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Abstract

Background: Campylobacter jejuni is the leading antecedent infection to the autoimmune neuropathy Guillain-Barré
syndrome (GBS), which is accompanied by an autoimmune anti-ganglioside antibody attack on peripheral nerves.
Previously, we showed that contrasting immune responses mediate C. jejuni induced colitis and autoimmunity in
interleukin-10 (IL-10)-deficient mice, dependent upon the infecting strain. Strains from colitis patients elicited T
helper 1 (Ty1)-dependent inflammatory responses while strains from GBS patients elicited Ty 2-dependent
autoantibody production. Both syndromes were exacerbated by antibiotic depletion of the microbiota, but other
factors controlling susceptibility to GBS are unknown.

Methods: Using 16S rRNA gene high-throughput sequencing, we examined whether structure of the gut microbial
community alters host (1) gastrointestinal inflammation or (2) anti-ganglioside antibody responses after infection
with C. jejuni strains from colitis or GBS patients. We compared these responses in C57BL/6 mice with either (1)
stable human gut microbiota ("“microbiota) transplants or (2) conventional mouse microbiota (“°™“microbiota).

Results: Inoculating germ-free C57BL/6 wild-type (WT) mice with a mixed human fecal slurry provided a murine
model that stably passed its microbiota over >20 generations. Mice were housed in specific pathogen-free (SPF)
facilities, while extra precautions of having caretakers wear sterile garb along with limited access ensured that no
mouse pathogens were acquired. ™microbiota conferred many changes upon the WT model in contrast to previous
results, which showed only colonization with no disease after C. jejuni challenge. When compared to “°™microbiota mice
for susceptibility to C. jejuni enteric or GBS patient strains, infected "“microbiota mice had (1) 10-100 fold increases in C.
Jjejuni colonization of both strains, (2) pathologic change in draining lymph nodes but only mild changes in colon or cecal
lamina propria, (3) significantly lower Th1/Th17-dependent anti-C. jejuni responses, (4) significantly higher IL-4 responses
at 5 but not 7 weeks post infection (P), (5) significantly higher Th2-dependent anti-C. jejuni responses, and (6) significantly
elevated anti-ganglioside autoantibodies after C. jejuni infection. These responses in "“microbiota mice were correlated
with a dominant Bacteroidetes and Firmicutes microbiota.
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another factor controlling susceptibility to GBS.

Gastrointestinal inflammation, Broad-spectrum antibiotics

Conclusions: These data demonstrate that "“microbiota altered host-pathogen interactions in infected mice, increasing
colonization and Th-2 and autoimmune responses in a C. jejuni strain-dependent manner. Thus, microbiota composition is

Keywords: Campylobacter jejuni, Guillain-Barré syndrome, Commensal microbiota, Mouse models, Autoimmunity,

Background

Dysbiosis, the depletion of beneficial organisms in the gut
microbiota, has been implicated in the manifestation of
several autoimmune and chronic inflammatory diseases.
Both autoimmune diseases and chronic inflammatory dis-
eases are characterized by destruction of tissues and func-
tional impairment modulated by immune mechanisms
[1-3]. The microbiota modulates host immune responses
and affects the production of cytokines, antibodies, and
antimicrobial peptides that target pathogens for removal
[4, 5]. Microbial regulation of these immune responses
highlights the importance of host-microbiota mutualism.
Thus, several autoimmune diseases likely have origins in
dysbiotic microbiota or abnormal mucosal barrier function
including inflammatory bowel disease (IBD) [6], type 1
diabetes [7], multiple sclerosis [8, 9], and Reiter’s arthritis
[10, 11]. A substantial number of autoimmune diseases
including Guillain-Barré syndrome [12], Miller-Fisher
syndrome [13], and Lyme arthritis [14] have been
linked to previous infection with pathogenic organisms
[15]. Considerable effort has been made to understand
how infection with pathogenic microorganisms results in
a loss of tolerance and initiates autoimmunity [15, 16].
One leading hypothesis is that molecular mimicry, a simi-
larity between molecular structures on the infectious
agent and host tissues, results in cross-reactivity [17, 18],
which in turn leads to autoimmune attack.

Campylobacter jejuni, a leading cause of bacterial gastro-
enteritis worldwide, precedes at least one-fourth of all
cases of the acute peripheral neuropathy Guillain-Barré
syndrome [19-21]. It is hypothesized that molecular mim-
icry of host nerve gangliosides such as GM1a, GD1a, and
GQ1b by the outer core of lipooligosaccharides on the
surface of C. jejuni initiates cross-reactive antibody re-
sponses resulting in complement-mediated nerve damage
[22]. Other factors may also contribute to Guillain-Barré
syndrome (GBS) disease. When enteric disease is severe,
C. jejuni infection may be treated with fluoroquinolone or
macrolide antibiotics; however, increasing resistance to
these drugs has been reported [23]. Notably, antibiotic-
treated and gnotobiotic mice display increased susceptibil-
ity to C. jejuni colonization and enhanced incidence of
gastrointestinal inflammation [24-26], leading to the
hypothesis that components of the resident mouse gut

microbiota protect against Campylobacter-mediated
disease [26]. Moreover, approximately two-thirds of GBS
patients report gastrointestinal or respiratory inflam-
mation in the weeks preceding neurological symptoms
[13, 27-29]; thus, host determinants of inflammation
including gut microbiota may play a critical role in
GBS development. Experimentally, normal flora of mice
play a decisive role in preventing C. jejuni-mediated in-
flammation, thus raising the question of whether murine
models carrying certain human microbiota would show
similar susceptibility to enteric disease shown in depleted
microbiota models [24—26].

C57BL/6 IL-10""* and IL-107~ mice function as C.
jejuni colonization and colitis models, respectively [30].
C57BL/6 IL-107"~ mice orally infected with isolates from
patients with colitis had significantly upregulated type 1
and 17 but not type 2 cytokines in the colon coincident
with infiltration of phagocytes, T cells, and innate
lymphoid cells (ILCs) [31]. Anti-C. jejuni antibodies
generated in this response were of different isotypes;
type 1 responses produced IgG2c antibodies, while type
17 responses produced IgG2b antibodies. However, C.
jejuni strains from GBS patients induced mild colitis in
C57BL/6 IL-10""~ mice associated with blunted type 1/17
but enhanced type 2 responses. Only type 2 antibodies
cross-reacted with nerve gangliosides reflecting the roles
of Th1/17 responses in killing intracellular pathogens and
of Th2 responses in the induction of autoimmunity [31].
These type 2 antibodies were of the IgG1 isotype. We
chose the C57BL/6 model to examine the role of the
microbiome in eliciting autoimmunity.

To determine if a humanized microbial community is
sufficient to alter the host inflammatory and auto-
immune response to infection with C. jejuni, we infected
C57BL/6 humanized ("™microbiota) and conventional
microbiota (“°™microbiota) colonized mice with a C.
jejuni enteric disease patient strain (11168) or GBS
patient strain (260.94). Using an established and robust
experimental inoculation system and a defined set of
disease indicators [30—32], we measured both inflamma-
tory and autoimmune endpoints. We hypothesized that
Muicrobiota mice would exhibit (1) enhanced
colonization by C. jejunmi, (2) higher levels of anti-
ganglioside antibodies, and (3) increased lesions in both
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the GI tract and peripheral nerves compared to mice
with ““microbiota. To compare the microbiota of
Humicrobiota and “°™microbiota mice, we characterized
the fecal microbiota using 16S rRNA gene amplicon
analysis. To examine whether the expected microbiota-
dependent immune responses resulted in inflammatory
changes in the gut (assessed by gross pathology, histo-
pathology, and colon homogenate IFNy and IL-4 levels)
or elevated anti-ganglioside autoantibody levels (deter-
mined by plasma antibody ELISA), we infected both
Hmicrobiota and “°™microbiota mice with C. jejuni
11168 and C. jejuni 260.94. Here, we show that infected
Humicrobiota mice had significantly higher levels of C.
jejuni colonization, demonstrable clinical signs of C.
jejuni gastroenteritis, and shifts in their adaptive im-
mune responses toward a type 2 biased antibody re-
sponse with significantly elevated anti-ganglioside
autoantibodies when compared to ““™microbiota mice.
These outcomes were affected by the characteristics of
the infecting C. jejuni strain as well as by the compos-
ition of the gut microbiota. Interestingly, "™microbiota
mice also had diminished activity in the open-field test
that was not associated with infection status.

