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Abstract

Background: The study of the gut microbiota (GM) is rapidly moving towards its functional characterization

by means of shotgun meta-omics. In this context, there is still no consensus on which microbial functions are
consistently and constitutively expressed in the human gut in physiological conditions. Here, we selected a cohort
of 15 healthy subjects from a native and highly monitored Sardinian population and analyzed their GMs using
shotgun metaproteomics, with the aim of investigating GM functions actually expressed in a healthy human
population. In addition, shotgun metagenomics was employed to reveal GM functional potential and to compare
metagenome and metaproteome profiles in a combined taxonomic and functional fashion.

Results: Metagenomic and metaproteomic data concerning the taxonomic structure of the GM under study were
globally comparable. On the contrary, a considerable divergence between genetic potential and functional activity
of the human healthy GM was observed, with the metaproteome displaying a higher plasticity, compared to the
lower inter-individual variability of metagenome profiles. The taxon-specific contribution to functional activities and
metabolic tasks was also examined, giving insights into the peculiar role of several GM members in carbohydrate
metabolism (including polysaccharide degradation, glycan transport, glycolysis, and short-chain fatty acid production).
Noteworthy, Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the metabolic
activity with the highest expression rate and the lowest inter-individual variability in the study cohort, in line with the
previously reported importance of the biosynthesis of this microbial product for the gut homeostasis.

Conclusions: Our results provide detailed and taxon-specific information regarding functions and pathways actively
working in a healthy GM. The reported discrepancy between expressed functions and functional potential suggests
that caution should be used before drawing functional conclusions from metagenomic data, further supporting
metaproteomics as a fundamental approach to characterize the human GM metabolic functions and activities.
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Background

In the latest years, the study of the gut microbiota (GM)
has been shifting from a mere description of the
taxonomic composition, usually obtained through the
application of 16S rRNA gene sequencing to fecal sam-
ples, to a broader investigation of GM functional poten-
tial, made possible by shotgun metagenomics (MG)
approaches [1]. Population MG studies have revealed
that GMs share a stable set of core functions, in spite of
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a large inter-individual structural/compositional variability
[2, 3]. However, since sequenced genes are not necessarily
expressed [4, 5], MG cannot provide reliable information
on which microbial functional traits are actually changing
in response to stimuli from host metabolism, immunity,
neurobiology, diet, or other environmental factors.
Conversely, this type of information can be gathered by
functional meta-omics, as metatranscriptomics (MT) and
metaproteomics (MP), which display higher sensitivity to
perturbation and may therefore better reflect host-
microbiome interactions [6]. In this context, of particular
interest is to investigate the relationship between potential
and actually active GM features in a human population, in
order to identify microbial functions constitutively
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expressed in a healthy gut starting from a known MG
potential. A recent investigation has addressed this aim
with respect to MT, finding transcripts of ribosomal
proteins and citrate cycle enzymes among those with the
highest expression rate (mRNA/DNA ratio) and genes
involved in starch metabolism, amino acid biosynthesis,
sporulation, and peptidoglycan biosynthesis as those with
the lowest expression rate [7]. Less is known about micro-
bial proteins, even though these provide major informa-
tion concerning GM metabolism and represent key
molecules in the host-GM interaction. Although a few
pioneering studies have presented the analysis of paired
metagenomes and metaproteomes in disease-related
human cohorts [6, 8], a systematic, comparative investiga-
tion of taxonomic and functional features potentially and
actually expressed by the GM of a healthy population has
not been described so far.

Here, we selected a cohort of healthy subjects from a
clinically monitored Sardinian population and collected
from each subject a stool sample which underwent
DNA and protein extraction, followed by shotgun MG
and MP analyses. MG and MP data were then mined in
a comparative fashion in order to (i) find which func-
tional features are actively and consistently expressed
by the GM, being therefore needful for the host-GM
homeostasis; (ii) identify conserved and variable GM
features within the population; and (iii) investigate the
specific functional and metabolic contribution of the
key GM taxa.

Results

Experimental design and general metrics

Fifteen subjects were selected from the SardiNIA study
cohort [9]. Stool samples were collected from individuals
self-reporting the absence of (i) antimicrobial treatment
during the previous 6 months from sample collection, (ii)
inflammatory bowel disease and other autoimmune condi-
tions, (iii) significant variations of body temperature dur-
ing the last 2 weeks, and (iv) unusual body weight
fluctuation during the last 3 years before sample collection.
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Subjects were selected to avoid sex, age, and body mass
index (BMI) biases (Additional file 1: Table S1), and all
followed an omnivorous diet.

As illustrated in Fig. 1, a stool sample was collected
from each subject, and its metagenome and metapro-
teome were characterized by means of shotgun MG and
shotgun MP, respectively. A population-based matched
database, comprising all MG sequences retrieved from
the same cohort under study, was used for MP analysis
in order to map protein expression of the very same
genes identified by MG. MG sequences were annotated
both taxonomically and functionally, and these two
annotation levels were linked to address the question on
“who is doing what” within the GM of the selected
subjects.

A total of 25,993,645 MG reads and 107,069 peptide-
spectrum matches (PSMs) were obtained in this study,
with a mean of 2,077,370 reads and 7138 PSMs per
sample (Additional file 1: Table S2). In view of the inter-
individual variability in the total number of reads, MG
reads were randomly subsampled to allow a better com-
parison among samples. Taxonomic and functional
annotation yields varied between MG and MP, and the
relative amount of reads/peptides assigned to a specific
genus varied between Firmicutes and Bacteroidetes
(Additional file 1: Table S3). Globally speaking, MG data
exhibited a larger depth of information compared to MP,
both in taxonomic and functional terms, as expected
and previously reported [6, 8].

