sig-
nificantly increased in the healthy citrus endorhiza
microbiome compared to HLB samples, whereas Bra-
dyrhizobium was not observed, mainly because of their
slow growth (~2 weeks for colony formation. This is
longer than the experiment design, during which col-
onies were harvested after 3–10 days of incubation)
[22]. These results suggested that the citrus plants pre-
fer Bradyrhizobium and Burkholderia and enrich them
from the rhizosphere to rhizoplane. The survival rate
assay of the two inoculated Burkholderia strains further
demonstrated that the Burkholderia strains were more
adapted to the rhizoplane niche than the rhizosphere.
Root-associated Bradyrhizobium is frequently reported
as plant-beneficial bacteria [55, 73]; beneficial effects of
Burkholderia also are frequently observed [22, 56, 74].
Furthermore, when the citrus were inoculated with
Burkholderia strains isolated from the healthy citrus
root-associated microbiome, several ISR-associated
genes in the citrus trees were induced (Fig. 6) that
might reduce HLB disease progress. Multiple beneficial
bacteria stimulate plant immunity in an SA-dependent
ISR manner [70]. The observed upregulation of ISR-
associated genes, especially the upregulation of SAM by
Burkholderia sp. inoculation, likely promotes plant
health by triggering SA-dependent broad-spectrum sys-
temic resistance to pathogens, which might be an im-
portant aspect of plant-beneficial microbe interactions.
Other rhizoplane-enriched taxa, such as Variovorax
and Bdellovibrio, exhibited decreased relative abun-
dance in the rhizoplane microbiome when trees became
infected with Las (Fig. 1). Variovorax and Bdellovibrio
exhibit plant growth promotion effects [57, 58]. Add-
itionally, our results revealed rhizoplane-enriched func-
tional properties, including chemotaxis, flagellar
assembly, LPS synthesis and transport, as well as se-
cretion system and related effectors, were depleted by
HLB. However, the rhizoplane-depleted functional
features, including “carbon fixation pathways in
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prokaryotes” and nitrification and denitrification-
related genes, exhibited significantly increased relative
abundance and expression levels in the HLB rhizoplane
microbiome compared to those in the healthy samples
(Figs. 2, 3, and 4 and Additional file 1: Figures S8–S13).
Reduced relative abundance and activity of plant-
derived polysaccharide utilization-associated genes
together with the increased relative abundance and ac-
tivity of autotrophic life cycle-adapted carbon fixation,
nitrification, and denitrification functional features,
support our notion that HLB trees supplied less easy-
to-use carbon source, e.g., sucrose for root-associated
microbiome use [24]. These data are consistent with
the notion that HLB affects the availability of sucrose
to microbes on the rhizoplane because of its effect on
phloem transportation of photoassimilates [18] and
root decline [20]. In particular, HLB affects functional
features, such as motility, chemotaxis, two-component
system and secretion systems, as well as LPS and type
IV pilus synthesis with significantly increased relative
abundance and expression levels in the healthy rhizo-
plane microbiome compared in HLB samples (Fig. 2).
These findings clearly demonstrated the negative effect
on the microbiome at the community level. The nega-
tive effects of HLB on the citrus microbiome will ultim-
ately deteriorate the beneficial interactions between the
microbiome and the host.

Conclusions
Overall, we demonstrate that the functional properties
involved in host-microbe interactions are critical for the
microbiome-inhabiting plant root surfaces and are influ-
enced dramatically by the availability of plant exudates.
These rhizoplane-enriched functional properties can
subsequently benefit the plant host. HLB not only alters
the physiology of the citrus host but also impairs the
microbiome-host interaction. Our study provides novel
insights for understanding the composition and function
of the plant rhizoplane-enriched microbiome and its ef-
fect on plant health.
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