Results

Overview

Inoculating germ-free C57BL/6 wild-type (WT) mice
with a mixed human fecal slurry provided a murine
model that stably passed its microbiota over >20 genera-
tions. In two separate experiments (Pilot, Experiment 1),
we show that this "microbiota conferred many changes
upon the WT model that previously showed only
colonization with no disease after C. jejuni challenge.
HYmicrobiota mice infected with either C. jejuni 11168
from a patient with enteritis or C. jejuni 260.94 from a
patient with GBS had significant increases in
colonization levels compared to infected “°*microbiota
mice. These two groups of infected "“microbiota mice
also had pathologic changes in draining lymph nodes,
and colon and cecal lamina propria that were not seen
in infected ““™microbiota mice. The immunologic
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responses to C. jejuni were also altered in infected "*mi-
crobiota mice with significantly lower Th1/Th17-
dependent and higher Th2-dependent anti-C. jejuni
responses. The presence of higher Th2-dependent anti-
C. jejuni responses were correlated with significantly
elevated anti-ganglioside autoantibodies after C. jejuni
infection. These responses in "“microbiota mice were
correlated with a dominant Bacteroidetes and Firmicutes
microbiota. Both experiments were conducted similarly
except that mice were euthanized and necropsied 5 weeks
after C. jejuni inoculation in the pilot experiment and
7 weeks after C. jejuni inoculation in Experiment 1.

Pilot experiment

Fecal microbiota

To determine if handling (SPF v sterile) altered the micro-
biota of "™microbiota mice, we compared the fecal micro-
biota of "microbiota and “°microbiota mice by qPCR.
For this analysis, we amplified fecal DNA using 16S rRNA
gene primers specific for Clostridium group 14, Clostridium
group 1, Bacteroidetes, and Enterobacteriaceae. No statisti-
cally significant differences were detected in these four
bacterial groups between "microbiota mice sham inocu-
lated with tryptose soya broth (TSB) kept under specific
pathogen-free (SPF) conditions and "microbiota mice
sham inoculated with TSB kept under sterile conditions
(Additional file 1: Figure S1).

Disease indicators

To determine if Mmicrobiota mice were (1) suscep-
tible to C. jejuni gastroenteritis and (2) developed C.
jejuni  strain-specific antibody responses to GBS
patient strains in the Pilot Experiment, we infected
mice with either strain 11168 from an enteritis pa-
tient or strain 260.94 from a GBS patient or TSB
sham inoculated them with the vehicle (Table 1).
Veterinarians and trained animal handlers monitored
mice for clinical signs daily. A significant difference
in body weight was detected between Hu-260.94 and
Conv-11168 mice at the time of necropsy (Fig. 1la). A
single interleukin-10 (IL-10)-deficient infected mouse
with conventional microbiota (Conv-IL-1077-11168

Table 1 Experimental design: pilot experiment. C57BL/6 wild-type (C57BL/6) or congenic C57BL/6 IL-10-deficient (C57BL/6 IL.-1077)
mice with humanized (Hu) or conventional (Conv) microbiota were inoculated with TSB, C. jejuni 260.94, or C. jejuni 11168 and subjected
to sterile (Ster) or specific pathogen-free (SPF) handling for the duration of the experiment; 5 weeks post-inoculation

Group Handling Genotype Microbiota Inoculum # of mice
Hu-TSB (Ster.) Sterile C57BL/6 Humanized TSB 10
Hu-TSB (SPF) SPF C57BL/6 Humanized TSB 10
Hu-260.94 Sterile C57BL/6 Humanized 260.94 10
Hu-11168 Sterile C57BL/6 Humanized 11168 10
Conv-11168 SPF C57BL/6 Conventional 11168 10
Conv-IL-107711168 SPF C57BL/6 IL-107~ Conventional 11168 10
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Fig. 1 Disease indicators: Pilot experiment. (a) body weight at necropsy, (b) clinical signs, (c) gross pathology at necropsy, (d) number of mice
that are culture positive for C. jejuni in cecum or colon, and semi-quantitative representation of culturable C. jejuni in (e) colon and (f) cecum at
necropsy. Panels g-m represent anti-Campylobacter (g-j) and anti-ganglioside antibodies (k-m) detected by indirect ELISA. Bars indicate statistical
significance. Data were analyzed by Kruskal-Wallis test on ranks and Dunn's post-test where appropriate; p<0.05 considered statistically significant.
The microbiota type of the mouse is indicated as Hu (Human microbiota) or Conv (Conventional microbiota) followed by their treatment group

(SPF)) displayed severe clinical signs (Fig. 1b). Diar-
rhea on fur and rough hair coat are the clinical signs
most often detected. Gross pathology was mild in all

cases, infrequent with the exception of Conv-IL-10
~/~-11168 mice, and restricted to infected mice in all
cases (Fig. 1c). Interestingly, other than the IL-10-
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deficient mice, only infected ““microbiota mice

showed gross pathology including thickened cecal and
colon wall and enlarged ileocecocolic lymph nodes. C.
jejuni 11168 infected C57BL/6 genetically wild-type
and IL-107~ were used as gastroenteritis controls,
due to their well-characterized reputation as colitis
resistant (wild-type) and colitis susceptible (IL-1077)
[30, 31]. C. jejuni could be cultured from mice in all
infected groups (Fig. 1d—f); however, C. jejuni could
be cultured from only 6 of 10 IL-10”~ mice at nec-
ropsy. All IL-107~ mice had C. jejuni-positive fecal
samples by culture at semi-quantitative levels of 3 or
4, on day 17 after inoculation showing that all experi-
enced significant colonization. In comparison, 100%
colonization at necropsy was achieved in C. jejuni-in-
fected ™microbiota and “°™microbiota wild-type
(WT) mice, although the WT and IL-10”~ mice were
both derived from the same source (The Jackson La-
boratory, Bar Harbor, MA).

Mice with "“microbiota had greater T;2-dependent IgG1
responses to the enteric strain of C. jejuni, but lower such
responses to the GBS strain

To assess specific immune reactivity and cross-reactive
antibody responses, we measured anti-C. jejuni and anti-
ganglioside antibody responses in infected mice by indir-
ect enzyme-linked immunosorbent assay (ELISA). Pres-
ence of a human microbiota altered the response to the C.
jejuni 11168 enteritis strain. Anti-C. jejuni 1gG2c (Tyl as-
sociated) and IgG2b (Tyl7 associated) antibodies to
11168 were elevated compared to the TSB sham inocu-
lated controls in "“microbiota C57BL/6 mice (Fig. 1g, i).
However, the degree of elevation of both of these antibody
isotypes was significantly lower in "“microbiota mice than
in “°“microbiota mice given the same C. jejuni strain
(Fig. 1g, i). Furthermore, "™microbiota mice given C.
jejuni 11168 mounted a significantly higher anti-Campylo-
bacter T helper 2 (Ty2)-biased IgG1 response, which was
virtually absent in “°microbiota mice (Fig. 1j). Thus,
having this human microbiota was sufficient to skew T
helper cell responses to the enteric strain of C. jejuni to-
ward an antibody-mediated adaptive response. Some
Humicrobiota mice infected with the C. jejuni 260.94 GBS
strain had mild elevations in mixed Ty1,/T17/TH2 anti-
body responses, but these were not significant when com-
pared to uninfected controls (Fig. 1g—j).

Mice with "“microbiota had greater anti-ganglioside
autoantibody responses than mice with “"microbiota
Presence of this human microbiota was sufficient to
stimulate anti-ganglioside autoantibodies against the C.
jejuni 11168 enteric strain that has not been previously
associated with development of GBS. There were
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significantly increased anti-GDla and anti-GM1la/GQlb
IgG1 autoantibodies in "microbiota mice infected with
the C. jejuni 11168 enteric strain compared to “°™micro-
biota mice given the same strain (Fig. 11, m). Also, despite
the low anti-C. jejuni IgG1 antibody responses to the C.
jejuni 260.94 strain, the I[gG1-dependent anti-ganglioside
antibody responses (GM1, GDla, GM1/GQlb) to the
GBS strain 260.94 were significantly elevated in "™micro-
biota mice compared to ““*microbiota mice given strain
11168 (Fig. 1k—m). Thus, infection with either of C. jejuni
strains 260.94 or 11168 elicited anti-ganglioside autoanti-
bodies, but only in " microbiota mice. Tj2-associated
(IgG1) anti-ganglioside responses were elevated in some
cases independent of inoculation status, suggesting a T;2-
associated antibody bias in "microbiota mice (Fig. 11, m).
This is reflected in the responses seen in TSB sham-
inoculated uninfected control mice managed by either
sterile or SPF techniques (Fig. 11, m). This suggests that
other pathogen-associated molecular patterns (PAMPs)
from the microbiota may also cause ganglioside mimicry.