Potential and active functions in the gut microbiota

A preliminary, unsupervised multivariate analysis
revealed a much clearer separation between MG and
MP patterns based on functional data when compared
to taxonomic data (Additional file 2: Figure S1). The
most abundant phyla (A), genera (B), and functions
(KEGG orthologous groups (KOGs); panel C) detected
by MG and MP are illustrated in Fig. 2. Consistently, a
large overlap could be observed between MG and MP
regarding the most abundant phyla and genera, in
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Fig. 1 Schematic illustrating the experimental design of the study. Fifteen healthy adult subjects (7 males and 8 females) were selected from a
clinically monitored Sardinian population. Stool samples were collected from each individual and subjected in parallel to lllumina shotgun DNA
sequencing (metagenome profiling) and LTQ-Orbitrap shotgun mass spectrometry analysis (metaproteome profiling). The metagenomes were
also employed as sequences databases, in order to allow a rigorous metaproteome/metagenome comparison, and subjected to taxonomic and
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Fig. 2 Main metagenome and metaproteome features of the gut microbiota. MG data are in blue (left), while MP data are in red (right). Data
are ordered by decreasing median of the relative abundance among subjects. a Tukey's boxplots showing the top 5 microbial phyla. b Tukey's
boxplots showing the top 10 microbial genera. ¢ Tukey's boxplots showing the top 10 gene/protein functions (KEGG orthology groups).
Subunit names are shown into brackets. GAPDH glyceraldehyde 3-phosphate dehydrogenase, PEP phosphoenolpyruvate, P phosphate, BP

contrast with considerable differences in functions,
highlighting a divergence between functional potential
and activity. In particular, enzymes belonging to cata-
bolic pathways were generally massively abundant, while
not being among the genes present with the highest
number of copies in the metagenome. Furthermore,
correlation between MG and MP profiles was high when
considering taxa abundances, with a linear decrease
when going down to lower taxonomic levels (Spearman’s
p =0.90 + 0.06 (mean * s.d.) at phylum level, p = 0.68 + 0.07
at genus level), while a considerably lower correlation
could be found for functional features (p = 0.21 + 0.06).

We then carried out a comparative investigation of
MG and MP features, in order to identify GM functions
consistently expressed within the healthy human cohort
under study, taking into account the gene potential of
the same GMs. To this aim, we computed the log
MP/MG abundance ratio for each taxon and function
on a subject-by-subject basis and then tested the differ-
ence of the log ratios from zero using a one-sample ¢ test
with FDR correction, as reported previously in a metagen-
ome versus metatranscriptome comparison [7]. On the
whole, the percentage of differential features out of the
total was extremely high when considering functions
(Additional file 1: Table S4), confirming the divergence
between potential and active GM functional traits.

Focusing on taxonomy (Fig. 3a), many key GM taxa
showed significant differences in relative abundance when
comparing gene potential and expressed proteins across

the cohort. For instance, Proteobacteria, Spirochaetes,
Verrucomicrobia, and Coriobacteriales showed a signifi-
cantly low log MP/MG ratio, whereas taxa belonging to
Firmicutes and Bacteroidetes behaved more heteroge-
neously. Among them, Faecalibacterium and Ruminococ-
cus (Firmicutes) as well as Prevotella (Bacteroidetes)
exhibited a significantly high log MP/MG ratio, while a
significantly low log MP/MG ratio was measured for
Bacilli and Erysipelotrichia (Firmicutes), as well as for
Rikenellaceae and Porphyromonadaceae (Bacteroidetes).
The top differential functions are illustrated in Fig. 3b
(see Additional file 3: Dataset S1 for further details).
Several enzymatic functions exerted by the GM of the
studied cohort presented a significantly high log MP/
MG ratio, as those involved in short-chain fatty acid
(SCFA, including propionate and, mostly, butyrate)
metabolism, as well as in degradation of carbohydrates,
polyols, and organic acids. Mapping differential KOGs in
the carbon metabolism KEGG map (Additional file 4:
Figure S2) visually illustrates that the most active meta-
bolic activities performed by the GM are related to
glycolysis, gluconeogenesis, pentose phosphate pathway,
and butyrate biosynthesis. Ferritin and flagellin were the
non-enzymatic proteins with the highest MP/MG log
ratio. On the other hand, functions with the lowest MP/
MG log ratios were related to amino acid, transfer RNA
(tRNA), and cell wall biosynthesis, as well as to DNA
replication and repair. Since some of the MG sequences
matching with a high number of peptides did not present
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Bacillus, 21 Streptococcus, 22 Lactobacillus, 23 Megasphaera, 24 Veillonella, 25 Oscillibacter, 26 Peptoclostridium, 27 Butyricicoccus, 28 Pseudoflavonifractor, 29
Intestinimonas, 30 Flavonifractor, 31 Ruminiclostridium, 32 Anaerotruncus, 33 Ruminococcus, 34 Faecalibacterium, 35 Lachnoclostridium, 36 Butyrivibrio, 37
Coprococcus, 38 Tyzzerella, 39 Akkermansia, 40 Brachyspira, 41 Treponema, 42 Propionibacterium, 43 Actinomyces, 44 Eggerthella, 45 Gordonibacter. b Bar
graphs showing the KEGG orthology functional groups with higher MP/MG log ratio (top 20, left) and those with lower MP/MG log ratio (top
20, right). Subunit names are shown into brackets. OH hydroxy, GAPDH glyceraldehyde 3-phosphate dehydrogenase, 6P-5DH-2DO-gluconate 6-
phospho-5-dehydro-2-deoxy-d-gluconate, PEPCK phosphoenolpyruvate carboxykinase, U-5CMAM modifier uridine 5-carboxymethylaminomethyl
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any KOG functional annotation, we performed an add-
itional differential analysis simply considering the gene/
protein name as functional information. As a result, two
previously non-annotated proteins (propanediol utilization
protein PduA and reverse rubrerythrin) exhibited signifi-
cantly (and extremely) high MP/MG log ratios, indicating
their massive expression yield within the subjects’ GMs.