Experiment 1

HYmicrobiota mice have a distinct microbiota compared
to “"microbiota mice

In Experiment 1 (Table 2), to compare microbiota struc-
ture in "™microbiota and “°microbiota, infected and
TSB sham inoculated mice, we analyzed their fecal
microbiota with 16S rRNA gene amplicon analysis.
Analysis revealed that 4 of 5 phyla, 9 of 11 classes and
32 of 52 genera detected in the human fecal slurry used
to produce the "microbiota mice could be detected in
the ™ microbiota mice utilized in this study. The phylum
Verrucomicrobia constituted less than 2% of the reads
from the original inoculum and could not be found in
HUmicrobiota mice used in this experiment. Noteworthy
was that clustering of groups based on Bray-Curtis dis-
similarity statistic resulted in separation by microbiota
but not group assignments according to C. jejuni or TSB
sham inoculation (Fig. 2).

Table 2 Experimental Design: Experiment 1. C57BL/6 genetically
wild-type mice with humanized (Hu) or conventional (Conv)
microbiota were inoculated with TSB, C. jejuni 260.94, or C. jejuni
11168 and subjected to specific pathogen-free (SPF) handling
for the duration of the experiment; 7 weeks post-inoculation

Group Genotype  Microbiota Inoculum # of mice
Hu-TSB C57BL/6 Humanized  TSB 10
Hu-260.94 C57BL/6 Humanized  C jejuni 26094 10
Hu-11168 C57BL/6 Humanized  C jejuni 11168 10
Conv-TSB C57BL/6 Murine TSB 10
Conv-26094  C57BL/6 Murine C jejuni 26094 10
Conv-11168 C57BL/6 Murine C. jejuni 11168 10
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There was an increased abundance of Lactobacillus in
“"“microbiota mice

Five bacterial orders had an average abundance of 5% or
greater in one or more groups of mice; Bacteriodales,
Bifidobacteriodales, Clostridiales, Lactobacillales, and
Erysipelotrichales (Fig. 3a—e). Bacteriodales was a minor
component of the inoculum, constituting approximately
3.3% of the sequences, but a major component of "™mi-
crobiota (~57-60%) and “™microbiota (28-43%)
(Fig. 3a). Within the order Bacteriodales, the ™micro-
biota was dominated by Bacteroidaceae (~58-63% of
Bacteriodales) yet it was only a minor component of
the conventional murine microbiota (~0.02-0.07%
of Bacteriodales). In contrast, within the order
Bacteriodales, the murine “°™microbiota was domi-
nated by Porphyromonadaceae (~98% of Bacterio-
dales). Bifidobacteriodales constituted ~7% of the
inoculum, was completely absent in the "“micro-
biota mouse samples, and was a minor component

of the “°™microbiota (~0.6-1.6%) (Fig. 3b). All
reads from the order Bifidobacteriodales were
assigned to the family Bifidobacteriaceae. The inoculum
was dominated by the order Clostridiales (~70%), which
was less abundant in all of the mouse fecal samples but
present in similar abundances in "™microbiota (~28—38%)
and “““microbiota (22-42%) samples (Fig. 3c). Within
the order Clostridiales, Lachnospiraceae was the dominat-
ing family in all groups. Erysipelotrichales was also present
in all mice and was more abundant in ““microbiota mice
than in the inoculum or ™microbiota mouse samples; in-
oculum (7.2%), M microbiota (~3.6—4.5%), and “°“micro-
biota (~10.4-15.1%) (Fig. 3d). Lactobacillales was present
in all groups but more abundant in the “°™microbiota
mice than in the inoculum or in "™microbiota mice;
inoculum (0.68%), ™microbiota (~0.002—1.7), and €™ mi-
crobiota (~2.9-6.3%) (Fig. 3e). Within the order Lactoba-
cillales, "™ microbiota mice had no or 6000-fold less
Lactobacillaceae than ““™microbiota mouse samples. In
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level with the exception of the family Lactobacillaceae. Orders constituting 25% of the average abundance for a single group were included. The
average percentage of reads within each order that were assigned to families are represented as proportions of the orders bar

all cases, greater than 97% of the reads in the family Lacto-
bacillaceae were assigned to the genus Lactobacillus
(Fig. 3f). At the order level, unclassified reads could be
found in all groups; inoculum (3.7%), Hupicrobiota (~1.9—
2.4%), and “®“microbiota (~9.2—10.4%) (data not shown).

Diversity statistics showed that groups can be
distinguished by microbiota but not infection status

To determine if operational taxonomic units (OTUs)
could be separated into groups based on microbiota or
inoculation status, we assessed OTUs by alpha and beta

diversity metrics. Principal components analysis showed
that there was clear separation between "“microbiota
and “°™microbiota fecal samples (Fig. 4a) but that
microbiota composition was not affected by inoculation
status (Fig. 4b, c¢). These results are supported by
two-way ANOSIM and PERMANOVA (Fig. 4d).
Comparison of alpha diversity metrics revealed a dispar-
ity in OTUs in Hu-11168 compared to Conv-11168 (P =
0.0310) (Fig. 5a). No other disparity in alpha diversity of
OTUs existed, and this finding was not reflected in spe-
cies diversity or evenness (Fig. 5b—d).
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Fig. 4 Principal component analysis (PCA) and multivariate statistics of 165 rRNA taxonomy. PCA modeling was performed using OTU assignments.
Resulting plots show separation by microbiota (a) but not inoculum (b and ). Dots represent; dark blue = Conv-11168, blue = Conv-260.94, light blue =
Conv-TSB, dark green = Hu-11168, green = Hu-260.94, light green = Hu-TSB, and red = Inoculum. d Two-way ANOSIM and two-way PERMANOVA
indicate statistically significant differences between microbiota but not the inoculum

o

Humicrobiota

Component 2: 9.25% of variance

-2000
Component 1: 82.97% of variance

d

Two-way ANOSIM P-value
Microbiota 0.0001
Inoculum 0.2328
Two-way PERMANOVA | P-value
Microbiota 0.0001
Inoculum 0.2126

The majority of the variance between TSB sham-inoculated
HUmicrobiota and “°"microbiota mice can be attributed to
the abundance of Porphyromonadaceae, Bacteroidaceae,
and Lachnospiraceae

To determine (1) which OTUs varied in abundance
between groups and (2) the contribution of distinct
OTUs to the variance between groups, we performed
a paired T test with a Benjamin-Hochberg correction
for false discovery (http://www.biostathandbook.com/
multiplecomparisons.html) and similarity percentages
analysis. In summary, "™microbiota and “°™microbiota
samples could be distinguished by OTUs assigned to the
Bacteroidetes and Firmicutes phyla, and these phyla
contributed to 57.19 and 26.6% of the variance between
TSB sham-inoculated ™microbiota and “°™microbiota
mice, respectively (Table 3). The most abundant OTUs
contributing to the difference between the groups are
OTUs 002, the dominant OTU in the “°™microbiota

samples, and OTUs 001 and 003, which are the dominant
OTUs in the ™microbiota samples. Collectively, OTUs
001, 002, and 003 contribute 57.93% of the variance be-
tween TSB sham-inoculated "™microbiota and <™
biota mice.

Eigenvalues and loadings for the principal components
analysis shown in Fig. 4 are given in Additional file 2
Table S1 and are similar to the results of the similarity
percentages analysis. Both inspection of the scree plot
(not shown) and application of the Joliffe cutoff to the
eigenvalues indicate that the first four axes are the most
significant axes. In the PCA, the eigenvalues of the first
two axes together account for 89.6% of the variance;
loadings indicate that the first axis of the PCA, which
separates humanized from conventional microbiota
mice, is dominated by OTUs 2 and 3 (unclassified mem-
ber of the family Prophyromonadaceae and a member of
the genus Bacteroides, respectively). Axis 2 is dominated

micro-
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by OTUs 1 and 3 (unclassified member of the family
Lachnospiraceae and a member of the genus Bacter-
oides, respectively).