Conserved and variable features in the gut microbiota

Another indication provided by Fig. 2 was that MG data
generally exhibited a much higher inter-individual vari-
ability (expressed by box width) in taxa than in potential
functions, whereas this trend could not be observed in
MP. To quantify this observation in a more rigorous and
comprehensive fashion, we computed between-subject
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dissimilarity (Bray-Curtis index) at the taxonomic
(genus) and functional level for both MG and MP data.
As a confirmation, a higher inter-individual variability
concerning the taxonomic composition could be mea-
sured in MG compared to MP (Wilcoxon signed-rank
test with continuity correction, two-tailed P =4.7 x 107%),
while the analysis of functional data revealed a higher
variability in MP than in MG (P<2.2 x 107').

To further assess which specific GM taxa and func-
tions were more conserved and variable within the
human cohort under study, we also calculated the abun-
dance coefficient of variation (CV) for each taxon and
function measured by MG and/or MP across the 15
subjects. We set two arbitrary thresholds (CV >150%
and <60%) to define features with high and low inter-
individual variability, respectively. The amount of high
and low variability features was similar between MG and
MP (about 30 and 10%, respectively); conversely, and
consistently with dissimilarity data, GM expressed func-
tions (MP) were globally much more variable in abun-
dance within the population compared to the potential
functions (MG), even though this effect was less evident
when weighing each feature based on its abundance
(Additional file 1: Table S5).

Focusing on taxonomy (cladogram in Fig. 4a), a mod-
erate correlation could be observed between MG and
MP concerning taxa abundance variability (p=0.33),
although no taxa showed opposite trends (e.g., low vari-
ability with MG and high variability with MP). MG and
MP provided consistent results for the taxonomic
lineage from Verrucomicrobia to Akkermansia, which
exhibited high variability within the subjects, and for the
taxonomic lineage from Bacteroidetes to Bacteroides,
which was instead rather conserved. Moreover, although
with slight differences in the degree of variability between
MG and MP, levels of Bifidobacterium, Prevotella, and
Butyrivibrio displayed a considerably high variability
across the cohort under study, while Alistipes and Faecali-
bacterium were found to be rather conserved in abun-
dance among the subjects analyzed.

The most conserved and variable functions (KOGs)
are shown in Fig. 4b. A very weak correlation could be
observed between MG and MP concerning function
abundance variability (p=0.12). In general, the abun-
dance of genes related to tRNA and peptidoglycan syn-
thesis, as well as to DNA replication and repair, showed
low variability among subjects, contrary to some poten-
tial activities (including transposases, antibiotic resist-
ance genes, and enzymes involved in catabolism of
glycans and biogenic amines) exhibiting a higher vari-
ability. On the other hand, functions related to glutam-
ate degradation and biosynthesis of butyrate, besides
“housekeeping” glycolytic enzymes and translation
factors, appeared to be consistently active in all subjects
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(with high abundance and low variability) based on MP
data; interestingly, several stress-related proteins (such
as superoxide scavengers and a trigger factor) were
found to be among the most variable GM features
within the population. Complete data can be found in
Additional file 3: Dataset S1.

Specific functional contribution of Firmicutes and
Bacteroidetes

We also sought to find phylum-specific functions, i.e.,
activities mainly or exclusively due to one of the main
GM phyla (Firmicutes and Bacteroidetes). To this aim,
we computed the log Firmicutes/Bacteroidetes (F/B)
abundance ratio for each function on a subject-by-
subject basis, as described above for the MG versus MP
comparison. Bar graphs of Fig. 5 illustrate functions with
the highest and lowest log F/B ratios, according to MG
(left, blue) and MP (right, red) data (the complete lists
of differential features are given in Additional file 5:
Dataset S2). Phylum-specific genes within the metagen-
ome, providing insights into the peculiar functional
potential of Firmicutes and Bacteroidetes members
across the cohort under study, belonged to a wealth of
different activities (including sporulation, cell wall bio-
genesis and ion transport), mapping to several relevant
biosynthetic and degradative pathways (the related car-
bon metabolism pathway map is reported in Additional
file 6: Figure S3). When considering the metaproteome,
the specific contribution of the two main GM phyla
appears to be better defined and oriented towards more
interrelated metabolic activities. While Bacteroidetes
were found to be specifically involved in multiple activ-
ities, including iron homeostasis, catabolism of non-
glucose monosaccharides (rhamnose, xylose), and folate
metabolism, Firmicutes’ specific contribution to the
GM metabolism was mainly in butyrate biosynthesis, be-
ing most of the differential enzymes (including acetyl-CoA
C-acetyltransferase, 3-hydroxybutyryl-CoA dehydrogen-
ase, butyryl-CoA dehydrogenase, glutaconyl-CoA decarb-
oxylase, and enoyl-CoA hydratase) eventually converging
on butyrate production (as illustrated also in the carbon
metabolism KEGG map of Additional file 7: Figure S4).