Additional file 3: Table S2 lists a relatively small num-
ber of OTUs identified by mothur as significantly associ-
ated with either humanized or conventional microbiota
mice (i.e., indicator OTUs). Because the genus Lactobacil-
lus appears in the conventional microbiota list, it is tempt-
ing to speculate that the organism represented by this
OTU is protective against Campylobacter colonization or
modulates immune responses in conventional microbiota
mice or both. However, it is important to note that not all
species, or even all strains within a species, of the genus
Lactobacillus have probiotic effects. It is equally possible
that some process carried out by one or more of the
organisms represented by the OTUs in the humanized
microbiota mice list enables Campylobacter colonization
or modulates immune responses toward Th2 pathways in
humanized microbiota mice.

Disease indicators: "“microbiota mice displayed increased
susceptibility to intestinal inflammation

To compare the progression and severity of disease in
experimental mice, we monitored all mice for (1) clinical

signs, (2) gross pathology, and (3) disparity in body
weight. All mice were monitored closely by veterinarians
to determine if euthanasia was required prior to the
scheduled 7-week endpoint. These determinations were
based on hunching, lethargy, and watery or bloody
diarrhea in accordance with a standardized scoring
system [30] available from the Michigan State University
Microbiology Research Unit Food and Waterborne
Diseases Integrated Research  Network-sponsored
Animal Model Phenome Database for gastrointestinal
disease and another score sheet developed to monitor
development of neurological disease that might have de-
veloped in mice given the GBS-associated C. jejuni strain
260.94 [33]. No severe disease indicators were detected
during the experimental course that exceeded the scor-
ing limit of 9 for humane euthanasia, thus all of the mice
were maintained for the entirety of the experiment. No
significant differences in body weight were detected,
although some "™microbiota mice were heavier than
C°"™microbiota mice in all groups (Fig. 6a). Clinical signs
were detected mainly in two groups, those that were
Humicrobiota mice infected with either C. jejuni 260.94
or 11168 (Fig. 6b). Six of ten "microbiota mice infected
with C. jejuni 260.94 had episodes of soft feces, hunched
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Fig. 6 "“microbiota mice are more susceptible to C. jejuni colonization, Gl inflammation and antiganglioside antibodies than “™microbiota mice.
Data represent (a) body weight at necropsy, (b) clinical signs, (c) gross pathology, (d) ileocecocolic histopathology scores, (e) culturable C. jejuni in
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statistically significant

posture, rough hair coat, and reduced activity over the
7-week period; six of ten "microbiota mice infected
with C. jejumi 11168 also had episodes of soft feces,
hunched posture, rough hair coat, and reduced activity
over the 7-week period. During this period, only one of
ten “°™microbiota mice given C. jejuni 260.94 or 11168
had soft feces and no other clinical signs. Control mice
had virtually no clinical signs except for one sham-
inoculated “°™microbiota mouse judged to have reduced
activity on one occasion and two sham-inoculated "™mi-
crobiota mice judged to have a rough hair coat on one

occasion. Four of ten C. jejuni 260.94 infected and five
of ten C. jejuni 11168 infected "“microbiota mice had
severe gross pathological changes in the GI tract (Fig. 6¢).
In many of these cases, the ileocecocolic lymph node,
spleen, and sometimes the mesenteric lymph nodes were
enlarged. One C. jejuni 11168 infected "™microbiota
mouse had a slightly thickened colon wall. To determine
if the level of C. jejuni differed between "microbiota
and “°“microbiota mice, a potential cause of enhanced
GI gross pathology, we quantified C. jejuni in both the
cecum and colon. Colonization was significantly higher
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in ™microbiota than “°microbiota mice (Fig. 6e, f).

These data were supported by a 10- and 100-fold increase
in Campylobacter reads in "microbiota fecal microbiota
analysis of mice infected with C. jejuni strains 11168 and
260.94, respectively, compared to ““microbiota fecal
microbiota samples (Fig. 6g). We processed the ileoceco-
colic junctions for histopathologic evaluation of the ileum,
cecum, and colon and found that although a few C57BL/6
Humicrobiota mice had higher scores than their congenic
“°™microbiota counterparts, gastrointestinal lesions were
mild and not significantly different between groups. Thus,
the main changes associated with experimental C. jejuni
infections were in secondary lymphoid tissues including
the ileocecocolic lymph nodes, the mesenteric lymph
nodes, and the spleen in "“microbiota mice.

Mice with "'microbiota had greater T;2-dependent IgG1
responses to both enteric and GBS strains of C. jejuni

To assess specific immune reactivity and cross-reactive
antibody responses, we measured anti-C. jejuni and
anti-ganglioside antibody responses in infected mice by in-
direct ELISA. Both "“microbiota and ““microbiota mice
mounted anti-C. jejuni IgG2c (Ty1 associated) and 1gG2b
(Tyl7 associated) antibody responses to 11168 when
compared to their respective TSB sham-inoculated
controls (Fig. 6h, j). However, the anti-C. jejuni 1gG2b
responses to strain 11168 in "™microbiota mice were sig-
nificantly higher than in “°microbiota mice, while the
anti-C. jejuni IgG2c responses were not significantly dif-
ferent between these groups (Fig. 6h, j). This may simply
indicate that anti-C. jejuni T helper 1 (Tyl) responses
wane faster than Tyl7 responses in this model at the
7-week time point. Yet the anti-C. jejuni IgG2c (TH1 asso-
ciated) and IgG2b (Tyl7 associated) antibody responses
to 260.94 were higher in this experiment, with "™micro-
biota mice producing significantly higher anti-C. jejuni
IgG2c responses than ““microbiota mice (Fig. 6h, j). Fur-
thermore, "microbiota mice produced significantly
higher anti-C. jejuni IgG1 responses than “°™microbiota
mice to both C. jejuni strains (Fig. 6k). In TSB sham-
inoculated mice, Ty2-associated anti-Campylobacter 1gG1
antibody responses were elevated in "microbiota mice
compared to ““microbiota mice, indicating a T};2-asso-
ciated antibody bias in "™microbiota mice that was not
associated with the presence of the inoculating bacterium
(Fig. 6k). This was consistent with results in the pilot ex-
periment. Finally, the anti-C. jejuni IgG3 responses to
strain 11168 in "“microbiota mice were significantly
higher than those seen in “°™microbiota mice given TSB
or C. jejuni 260.94 (Fig. 6i). Significant elevations in anti-
C. jejuni 1gG3 responses were seen in “°™microbiota mice
given C. jejuni 11168 compared to those given TSB or C.
jejuni 260.94 but these responses were minimal (Fig. 6i).
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Mice with "“microbiota had greater anti-GM1 ganglioside
antibody responses than mice with “°"microbiota

Based on the pilot experiment and because IgG1-specific
anti-ganglioside responses have been associated with devel-
opment of GBS in human patients, we measured anti-GM1
and GDla single ganglioside responses in Experiment 1.
Similarly to the pilot experiment results, we found that
Humicrobiota mice infected with C. jejuni 260.94 had sig-
nificantly elevated anti-GM1 IgG1 antibodies when com-
pared to “°™microbiota mice infected with the same strain
(Fig. 6l). However, unlike results in the pilot experiment,
Humicrobiota mice infected with C. jejuni 11168 had signifi-
cantly elevated anti-GM1 IgG1 antibodies when compared
to the sham-inoculated “°™microbiota mice, but not
when compared to the “°microbiota mice infected
with the same strain (Fig. 6l). This difference correlated
with slightly lower anti-Campylobacter and anti-
ganglioside antibodies at 7 weeks post infection versus
5 weeks post infection in the pilot experiment
(Figs. 1g-m and 6h-n). No significant anti-GDla or
anti-GM1/GQ1b responses were seen.

C. jejuni 11168-infected "“microbiota mice had significantly
higher IL-4 colon responses at 5 but not 7 weeks post
infection

After conducting both the pilot experiment and
Experiment 1, we processed snap frozen colon tissues
for measurement of Tyl-associated inflammatory (IFNy)
and Ty2-associated anti-inflammatory (IL-4) mRNA
levels using RT-PCR. At 5 weeks post infection (PI) in
the pilot experiment, C. jejuni 11168-infected "™micro-
biota mice had significantly higher IL-4 colon responses
when compared to TSB sham-inoculated controls and to
Co"microbiota mice infected with the same strain
(Fig. 7b). No other significant differences in cytokine
measurements were seen at either 5 or 7 weeks post in-
fection in either experiment (Fig. 7a—d). In Experiment
1, three high reactor mice were detected for IL-4 re-
sponses in the following groups, Hu-260.94 (19.4-fold
increase/HPRT compared to group mean of 1.7),
Hu-260.94 (17.8-fold increase/HPRT compared to group
mean of 1.7), and Hu 11168 (38.3-fold increase/HPRT
compared to group mean of 5.244) (Fig. 7d). There was
a single high reactor for IFNy responses in "™microbiota
mice given C. jejuni 11168 (Fig. 7c). These high reactors
correlated with C. jejumi infection status and the
otherwise low responses at 7 weeks PI likely reflect
waning of early colon responses. Subsequent analyses
were conducted to determine if C. jejuni infection ini-
tiated autoimmune responses to peripheral nerves
consistent with the predicted mechanism of GBS. To de-
termine if macrophage numbers in sciatic nerves and dorsal
root ganglia were increased in C. jejumi-infected mice
compared to controls, we immunohistochemically labeled
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these tissues with anti-F4/80 antibody and counted positive
cells. No differences in peripheral nerve lesions were
detected.

HYmicrobiota mice display hypoactivity in the open-field
test and infection alters activity in mice with
“"™microbiota

To determine if C. jejuni infection was associated with be-
havioral phenotypes indicative of enteric disease or per-
ipheral neuropathy, we recorded the activity of the
experimental mice in the open-field test. In general, mice
with "microbiota displayed diminished activity levels
compared to ““microbiota mice regardless of infection
status (Fig. 8a, b), and both groups trended toward a
decrease in activity as time progressed. Significant de-
creases in the number of quadrants crossed were
primarily dependent upon having "“microbiota; no
differences were detected within the "“microbiota
mice during the 7 weeks, and they generally displayed
low levels of activity. After week 3, no differences in
rearing behavior were detected between any groups as
mice were generally inactive.

Discussion

C. jejuni is a leading cause of bacterial diarrheal illness
and the leading antecedent infection to the autoimmune
acute peripheral neuropathy GBS [21, 34]. In previous
work, we developed mouse models of both enteric and
subsequent neurologic disease associated with C. jejuni
infection [30, 31, 33, 35]. In the experiments reported
here, we explored the influence of the gut microbiota on
these disease manifestations. After six generations of
breeding, individually housed C57BL/6 mice with a trans-
planted human microbiota were infected with C. jejuni
enteric disease or GBS patient strains. These mice retained
a microbiota distinct from that of their “““microbiota
counterparts that could be primarily distinguished by
bacteria belonging to the phyla Bacteroidetes and Firmi-
cutes. C. jejuni infection did not appear to alter the micro-
biome composition in either group (Fig. 4b, c). Moreover,
the abundance of Lactobacillus, which has been shown to
prevent C. jejuni colonization in in vivo and in vitro
models [26, 36], was at least 6000-fold greater in Convini-
crobiota than "microbiota mice. Consistent with those
results [26, 36], semi-quantitative and 16S rRNA gene
amplicon analysis showed that microbiota source affected
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C. jejuni load. Ten-fold higher C. jejumi 11168 and
100-fold higher C. jejuni 260.94 loads were detected in the
fecal microbiota of infected "™microbiota mice than their
“°™microbiota-matched counterparts (Fig. 6g). Further-
more, the presence of this “microbiota skewed adaptive
T cell responses to C. jejuni. Mice with "microbiota had
greater T1;2-dependent IgG1 responses to both enteric and
GBS strains of C. jejuni and greater anti-GM1 ganglioside
antibody responses than mice with ““microbiota. These
results confirm that this T cell skewing favored develop-
ment of autoimmune antibodies directed against nerve
gangliosides, which is a hallmark of a GBS response.
Additionally, we observed that this Humicrobiota caused

mixed Ty1/Ty17/Ty2-associated responses to occur to a
strain of C. jejuni 260.94 that was previously shown to
produce only Ty2 responses in C57BL/6 IL-107~ mice
with ““microbiota [31]. The shift in T cell responsiveness
in the experiments reported here was accompanied by the
occurrence of distinct disease manifestations in the GI tract
and the presence of anti-ganglioside antibodies in
infected ™microbiota mice as compared to the
infected or uninfected “°™microbiota mice. C. jejuni
11168 or 260.94 infected "“microbiota mice had
increased gross gastrointestinal lesions, which was not
seen previously in ““microbiota mice of the same geno-
type from the same breeding colony [31]. Overall, our
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results support the conclusion that components of the
murine microbiota play a role in colonization resistance
that is overcome in our "“microbiota model, resulting
in increased susceptibility to both inflammation and
autoimmunity.

We analyzed C. jejuni-infected mice with " microbiota
and “““microbiota for enteric inflammation and found that
Humicrobiota mice are more susceptible to C. jejuni-medi-
ated inflammation determined by having more severe gross
pathology especially enlarged lymph nodes. These results
are consistent with previous reports showing that the
microbiota is a key regulator of enteric disease in C. jejuni-
infected mice [24-26]. Despite this finding, significant
enteric histologic lesions were not found and inflammatory
cytokine levels were not significantly elevated in the
proximal colon of ™microbiota mice. These results suggest
that most of the immune reactivity was occurring in the
draining lymph nodes and not in the colon wall in most
infected mice. We previously reported that interleukin-10
deficiency  significantly increased host-inflammatory
responses to C. jejuni. Now these results indicate that
ecological shifts in the microbiota are another factor suffi-
cient to enhance host susceptibility to C. jejuni resulting in
mild enteric disease in IL-10-sufficient mice.

Infection with C. jejuni GBS patient strains is associated
with Ty2 immune responses and anti-ganglioside
antibodies in a C57BL/6 IL-10-deficient mouse model
[31]. In these experiments, "microbiota mice showed a
type 2-biased antibody response with or without infection
compared to “°™“microbiota mice. Analysis of anti-
ganglioside antibodies showed exacerbated anti-GM1 anti-
body levels following infection with C. jejuni 260.94 but
not enteric strain 11168 compared to “°microbiota mice
infected with the same C. jejuni strain. We have demon-
strated microbiota-mediated autoimmunity in C. jejuni-in-
fected mice with depleted microbiota previously (Brooks
et al. unpublished); however, this is the first study to show
that ecological shifts in a diverse microbial community are
sufficient to alter C. jejumi-mediated autoimmunity. In
fact, while Ty1/TH17 responses (IgG2c, IgG2b) to the C.
jejuni 11168 strain in "“microbiota mice are similar to
those in IL-10-deficient mice, "“microbiota mice have
more pronounced T2 responses to C. jejuni 11168 than
IL-10-deficient mice and yet displayed no demonstrable
nerve lesions of GBS. This result suggests that anti-
ganglioside antibodies alone cannot produce GBS in the
MY microbiota C57BL/6 mice where IL-10 is present. These
results, in conjunction with anti-Campylobacter-specific
antibody results show that differences in the lipooligosac-
charide outer core antigens presented on the two C. jejuni
strains are not the only factor driving enteric and GBS
phenotypes. In addition, presence of C. jejuni 11168 IgG1
antibody responses also suggest that the 11168 strain is
not strictly an enteritis-causing strain. Although it was
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taken from a human patient with acute gastroenteritis, the
possibility that a single strain could cause different mani-
festations of disease in different individuals, perhaps even
depending on the microbiota composition of those indi-
viduals, should not be discounted.