Active role of main gut microbiota members in the
carbohydrate metabolism

To further elucidate the specific role of the main GM
members within carbohydrate metabolism, we manually
parsed functional and taxonomic annotations of trans-
porters and enzymes identified by MP and responsible
for processes ranging from polysaccharide degradation
to SCFA production. As schematized in Fig. 6a, complex
polysaccharides are usually degraded in the extracellular
space, then oligo- and monosaccharides are transported
inside the microbial cell, where they are degraded
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through carbohydrate catabolic pathways (converging on
glycolysis); pyruvate and related intermediates are finally
utilized for the biosynthesis of SCFAs, including acetate,
propionate, and butyrate. Figure 6b illustrates the
expression level of each function-taxonomy combin-
ation, with functions grouped according to the reference
pathway (or functional family), and microbial genera
grouped according to the corresponding phylum. Overall

pathway results were retrieved from MP expression data
of 81 functional groups (KOGs); 51 of them, found to be
expressed in at least half of the subjects, are also reported
as single functions.

Considering the GM as a whole, the expression of
glycolytic enzymes accounted for about half of the total
carbohydrate metabolism, while the relative contribution

of butyrate, propionate, and acetate biosynthesis
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multiple sugar transport, ATP-BP adenosine triphosphate-binding protein, 6P-5DH-2D0-gluconate 6-phospho-5-dehydro-2-deoxy-p-gluconate, AICAR

acetyl-CoA C-acetyltransferase -
3-OH-butyryl-CoA dehydrogenase
ribosomal protein L29
MS-transport system ATP-BP
butyryl-CoA dehydrogenase
6P-5DH-2DO-gluconate aldolase
flagellin

glutaconyl-CoA decarboxylase -
ribosomal protein S19+
transaldolase -

AICAR transformylase

serine protease Do

glycine cleavage system H
F-type H+-ATPase(c)
diaminopimelate dehydrogenase
malate dehydrogenase -
rhamnose isomerase -

xylose isomerase

ferritin

iron complex OMRP

B 5O 69 B

abundance log ratio (F/B)

enzymes was 12, 3, and 1%, respectively. Another rele-
vant metabolic activity was aldose/ketose interconver-
sion (7%), whereas sugar transporters (comprising
TonB-dependent transporters from Bacteroidetes and
ABC transporters from Firmicutes) accounted in total
for 6% of carbohydrate metabolism-related proteins.
Carbohydrate metabolism appeared to be due to Firmi-
cutes and Bacteroidetes at similar extents (46 and 51%
of the total, respectively), with Actinobacteria playing a
minor role in quantitative terms (3%).

When focusing on the metabolic tasks performed by
specific GM members, Bifidobacterium was found to
contribute significantly to mucin glycoprotein degrad-
ation (endo-a-N-acetylgalactosaminidase activity), as
well as to pentose hydrolysis (beta-xylosidase), intercon-
version (pentose isomerases), and catabolism (phospho-
ketolase and transaldolase within the pentose phosphate
pathway). Bacteroides spp. provided a peculiar and active
contribution to starch degradation and uptake, mainly
through enzymes and transporters belonging to the
starch utilization system (Sus), and were clearly shown
to play a key role in fucose, rhamnose, and uronate me-
tabolism and also in the glycolytic pathway (especially in
the preparatory phase); another main member of Bacter-
oidetes, Prevotella, was instead primarily involved in
xyloglucan and arabinan degradation. Among Firmicutes
genera, we found a strong (and almost exclusive)
involvement of Faecalibacterium in butyrogenesis (as
well as in oligosaccharide membrane transport and pyru-
vate phosphate dikinase activity) and of Dialister in the
final part of propionogenesis; furthermore, a considerably

high formate C-acetyltransferase activity from Rumino-
coccus spp. was observed. Of note, a high level of
sequence homology was observed for many orthologous
genes within the same phylum (especially pentose
phosphate pathway enzymes and ABC transporters
expressed by Firmicutes spp.), making it difficult to
achieve a taxonomic classification down to the genus
level (at least through the lowest common ancestor
approach employed here).

Discussion

This study was meant as a comparative and systematic
investigation of potentially and actually expressed
features in the GM of a healthy human population. To
this purpose, a cohort of clinically monitored Sardinian
subjects, following an omnivorous diet and with a BMI
distribution largely comparable to that of the general
Italian population, was selected for stool sample collec-
tion and GM characterization through shotgun MG and
MP. As both diet and BMI are known to deeply influ-
ence the GM composition (as well as, most likely, its
activity), we cannot rule out that cohorts with different
food regimens and/or BMI distributions may show
different taxonomic and functional profiles; however, a
specific investigation of these aspects falls out of the
scope of the present work. Furthermore, gut microbiota
characterization was carried out using fecal samples, as
stool can be collected following non-invasive procedures
and is widely recognized as a good proxy for the colonic
microbial mass. Nevertheless, some differences in struc-
ture and functional expression between colonic and fecal
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Fig. 6 (See legend on next page.)
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Fig. 6 Active carbohydrate metabolism pathways and related taxonomic assignments. a Schematic overview of gut microbiota metabolic
pathways from carbohydrate uptake and degradation to the production of short-chain fatty acids (in bold). Numbers in bold correspond to the
metabolic pathways listed in b. GH glycosyl hydrolase. b Combination of carbohydrate metabolism pathways/enzymes (rows) and specific gut
microbiota phyla/genera (columns) found by MP analysis. Heatmap color scale is based on the logarithmized relative abundance (average of 15
subjects) of each function-taxon combination. For each pathway (rows), only enzymes detected in at least half of the subjects are reported, while
the top row (in bold, corresponding to black-bordered squares) accounts for the total abundance of all enzymes (found in at least one subject)
belonging to the pathway. For each phylum (columns), only genera expressing a function in at least two subjects are reported, and the phylum
column (in bold, corresponding to black-bordered squares) accounts for the total abundance of all functions assigned to that given phylum.
“Carbohydrate metabolism” and “microbiota” report the total of rows and columns, respectively. GH glycosyl hydrolase, ABC ATP-binding cassette,
MsmK multiple sugar-binding transport ATP-binding protein MsmK, MsmX maltodextrin import ATP-binding protein MsmX, UgpC sn-glycerol-3-phos-
phate import ATP-binding protein UgpC, YV uncharacterized ABC transporter ATP-binding protein Y¢jV, YtfQ ABC transporter periplasmic-binding
protein YtfQ, YurJ uncharacterized ABC transporter ATP-binding protein YurJ, DKl 4-deoxy-L-threo-5-hexosulose-uronate ketol, Ru5P ribose-5-phosphate,
GAPDH glyceraldehyde 3-phosphate dehydrogenase, PEPCK phosphoenolpyruvate carboxykinase, OH hydroxy

microbial communities are expected, especially concern-
ing oxygen-sensitive species and enzymes [10, 11].

The taxonomic composition of the GM of the studied
cohort, based on MG and MP data, exhibited a large
inter-individual variability at the phylum level, with Firmi-
cutes ranging from 6 to 78% and Bacteroidetes ranging
from 21 to 88% (and the F/B ratio ranging from 0.06 to
3.63), as clearly described in previous studies [2, 12, 13].
The GM taxonomic profile is known to vary widely
among different cohorts, based on both genetic and envir-
onmental features, including dietary and cultural habits
[14—17]. Moreover, it is worth reminding that the output
of meta-omic taxonomic profiling can be largely influ-
enced by the DNA/protein extraction methods, by library
preparation methodologies, and by the specific sequence
database(s) used for taxonomic annotation (as detailed
below) [18-21].

Another interesting indication provided by this work,
although obtained in a small population, regards the
inter-individual variability of the abundance of specific
GM members. In particular, the relative level of several
key genera, including Akkermansia, Prevotella, and
Bifidobacterium, was globally poorly conserved within
the human cohort studied, according to both MG and
MP results, suggesting a possible higher responsiveness
to variables like diet or other environmental factors.
Consistently, Akkermansia abundance has been recently
observed to be significantly modulated by many different
foods and dietary variables [22-25], changes in Prevo-
tella spp. levels have been related to increase in fibers in
the diet and to glucose metabolism and tolerance [26-28],
and many bifidobacteria are widely and long used as
probiotics due to their (purported) ability to induce/re-
store GM homeostasis [29, 30]. Of note is also the finding
concerning the low and high inter-individual variability of
butyrate biosynthesis enzymes (see below for discussion
on the role of butyrate in gut health) and oxidative stress-
related GM functions, respectively. Response of microor-
ganisms to reactive oxygen species may in fact vary among
individuals based on several factors, including the degree

of activation of oxidative stress mechanisms modulated by
the host immune system [31, 32]. Moreover, we found that
Faecalibacterium, Ruminococcus, and Prevotella exhibited
a high log MP/MG ratio, suggesting a high protein expres-
sion activity of these taxa. This was previously observed
for Faecalibacterium, when comparing abundance data
based on 16S rRNA gene analysis with MP results [33].

A considerable divergence between GM functional
potential and activity was also observed in the present
study. Multiple data analysis approaches consistently
revealed that the GM protein expression pattern differs
significantly from that of the gene potential, both in
terms of feature abundance distribution and inter-
individual variability. Since the very beginning of GM
research, there was evidence for similarity among indi-
viduals in MG functional profiles and metabolic pathway
gene modules, despite variation in community structure
[2], while, in a pioneering study, VerBerkmoes and
coworkers described a more uneven distribution of func-
tional categories in the human stool metaproteome com-
pared to a (non-matched) metagenome [5]. Similar
conclusions were drawn by Franzosa et al. when com-
paring human gut metatranscriptome and metagenome
[7], even if the correlation between MT and MG func-
tional datasets was much higher than that measured
between MP and MG in this study, in line with recent
reports [6]. The higher inter-individual variability in GM
protein functions compared to the corresponding gene
functions (even considering that the GM taxonomic
structure exhibited an opposite behavior) confirms that
the metaproteome displays a higher plasticity, being thus
a preferential indicator of functional changes in the GM
when compared to MG approaches. Concerning this
divergence between MG and MP data, it is worth noting
that some possible variables might influence the consen-
sus between the two omic approaches. Among them, the
possible impact of differences in genome size among
microbial species should not be overlooked [34], as well
as the influence of potentially varying redundancy levels
among functionally relevant genes [35]. The different
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information depths which can be reached by MP and
MG (at least with the currently available technological
and bioinformatic approaches) should also be considered
as a factor that might lead to a lower quantitative correl-
ation between the two datasets [6]. As a further consid-
eration, it is worth observing that MG keeps the ability
of providing the full functional history of bacteria travel-
ling the gut, whereas MP allows the investigator to take
a picture of the GM activity at a given time point, loca-
tion, or condition; this undoubtedly makes these two
approaches complementary when attempting to fully
characterize the GM functionality.