A significant decrease in activity in the open-field test
was detected in all ™microbiota mice, while overt neuro-
logical signs of GBS were not significantly elevated in the
infected versus TSB sham-inoculated groups. The open-
field test has been used as a non-invasive longitudinal
measure of quality of life that allows the investigator to
make inferences about anxiety and normal exploratory be-
havior [37-39]. It also can be used to assess ambulation
and rearing that when quantified with the JWatcher soft-
ware can provide indication of motor and proprioception
impairment. Our mice were observed by veterinarians
trained to assess neurological behavior in animals. However,
this decrease in activity was not due to infection status, nor
were there any severe clinical signs of neurologic or enteric
disease detected in the "™microbiota mice; thus we
conclude that this decreased activity is not an indicator of
nervous system disease in response to infection. Moreover,
sciatic nerves and lumbar dorsal root ganglia were dissected
and immunohistochemically labeled and macrophages
quantified to determine whether an increase in macro-
phages could be detected as a potential mechanism of
peripheral nerve damage consistent with that seen in
patients with GBS [12, 21, 40]. An increase in macrophages
in or around the nerve is indicative of complement-
dependent injury; however, no differences in macrophage
numbers were detected in our study. Furthermore, mere
changes in weight of the mice were not great enough to
explain this inactivity. Thus, our results suggest the
possibility of an influence of the microbiota on brain and
behavior, which has been shown previously [41-43]. Taken
together, these findings suggested that the particular micro-
biota influenced stress responses in the "microbiota mice
independent of the infection status. Further investigation is
required to determine the origin of this response in the
Humicrobiota mice.

In summary, we found that the microbiota is a key factor
in the regulation of Campylobacter inflammation in the
intestine and the elicitation of anti-ganglioside antibodies.
These data support recent findings that the microbiota is a
critical component in Campylobacter gastroenteritis
and, to our knowledge, this is the first report to
suggest that the microbiota may in fact be a deter-
minant of host susceptibility to Guillain-Barré syn-
drome. C. jejuni microbiota-mediated colonization
resistance in mice is overcome by perturbation of the
microbiota; thus factors that alter the host microbiota
such as age, diet, antibiotic treatment, and prior
pathogen exposure may be determinants of suscepti-
bility to Guillain-Barré syndrome. Because no single
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human microbiota exists, it is reasonable to speculate
that OTUs distinguishing the human and murine
microbiota in our experimental mice play a role in
regulating C. jejuni loads. Finally, therapeutic ap-
proaches that avoid depletion of healthy microbiota
and enhance populations of beneficial microorganisms
may be appropriate. Recently, probiotics, including
Lactobacillus, have been shown to inhibit C. jejuni
growth in mice [26]; thus probiotic supplementation
during the early stages of infection may facilitate
clearance of C. jejuni [44].

Conclusions

These data demonstrate that “microbiota altered host-
pathogen interactions in infected mice, increasing
colonization and Th-2 and autoimmune responses in a C.
jejuni strain-dependent manner. This demonstrates that
colonic microbiota composition is another factor control-
ling susceptibility to GBS. This study and the resulting
animal model provides the basis for understanding how
these autoimmune neurological responses arise secondary
to an important foodborne pathogen.

Methods

Laboratory animals

C57BL/6] and C56BL/6 IL-107~ mice were obtained
from The Jackson Laboratories (Bar Harbor, ME). A
breeding colony was established in a Campylobacter/
Helicobacter-free facility, and the MouSeek database
(Caleb Davis, Baylor College of Medicine, Houston,
TX) was used to track all mice bred and used
throughout the study. Germ-free C57BL/6] mice were
also obtained from the same containment building at
The Jackson Laboratories. All mouse experiments
were performed according to recommendations in the
Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health. Protocols were
reviewed and approved by the Michigan State Univer-
sity Institutional Animal Use and Care Committee
(approval numbers 06/12-107-00 and 06/15-101-00).
Age-matched male and female mice were used for all
experiments. A portion of the mice in each experi-
ment possessed humanized microbiota generated as
described previously [45] and are indicated with the
prefix Hu ("“microbiota). Briefly, germ-free mice were
inoculated by gavage with a human fecal slurry, bred,
and the microbiota allowed to pass from mother to
offspring without intervention within the germ-free
incubator. After initial characterization in founder
mice described in Collins et al. 2015 [45], the "M¥mi-
crobiota mice were separated into two groups, and a
new colony was established (Hu-C57BL/6) by LS
Mansfield by transferring mice in sterile filter top
cages within sterile dog crates to Michigan State
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University. "microbiota mice were housed under spe-
cific pathogen-free conditions (SPF), and bred for six
generations in closed cages on an Innovive (San
Diego, CA, USA) mouse rack with filtered air flow
and sterile food and water. All cage changes and
other manipulations were performed in a laminar flow
hood with gowned and gloved personnel using sterile
technique to avoid introduction of microorganisms
from the environment.

In the pilot experiment, age-matched 10—12-week-old
Hmicrobiota C57BL/6 genetically wild-type (Hu), con-
ventional microbiota genetically wild-type (“°™micro-
biota), and ““™microbiota congenic IL-10-deficient mice
(Conv-IL-1077) were used. Mice were inoculated with
either tryptone soy broth (TSB; vehicle control), C. jejuni
260.94, or C. jejuni 11168 and handled with sterile or
specific pathogen-free (SPF) technique resulting in six
groups (Table 1). For SPF technique, all personnel that
were handling animals wore Tyvek coveralls, imperme-
able plastic booties, face mask, hair bonnet, and gloves.
All cage changes were performed on a laminar flow cage
changing station. For sterile technique, all personnel that
were handling animals wore impermeable plastic boo-
ties, face mask, hair bonnet, sterile surgical gown, and
sterile surgical gloves. All breeding mice were and con-
tinue to be handled using sterile technique to avoid
introducing extraneous organisms to the microbiota. All
cage changes for breeding mice were performed in a
sterile laminar flow hood that was disinfected after each
use. To determine if handing would alter outcomes in
TSB sham-inoculated "“microbiota mice, we inoculated
20 Mmicrobiota mice with TSB and handled them with
either sterile technique (Hu-TSB (Ster.)) or SPF tech-
nique (Hu-TSB (SPF)). Two other ™microbiota groups
were generated by inoculating "microbiota mice with
either C. jejuni 260.94 (Hu-260.94 (Ster.)) or C. jejuni
11168 (Hu-11168 (Ster.)) and handling them with sterile
technique. As a positive control for gastroenteritis, we
inoculated and compared outcomes in ““™microbiota
wild-type C57BL/6 and C57BL/6 IL-107'~ mice inocu-
lated with C. jejuni 11168 and handled with SPF tech-
nique. Mice were sacrificed at 5 weeks post-inoculation.

In Experiment 1, age-matched C57BL/6 "microbiota
and “°“microbiota mice were inoculated with TSB, C.
jejuni 260.94, or C. jejuni 11168 (Table 2). In Experiment
1, all mice were handled with SPF technique, observed
for 7 weeks post-inoculation, and then sacrificed. In all,
six experimental groups were generated in Experiment
1;  “““microbiota TSB inoculated (Conv-TSB),
Co"™microbiota C. jejuni 260.94 infected (Conv-260.94),
Comicrobiota C. jejuni 11168 infected (Conv-11168),
Huicrobiota TSB inoculated (Hu-TSB), "“microbiota
260.94 infected (Hu-260.94), and ™microbiota 11168
infected (Hu-11168).



Brooks et al. Microbiome (2017) 5:92

Enteric pathogen screening

DNA was extracted from feces collected from all mice
before experimental inoculation and at necropsy for en-
teric pathogen screening as described [30]. In all cases,
no control mice were positive for C. jejuni PCR using
gyrA-specific primers [46]. Also, we screened all samples
for Campylobacter spp. (16S rRNA gene), Helicobacter
spp- (16S rRNA gene), Citrobacter rodentium (espB
gene), and Enterococcus faecalis (ddl gene). Dedicated
sentinel mice were used to assess extraneous infection
with bacteria, protozoa, and viral agents (Charles River
Laboratories, Wilmington, MA) and were monitored by
the MSU Campus Animal Resources (CAR).