When comparing the most abundant protein functions
observed in this study with earlier MP investigations of
healthy human GMs [33, 36], a general consistency
could be found. In particular, glutamate dehydrogenase
was the most abundant protein function revealed in this
study, as previously reported by Kolmeder and coworkers
[33, 37]. Bacterial glutamate dehydrogenase plays a pivotal
role in the intermediary metabolism in bacteria as well as
in animals, providing a major biosynthetic pathway for
glutamate production. Glutamate, in turn, is key as a link
between carbon and nitrogen metabolism and has been
recently shown to be important for Clostridium difficile
colonization of human gut [38]. Hence, given the abun-
dance of glutamate dehydrogenase, its impact might be
relevant for colonization and survival of many other taxa
that inhabit the human intestine. Finally, the glutamate
circuit has been proposed as central to the neuro-
endocrinological role of gut microbiota, the signaling to
the CNS through the intestinal epithelial cell glutamate
receptors, and the activation of the vagal route [39]. Other
abundant functions, which were included among the
top functional categories in previous studies [5, 33], are
glyceraldehyde 3-phosphate dehydrogenase, phosphoenol-
pyruvate carboxykinase, acetyl-CoA C-acetyltransferase,
enolase, and many other enzymes responsible for essential
steps of glycolysis and butyrogenesis, supporting the
hypothesis that these functions and pathways are key for
the intestinal homeostasis. In particular, the massive and
stable expression of butyrate biosynthesis enzymes by
Firmicutes (mainly Faecalibacterium) deserves key atten-
tion. Butyrate is a four-carbon SCFA known as one of the
main products of microbial fermentation in the human
colon and serves as preferential energy source for colono-
cytes [40]. Growing experimental evidences support the
importance of butyrate for colon health, for instance
highlighting the relationship between defects in butyrate
production and pathogenesis or severity of inflammatory
bowel diseases and obesity-related metabolic diseases
[41-43]. Our results demonstrate a high and constant
butyrogenetic activity within a healthy human cohort, in
line with previous reports showing a higher abundance of
butyrate biosynthetic enzymes compared to those involved
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in propionate biosynthesis in a healthy cohort [33], thus
further supporting GM butyrate production as a key
requirement for intestinal health. Further, we observed an
apparent pivotal role of Faecalibacterium spp. in synthe-
sizing the enzymes involved in this metabolic pathway. It
needs to be noted, however, that enzyme abundance may
not be directly correlated to metabolite concentrations,
as metabolic fluxes are strongly influenced by enzyme
kinetics and substrate availabilities [44]. Future meta-
metabolomic investigations are therefore expected to
shed further light on these key aspects and their impact
on GM metabolism.

In addition, elongation factor (EF)-Tu and chaperonin
GroES were the second and the fifth most abundant
functions observed in this study. EF-Tu is known for a
long time to be among the most abundant proteins in
many bacterial species, and, therefore, its highest abun-
dance was not unexpected. GroES, together with GroEL,
is also known to be abundantly present in bacteria,
where it serves for proper folding of many proteins,
particularly when large loads of deleterious mutations
occur. Bacterial chaperonin overexpression is hypothe-
sized to be required when bacterial communities evolve
under a strong genetic drift [45]. According to the eco-
logical model proposed by Schloissnig and colleagues,
this is the case of the human gut microbiome, where a
large selection of bacterial population members is sub-
jected to community shifts during the different stage of
the individual host life, and, therefore, their extinction
might be rescued in the presence of abundant chaperonins
[46].

Carbohydrate metabolism was proved in earlier works
as the most represented COG category in the human
gut metaproteome, highlighting its functional relevance
in the host-microbiota interplay [5, 33]. In this respect,
the thorough reconstruction of the GM carbohydrate
metabolism pathways presented here, including the
active contribution to it of the main GM taxa, provides
useful insights into the catabolism and cross-feeding net-
works actually occurring in a healthy human GM. There
is evidence that both generalist (able to degrade a wide
range of carbohydrates) and specialist (able to target
only a few selected glycans) members of the GM belong
to metabolic networks where cross-feeding takes place,
since by-products of one microorganism can serve as
key metabolic resources for other GM members [47].
The activity of sugar-converting enzymes deserves
special attention in this respect. L-fucose isomerase was
described as expressed at high levels in the GM of
healthy individuals in two earlier studies [5, 33]; further-
more, both L-arabinose and uronate metabolism were
found to be particularly active in one of these previously
analyzed human cohorts [33]. Here, we were also able to
assign these metabolic functions to the main microbial



Tanca et al. Microbiome (2017) 5:79

taxa actively expressing them, showing a general active
involvement of Faecalibacterium, Bacteroides, and
Prevotella (at different extents) both in the aldose/ketose
interconversion and in the uronate pathway, and pecu-
liar (and possibly interrelated) roles of other genera in
specific enzymatic activities (e.g., isomerization of L-ara-
binose and xylose for Bifidobacterium, L-fucose and
xylose for Ruminococcus). It is also worth noting that
enzymes involved in methanogenesis and sulfate reduc-
tion were detected at much lower abundance when com-
pared to GMs from other human cohorts [7], or even
from different hosts, such as murine models [19],
highlighting the impact of genetics, diet, and gut anat-
omy on the GM structure and metabolic functions,
which can be captured and quantified by means of
(multi-)meta-omic approaches.

The choice of a proper sequence database is a key
issue in MP, as it might have a strong influence both on
identification and annotation yields [48—50]. Recently,
we observed that the use of experimental MG sequences
as MP databases can be useful when dealing with human
samples, and that employing population-based databases
(i.e., combining all MG sequences from the population
under study) provides better results than sample-
matched databases [21]. In keeping with these indica-
tions, a population-based database, containing all MG
read sequences retrieved from the same cohort under
study, was used in this work, with the aim of measuring
the protein expression rate of a given metagenome. We
decided not to apply any sequence assembly strategy to
the reads, although this has been found as beneficial for
functional annotation efficiency and would have led to a
slight increase in peptide identifications (data not
shown), as it would have dramatically reduced the
dynamic range of MG counts, unless using really com-
plex and computationally demanding co-assembly strat-
egies [6]. Concerning functional annotation, we adopted
the same strategy recently applied on human and mouse
GM datasets upon critical evaluations [21]. We acknow-
ledge that the global functional annotation yield of MG
reads presented here is rather low, although the presence
of a considerable amount of unknown and poorly anno-
tated functions is a known issue in metaproteomics.
Concerning taxonomic classification, the global annota-
tion yield was satisfactory, although a non-negligible
portion of functional families, having a high level of
sequence homology within related taxa, could only be
mapped to a specific phylum, but not to lower levels
(e.g., genus). This appears to be likely due to intrinsic
limitations of both shotgun mass spectrometry (being
the length of tryptic peptides quite limited) and the low-
est common ancestor approach used for annotation
(which is not able to discriminate among closely related
orthologs). Improved taxonomic and functional
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annotation yields might be expected using different se-
quencing platforms allowing for the generation of longer
reads, as well as employing novel and better performing
annotation tools and databases which are hopefully go-
ing to be released in the near future. Finally, we cannot
also ignore a possible impact of technical variability on
the results (although Illumina sequencing protocols, as
well as the shotgun MP pipeline used [19], are estab-
lished and fairly reproducible), and the use of read and
spectral counts as quantitative measure of abundance
should be recognized as an estimation, although quite
robust and widely used [51, 52], rather than an actual
quantification.

Conclusions

We found that a considerable divergence exists between
functional potential and expression in the GM of a
healthy human cohort. Furthermore, our results give
insights into the understanding of active functions and
metabolic tasks of a “normal” GM, highlighting the over-
all key importance of butyrate production. A detailed
picture is also provided about the specific contribution
of GM taxa to the main functional activities, focusing on
carbohydrate metabolism. Our data suggest that caution
should be used before drawing conclusions on the actual
GM functional activity based on metagenomic data, and
support MP as a valuable approach to investigate the
functional role of the GM in health and disease.

Methods

Samples

Stool samples were collected from 15 healthy Sardinian
volunteers (8 females and 7 males) from the SardiNIA
cohort population. Briefly, the SardiNIA study investigates
genotypic and phenotypic aging-related traits in a longitu-
dinal manner. All residents from 4 towns (Lanusei, Arzana,
IIbono, and Elini) in a valley in Sardinia (Italy) were invited
to participate. Since November 2001, a total of 6921 indi-
viduals aged 18-102 (>60% of the population eligible for
recruitment in the area) were recruited and the majority of
them (n = 6602) have been assessed for ~13.6 million gen-
etic variants [15]. As detailed in Additional file 1: Table S1,
the median age of the studied subjects at the time of sam-
pling was 39 years (range 22—48), while their median body
mass index (BMI) value was 23.2 (range 18.4—31.2), with a
global distribution widely comparable to that of the general
Italian population at the time of sampling (source: ISTAT
2014). All samples were immediately stored at —80 °C, then
transferred to the Porto Conte Ricerche laboratories in dry
ice, and stored again at —80 °C until use. Then, samples
were thawed at 4 °C and, from each of them, two equal
stool portions (weighing approximately 250 mg each) were
collected, of which the first was subjected to DNA
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extraction for MG analysis and the second underwent pro-
tein extraction for MP analysis.

DNA sample preparation and metagenome sequencing
DNA extraction was undertaken using the QIAamp
DNA Stool Mini Kit (Qiagen, Hilden, Germany), according
to the manufacturer’s protocol.

Libraries were constructed according to the Nextera
XT kit (average insert size ~700 bps) and sequenced
with the HiScanSQ sequencer (both from Illumina, San
Diego, CA, USA), using the paired-end method and 93
cycles of sequencing.

Metagenome bioinformatics

Merging and filtering of paired reads were carried out
using tools from the USEARCH suite v.8.1.1861 [53, 54]
as described previously [21]. The mean length of the
paired-end merged reads was 134 bps. Since sequencing
depth may affect estimation of the relative abundances
of gene categories, filtered reads were subjected to ran-
dom subsampling using the fastx_subsample command
(sample_size 200000). A subsequent evaluation of the
taxonomic and functional information depth revealed
that 96% of taxa and 98% of KEGG functions with rela-
tive abundance >0.01% in the non-subsampled dataset
were maintained upon subsampling. Taxonomic annota-
tion was performed using MEGAN v.5.11.3 [55]. Read
sequences were preliminary subjected to DIAMOND
(v.0.7.1) search against the NCBI-nr DB (2016/03 update),
using the blastx command with default parameters [56].
Then, DIAMOND results were parsed using MEGAN to
perform lowest common ancestor classification according
to default parameters.

Functional annotation was carried out through a DIA-
MOND blastx search (top hit and e-value threshold 107°)
against bacterial sequences from the UniProt/Swiss-Prot
database (release 2015_12), followed by retrieval of KEGG
orthologous group information associated with each
UniProt/Swiss-Prot accession number [57].

The relative abundance of a taxon/function in a sub-
ject was calculated by summing the number of reads
assigned to that taxon/function and then by dividing the
taxon/function read count by the total read count of the
subject. Only taxa and functions with a relative abun-
dance higher than 0.01% were considered for subsequent
differential analysis.

Protein sample preparation and mass spectrometry
analysis

Samples were resuspended by vortexing in an SDS-
based extraction buffer, heated, and then subjected to a
combination of bead-beating and freeze-thawing steps,
as illustrated elsewhere [19]. Protein extracts were re-
duced, alkylated, and digested on-filter according to the
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filter-aided sample preparation (FASP) protocol [58],
with slight modifications reported earlier [59].