C. jejuni strains and inoculum preparation

C. jejuni strains 260.94 (ATCC BAA-1234) and NCTC
11168 (ATCC 700819) were obtained from the American
Type Culture Collection (Manassas, VA). C. jejuni
260.94 is a Guillain-Barré syndrome patient strain that
elicits GM1 and GDla anti-ganglioside antibody
responses in C57BL/6 IL-107" mice [31]. C. jejuni
11168 is an enteric disease patient strain isolated from a
patient with severe gastroenteritis. C. jejuni 11168 has a
GM1 ganglioside mimic on its surface [47] but is not
associated with GBS and has not been shown to elicit
significant anti-ganglioside antibody responses in
C57BL/6 IL-10""" mice [31]. Inocula were prepared in
the same manner for both experiments. Inocula of both
C. jejuni strains were prepared by streaking frozen
stocks onto tryptone soy agar (TSA) (Accumedia)
supplemented with 5% defibrinated sheep blood
(Cleveland Scientific, Bath Ohio) (TSAB). Plates were in-
cubated at 37 °C in anaerobic jars equilibrated to 10%
CO,, 10% H,, and 80% N, for 48 h and a portion of the
growth re-suspended in tryptone soya broth (TSB) to
give an A600 of 0.2 to 0.3. One-hundred microliters of
this suspension was spread on two plates per mouse and
the plates incubated for 16 h in the 10% CO,, 10% H,, and
80% N, gas mixture. The resulting cells were collected
and suspended in TSB; the suspension was adjusted to
give an A600 of approximately 1.0 when diluted 1:10 (ap-
proximately 1 x 10'® CFU/mL final concentration). Purity,
morphology, and motility were verified by microscopy and
Gram straining. Finally, 0.2 mL per mouse of the resulting
inoculum or the vehicle (i.e., TSB) was carried to the con-
tainment facility on ice and delivered to infected and con-
trol mice, respectively, by oral gavage, resulting in six
groups (Tables 1 and 2). Limiting dilution analysis was
used to determine the actual titer of the inoculum deliv-
ered to the mice.

Experimental design
Following infection, all mice were observed at least once
daily (twice daily after clinical signs were noted) by trained
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individuals for a period of 5 (Pilot) or 7 (Experiment 1)
weeks to ensure mice were euthanized at a humane end-
point. In Experiment 1, 1 week before infection (ie.,
baseline) and once each week for 7 weeks post-
inoculation, mice underwent behavioral phenotyping in an
open-field test in a sterile rat cage (18" x 8"") divided into
four quadrants located in a laminar flow hood. At 5-
(Pilot) or 7-weeks (Experiment 1), the mice were sacri-
ficed, and tissues were collected and stored for further
analysis. Prior to humane euthanasia by CO, overdose,
fecal samples were collected, placed in TSB, frozen on dry
ice, and quickly moved to a —-80 °C freezer until thawing
for DNA extraction. After euthanasia, mice were weighed
and blood was collected by cardiac puncture, immediately
mixed with 0.1 mL of 3.8% citrate, spun down, and plasma
stored at —80 °C for analysis of plasma antibodies. During
necropsy, two veterinarians (a pathologist and a gastro-
enterologist) observed and recorded any gross pathology
prior to the removal of the GI tract. For the Pilot and
Experiment 1, the cecum and colon were harvested, cut in
half, and the halves flash frozen or streaked on TSAB-
CVA plates for cytokine analysis and quantification of C.
jejuni in these compartments, respectively. In Experiment
1, the ileocecocolic junction was harvested, infiltrated with
10% neutral-buffered formalin (NBF), placed in a cassette,
and further fixed in NBF for 20-24 h and stored in 60%
ethanol until processed for histological analysis.

Bacterial DNA isolation from feces and 16S ribosomal
RNA gene analysis

In the pilot experiment, DNA was extracted from fecal
samples using the QIAamp DNA stool kit (QIAGEN)
according to manufacturer’s instructions. DNA concen-
trations were determined using a NanoDrop ND-1000
spectrophotometer and concentrations normalized. The
quantity of Clostridium group 1, Clostridium group 1,
Bacteroidetes, and Enterobacteriaceae were measured
using an IQ™5 Multicolor Real-Time PCR Detection
System. In Experiment 1, DNA was extracted from fecal
samples using bead beating and the FastDNA SPIN Kit
for Soil (MP Biomedicals, LLC) according to manufac-
turer’s instructions. The resulting DNA samples were
delivered to the Michigan State University Research
Technology Support Facility for library preparation and
16S rRNA gene amplicon analysis. In all, 62 samples
were submitted for sequencing, including 60 mouse
samples, the original fecal slurry used for inoculation of
founder mice, and a mock community (HM-782D,
BEI) for estimation of sequencing error. The V4
region of the 16S rRNA gene was amplified using
dual-indexed primers [48]. PCR products were nor-
malized wusing an Invitrogen SequalPrep DNA
Normalization plate and the normalized products
pooled. After quality control and quantitation, the
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pool was loaded on a standard MiSeq v2 flow cell
and sequenced with a 500 cycle MiSeq v2 reagent kit
(paired-end 250 base pair reads). Base calling was
performed by Illumina Real-Time Analysis (RTA)
v1.18.54 and output of RTA was de-multiplexed and
converted to FastQ format files with Illumina
Bcl2fastq v1.8.4.

16S rRNA gene amplicon analysis was performed using
mothur (v. 1.35) and protocols available at http://
www.mothur.org/wiki/MiSeq_SOP  accessed December,
2015. Alignment was achieved using the Silva 16S riboso-
mal gene database [49]. Chimeric sequences and any se-
quences classified as chloroplast, mitochondria, Archaea, or
Eukaryota were removed from the dataset using uchime
and the mothur formatted version of the Ribosomal Data-
base Project (RDP) training set version 9, respectively, per
the mothur protocol. Sequences were clustered in oper-
ational taxonomic units (OTUs) of 97% sequence identity
yielding 128 OTUs. Analyses were performed in mothur
and PAST 3.07 [50]. Sequence read data has been made
available in the National Center for Biotechnology Informa-
tion (NCBI) Sequence Read Archive (SRA) as documented
in “Availability of data and materials.” A full record of the
code used to develop the heat map that appears in Fig. 2, is
based on the mothur protocol cited above. An annotated
markdown file with the code for the heat map appears in
Additional files 4 and 5.

Clinical signs assessments

We used a clinical sign score sheet developed to discern
humane endpoints for gastrointestinal and neurological dis-
ease in mice; these have been approved by the MSU institu-
tional animal care and use committee (IACUC) and
published [30, 33, 35]. Briefly, mice were observed once a
day by trained animal handlers and when clinical signs were
discerned, they were documented and the mice were there-
after observed twice a day. A score sheet was filled out each
time a mouse showed a clinical sign. Each sign has a point
value and the scores for all signs observed were totaled for
that observation period. If the score equaled or exceeded 9
then the mouse was humanely euthanized. Mice were
assigned scores for a battery of clinical signs according to
this scoring system: (1) Eating/Drinking (0 = yes, 1 = No);
(2) Respiration (0 =normal, 1=abnormal (increased),
10 =labored); (3) Rough hair coat (0=no, 2 =yes),
Hunched posture (0=no, 9=yes), Tremors (0 =no,
10 = yes), Movement (0 = normal, 1 =subdued (moves
with stimulation), 2 =unresponsive to handling),
Crusty eyes (0 =no, 1 =one eye, 2 =2 eyes), Diarrhea
on fur (0=no, 1=yes), Cool to the touch (0=no,
10 =yes), and Body weight (0=0-1% weight loss, 1
=1-5% weight loss). Endpoints resulting in a score
greater than 9 include loss of body weight greater
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than 5%, cool to touch, blue extremities, or points
adding up to greater than 9 in other criteria.

Quantification of C. jejuni in the cecum and colon

C. jejuni in the colon and cecum were quantified using a
standardized semi-quantitative scoring system [30].
Briefly, colon and cecum tissue segments of the same
size were collected at necropsy and were streaked on
TSAB containing cefoperazone (2 pg/mL), vancomycin
(10 pg/mL), and amphotericin B (2 pg/mL) (all antibi-
otics were obtained from Sigma-Aldrich, St. Louis MO)
agar plates and grown in anaerobic jars equilibrated with
CampyGen sachets (Oxoid) at 37 °C for 48-72 h. The
resulting growth was assigned a score on a scale of 0-4
based on the density of growth; 0 (no growth), 1 (1-20
CFU), 2 (20-200 CFU), 3 (200-400 CFU), and 4 (conflu-
ent growth) as described [30].

Neurological phenotyping

Starting 1 week before experimental infections and then
daily after inoculation with a C. jejuni strain, mice were
observed daily for evidence of enteric and neurological
disease. Daily monitoring was based on previously
published clinical exam score sheets designed to score
feature of gastrointestinal and neurological signs [30, 33].
Additionally, open-field testing was performed to detect
neurological signs and changes in behavior due to inocula-
tion with either GBS-associated or enteric-associated
strains of C. jejumi. All TSB sham-inoculated control mice
served as controls for phenotyping. The activity of all
experimental mice was video-recorded once per week for
1 week before inoculation and once per week for 7 weeks
post-inoculation. Briefly, mice were placed in the center of
an 18" x 8" sterile rat cage divided into four marked
quadrants and allowed to move freely for 90 s. At the
completion of the experiment, a single investigator (PTB),
who was blinded to mouse group identity, recorded the
number of quadrants crossed and the number of rears for
each mouse. Quadrants crossed were counted starting with
the first line crossed after establishing all four limbs in a
single quadrant. Rears were counted as the extension of
hind limbs and placement of both front limbs on the side
of the cage.

Scoring of ileocecocolic junction histopathology

Tissue samples were collected at necropsy, placed in cas-
settes, fixed in 10% NBF (Fisher Scientific) for 20-24 h, and
then transferred to 60% ethanol until final processing. Sam-
ples were submitted to the Michigan State University Inves-
tigative Histopathology Laboratory where they were
processed in the following manner: fixed samples were
vacuum-infiltrated with paraffin on the Sakura VIP 2000
tissue processor; followed by embedding with a
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ThermoFisher HistoCentre III embedding station.
Paraffin-embedded blocks were sectioned at 4—5 pm with
a rotary microtome, dried at 56 °C in a slide incubator for
2-24 h, and stained with Hematoxylin and Eosin (H&E).
Scoring of the distal ileum, cecum, and proximal colon
was performed as described [30]. Briefly, the lumen, epi-
thelium, lamina propria, and submucosa of the ileoceco-
colic junction (ICCJ) of each mouse were observed for
histopathological changes by a single investigator (LSM)
blinded to sample identity, and a score from 1 to 41 was
assigned based on lesions using a standardized scoring
system. Specific features evaluated among others were as
follows: (1) excess mucus and inflammatory exudates in
the lumen; (2) surface integrity, intraepithelial lymphocyte
number, goblet cell hypertrophy, goblet cell depletion,
crypt hyperplasia, crypt atrophy, crypt adenomatous
changes, and crypt inflammation in the epithelium; (3) in-
creased immune cells in the lamina propria; (4) and fibro-
sis in the submucosa.

Cytokine analysis

RNA was extracted from proximal colon samples that were
flash frozen at the time of necropsy. Equal sized 5-mm-
cubed tissue snips were homogenized using micropestles,
and RNA was extracted following the RNeasy Plus Mini Kit
protocol (QIAGEN). RNA concentrations were measured
using the Nanodrop ND-1000 spectrophotometer and stan-
dardized to a concentration of 50 ng/pL. cDNA was ob-
tained by PCR with random primers. A master mix was
assembled using reagents from Promega GoTaq qPCR kit
and added to the samples. This reaction was run using the
following thermal cycler conditions: step 1, 5 min 25 °C;
step 2, 20 min 42 °C; step 3, 70 °C; and step 4, 4 °C min—-
Hold. Interleukin 4 (IL-4) and Interferon gamma (IFNy)
cytokine levels were measured using qPCR on an iQ5 ther-
mocycler (Bio-Rad) with standardization. ANOVAs were
performed on 2-AAct data to find the linear fold change in
gene expression and are presented as mean fold change of
three replicates over levels of the housekeeping gene
hypoxanthine-guanine phosphoribosyltransferase (HPRT).

Enzyme-linked immunosorbent assays

Indirect enzyme-linked immunosorbent assays (ELI-
SAs) were performed to test for the presence of anti-
bodies reactive with bulk C. jejuni antigen and/or
gangliosides GM1, GD1a, and GQbl in the plasma of
experimental mice, referred to as anti-Campylobacter
and anti-ganglioside antibodies, respectively. Prepar-
ation of the bulk C. jejuni antigen was performed as
previously described [30, 35]. Positive controls (highly
reactive plasma samples that tested strongly for the
presence of the antigen in previous experiments) and
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negative controls (monoclonal mouse anti-Toxoplasma
gondii, ViroStat) were used in all cases. All samples were
run in triplicate and the mean values used for statistical
analysis. We tested for antibodies to gangliosides GM1
(Sigma), GD1a (USBio), and mixed GM1-GQ1b (Sigma,
Calbiochem, respectively) [33]. Immunoglobulin (IgG)
subtypes were determined using biotinylated goat anti-
mouse-IgG1, IgG2b, IgG2c¢, and IgG3 (Jackson ImmunoR-
esearch, West Grove, PA) secondary antibodies. Methods
for C. jejuni-specific antibody ELISAs were described
previously [30] and ganglioside ELISAs were conducted
similarly [33].

Quantification of F4/80 positive cells in sciatic nerves and
dorsal root ganglia

Sciatic nerves and 2-3 lumbar dorsal root ganglia (DRG)
from L3, L4, and L5 were dissected, isolated, and fixed in
10% formalin pH 7.0. After that, tissues were embedded
en bloc in order to assess the segmental nature of any
GBS lesions [33]. Slides were prepared by the Michigan
State University Investigative Histopathology Laboratory.
Briefly, 3-5 um sections were placed on charged slides,
dried at 56 °C for approximately 12 h, and subsequently
deparaffinized in xylene and hydrated through descending
grades of ethyl alcohol to distilled water. Slides were
placed in Tris-buffered saline (TBS) pH 7.4 (Scytek
Labs—Logan, UT) for 5 min for pH adjustment. Following
TBS, epitope retrieval was performed using Citrate Plus
Retrieval Solution pH 6.0 (Scytek) in a vegetable steamer
for 30 min followed by a 10-min countertop incubation
and several changes of distilled water. Following pretreat-
ment standard, avidin-biotin complex staining steps were
performed at room temperature on the DAKO Autostai-
ner. All staining steps are followed by 2-min rinses in
Tris-buffered saline and Tween 20 (Scytek). After blocking
with Normal Rabbit Serum (Vector Labs—Burlingame,
CA) for 30 min, sections were incubated with avidin-
biotin blocking system for 15 min each (Avidin D—Vector
Labs/p-Biotin—Sigma). Primary antibody slides were
incubated for 60 min with the Monoclonal Rat anti-
Mouse F4/80 diluted at 1:100 (AbD Serotec—Raleigh,
NC) in normal antibody diluent (NAD) (Scytek). Reaction
development utilized Vector Nova Red Kit peroxidase
chromogen incubation of 15 min followed by
counterstaining in  Gill's Hematoxylin (Cancer
Diagnostics—Durham, NC) for 30 s, differentiated
with 1% acetic acid, dehydrated, and mounted with
Permount (Sigma). F4/80 stained cells were counted
and normalized for tissue area using Image] version
2.0.0-rc43/1.50e [51].

Statistical analysis
Statistical analyses were performed using GraphPad
Prism 6.0 h for Mac OS X (GraphPad Software, La Jolla,
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California USA) with the exception of 16S rRNA gene
amplicon analysis. Data were entered and then checked
for normality and equal variance. If they passed both
tests, one-way ANOVA was performed. If they failed ei-
ther test, a Kruskal-Wallis test was performed instead,
followed by Dunn’s post-test, with P <0.05 constituting
significance. Statistical analysis of histopathological scor-
ing of ICCJ was performed using a Kruskal-Wallis test
followed by Dunn’s post-test. Statistically significant
comparisons in histopathology were further analyzed
using Fisher’s exact test (http://vassarstats.net/fish-
er2x3.html) and corrected for multiple comparisons with
the Holm-Sidak step-down procedure [30]. Two-way re-
peated measures ANOVA and Tukey’s post-test were
used for analysis of open-field and rearing behavior in
Experiment 1. Analysis of 16S rRNA gene amplicon data
was performed using PAST 3 [50]; statistical procedures
are indicated in figure legends.

For comparison of anti-ganglioside antibody levels
between experimental groups, all datasets had unequal
variances by one-way ANOVA so Kruskal-Wallis test
was used in PAST. If the full table had a significant P in
the Kruskal-Wallis test, pairwise tests between groups
were conducted using the Mann-Whitney test; P values
were adjusted for multiple comparisons using the
Bonferroni procedure.
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assignments for OTUs in Additional file 3 determined using mothur.
Reads were binned into OTUs using cluster.split and the average
neighbor algorithm (cutoff=0.03). (CSV 20 kb)
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