An LTQ-Orbitrap Velos mass spectrometer (Thermo
Scientific, San Jose, CA, USA) interfaced with an UltiMate
3000 RSLCnano LC system (Thermo Scientific) was used
for LC-MS/MS analysis. Peptide separation by LC was
carried out as previously described [19], while the mass
spectrometer was set up in a data-dependent MS/MS
mode with HCD as fragmentation method, as detailed
elsewhere [59].

Metaproteome bioinformatics

Peptide identification was performed using Proteome
Discoverer (version 1.4; Thermo Scientific), with
Sequest-HT as search engine and Percolator for peptide
validation (FDR <1%). Search parameters were set as
described previously [60], while the sequence database
was composed of the open reading frames (ORFs) found
using FragGeneScan (v.1.19, with the training for Illumina
sequencing reads with about 0.5% error rate) [61] starting
from the MG reads obtained in this study, upon clustering
at 100% using the dedicated USEARCH tool (25,328,860
sequences in total).

All ORFs matched with at least an MS spectrum upon
database searching (average length 42 amino acids) were
subjected to taxonomic and functional classification,
following the same procedure described above for the
whole metagenome sequences (“Metagenome bioinfor-
matics” section), except using the DIAMOND blastp
command instead of blastx.

The relative abundance of a taxon/function in a subject
was calculated by summing the number of MS spectral
counts matched to all ORFs assigned to that taxon/func-
tion and then by dividing the taxon/function count by the
total MS spectral counts for all taxa/functions detected in
that subject (so that the sum of the abundances of all
taxa/functions detected in each subject is 1). Only taxa
and functions with a relative abundance higher than
0.01% were considered for subsequent differential analysis.

Statistical analysis and graph generation

Bray-Curtis dissimilarity values were computed using
the R package “vegan.” The Wilcoxon signed-rank test
(R package “stats”) was applied with continuity correc-
tion to compare Bray-Curtis dissimilarity values between
MG and MP. The extent of differential abundance of
each feature between two groups (MG versus MP or
Firmicutes versus Bacteroidetes) was calculated for each
subject and expressed as a relative abundance log ratio,
using a correction factor (CF = 107°) to eliminate discon-
tinuity due to missing values. The global log ratio was
intended as the mean of the log ratios calculated for each
subject. The sets of log ratios were further tested for sig-
nificant deviation from zero using the one-sample ¢ test,
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and an FDR correction was performed on the nominal
two-tailed P values following the Benjamini-Hochberg
method (@ =0.05), as reported previously [7], using the
SGoF+ tool v.3.8 [62].

PCA plots and heatmaps were generated using ClustVis
(http://biit.cs.ut.ee/clustvis) [63], boxplots were created
using BoxPlotR (http://shiny.chemgrid.org/boxplotr) [64],
GraphPad Prism (v.5.03) was employed for bar graph gen-
eration, and cladograms were produced using GraPhlAn
[65] and edited using Inkscape (https://inkscape.org).
KEGG pathway maps [66] were customized by uploading
KO numbers through the “user data mapping” function
on the KEGG website (http://www.kegg.jp).

Additional files

Additional file 1: Table S1. Gender, age, and BMI of the human
subjects selected for the study. Table S2. Metrics of metagenome and
metaproteome analysis. Table S3. Taxonomic and functional annotation
yields. Table S4. Percentage of taxa and functions with differential
abundance between the human gut metagenomes and metaproteomes
analyzed in this study. Table S5. Percentage distribution of conserved
and variable features within the human gut metagenomes and
metaproteomes analyzed in this study. (DOCX 35 kb)

Additional file 2: Figure S1. Principal component analysis plots related
to taxonomic and functional features. MG data are in blue, while MP data
are in red. Each dot (with different shape) represents a different human
subject. (A) phyla; (B) genera; (C) KOGs; (D) KOG-phylum combinations.
(PNG 2001 kb)

Additional file 3: Dataset S1. Abundance and differential data (MG
versus MP) at phylum, class, order, family, genus, KOG, KOG/phylum, and
KOG/genus level. (XLSX 3588 kb)

Additional file 4: Figure S2. Metabolic functions with differential
abundance between MP and MG datasets mapped in the KEGG carbon
metabolism pathway. Red arrows indicate enzymes with significantly
higher abundance in the MP dataset, while blue arrows indicate enzymes
with significantly higher abundance in the MG dataset. (PNG 76 kb)

Additional file 5: Dataset S2. Relative abundance and differential
analysis outputs concerning Firmicutes and Bacteroidetes KOGs,
according to MG and MP data. (XLSX 101 kb)

Additional file 6: Figure S3. Metabolic functions with differential
abundance between Firmicutes and Bacteroidetes according to the MG
dataset, mapped in the KEGG carbon metabolism pathway. Purple arrows
indicate genes with significantly higher abundance in Firmicutes, orange
arrows indicate genes with significantly higher abundance in
Bacteroidetes, and gray arrows indicate genes detected in one or both
phyla but with no differential abundance. (PNG 37 kb)

Additional file 7: Figure S4. Metabolic functions with differential
abundance between Firmicutes and Bacteroidetes according to the MP
dataset, mapped in the KEGG carbon metabolism pathway. Purple arrows
indicate proteins with significantly higher abundance in Firmicutes,
orange arrows indicate proteins with significantly higher abundance in
Bacteroidetes, and gray arrows indicate proteins detected in one or both
phyla but with no differential abundance. (PNG 38 kb)
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