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Abstract

Background: Salmonella is one of the most significant food-borne pathogens to affect humans and agriculture.
While it is well documented that Salmonella infection triggers host inflammation, the impacts on the gut
environment are largely unknown. A CBA/J mouse model was used to evaluate intestinal responses to Salmonella-
induced inflammation. In parallel, we evaluated chemically induced inflammation by dextran sodium sulfate (DSS)
and a non-inflammation control. We profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid
(rRNA) genes from fecal and cecal samples. These data were correlated to the inflammation marker lipocalin-2 and
short-chain fatty acid concentrations.

Results: We demonstrated that inflammation, chemically or biologically induced, restructures the chemical and microbial
environment of the gut over a 16-day period. We observed that the ten mice within the Salmonella treatment group had
a variable Salmonella relative abundance, with three high responding mice dominated by >46% Salmonella at later time
points and the remaining seven mice denoted as low responders. These low- and high-responding Salmonella groups,
along with the chemical DSS treatment, established an inflammation gradient with chemical and low levels of Salmonella
having at least 3 log-fold lower lipocalin-2 concentration than the high-responding Salmonella mice. Total short-chain
fatty acid and individual butyrate concentrations each negatively correlated with inflammation levels. Microbial
communities were also structured along this inflammation gradient. Low levels of inflammation, regardless of chemical or
biological induction, enriched for Akkermansia spp. in the Verrucomicrobiaceae and members of the Bacteroidetes family
S24-7. Relative to the control or low inflammation groups, high levels of Salmonella drastically decreased the overall
microbial diversity, specifically driven by the reduction of Alistipes and Lachnospiraceae in the Bacteroidetes and
Firmicutes phyla, respectively. Conversely, members of the Enterobacteriaceae and Lactobacillus were positively correlated
to high levels of Salmonella-induced inflammation.

Conclusions: Our results show that enteropathogenic infection and intestinal inflammation are interrelated factors
modulating gut homeostasis. These findings may prove informative with regard to prophylactic or therapeutic strategies
to prevent disruption of microbial communities, or promote their restoration.
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Background
The bacterial species Salmonella enterica includes over
2500 serovars [1]. One of the most common causes of
human gastroenteritis is serovar Typhimurium [2]. This
serovar has long served as a model organism for studies
of pathogenesis in murine models. Upon ingestion, Sal-
monella injects effector proteins into the host intestinal
epithelial cells [3]. These effectors trigger the uptake of
Salmonella into the host cells and initiate inflammation
that disrupts the microbiota. This disruption presumably
reduces competition for nutrients, and it also causes an
oxidative burst that leads to the accumulation of tetra-
thionate, nitrate, and oxygen, all of which are used as re-
spiratory electron acceptors by Salmonella [4–10]. This
respiratory metabolism confers a growth advantage to
Salmonella over the fermentative commensal bacteria,
allowing this pathogen to rapidly proliferate within the
intestinal microbial community.
One major issue with mouse models is that mice are

highly resistant to Salmonella-induced inflammation,
which is thought to be due to the mouse gut microbiota
rather than the host itself. Either the use of germ-free
mice or the disruption of the microbiota with antibiotics
allows Salmonella to induce inflammation in most mur-
ine models [11–14]. Unfortunately, the germ-free or
antibiotic-treated models are not conducive with regard
to understanding how Salmonella alters the response of
the commensal microbial community. Alternatively, it
was recently discovered that the CBA/J murine model
allows persistent colonization of the gastrointestinal
tract by Salmonella, which eventually leads to inflamma-
tion approximately ten days post-infection [15, 16]. In
this report, we use CBA/J mice to study the disruption
of the healthy microbiota by Salmonella. Additionally, to
begin to separate the microbiome response to inflamma-
tion alone rather than inflammation and the pathogen,
we compare the pathogen-induced inflammation to
chemically induced inflammation caused by dextran so-
dium sulfate (DSS). DSS increases the permeability of
the mucosal barrier, allowing commensal microbiota to
contact the epithelium and trigger an inflammatory re-
sponse [17, 18].
Salmonella-mediated disruption of the commensal

microbiota has been previously studied; however, the
microbiota was characterized at a broad taxonomic level
or using an antibiotic-treated mouse model [5, 7, 19, 20].
Here, we characterize the otherwise undisturbed fecal
and cecal communities before and after disruption by
Salmonella or DSS and focus on operational taxonomic
unit (OTU) level responses. We measure changes in mi-
crobial community diversity and membership, as well as
changes in the chemical environment and compare these
responses to non-inflamed control mice. Results from
this study provide an in-depth insight into Salmonella

impacts on the gut environment. These findings may re-
veal new therapeutic strategies for prebiotics or probio-
tics for maintaining or restoring the microbiota in
response to Salmonella perturbation [21–28]. Further-
more, examining responses of the commensal micro-
biota and chemical environment to inflammation has
broader ramifications to other gastrointestinal diseases,
including ulcerative colitis, Crohn’s disease, and colon
cancer [29–31].

Results
Experimental design and 16S rRNA gene sequencing
To investigate the impacts of inflammation on the gut
microbial community, we performed 16S rRNA gene
profiling on the microbiota of chemically inflamed and
Salmonella-inflamed mice. We compared control mice
(n = 5), receiving no inflammation treatment, to five
mice that were administered DSS (chemically inflamed)
and ten mice that were inoculated with 109 CFU Sal-
monella enterica serovar Typhimurium strain 14028
(Fig. 1). Fecal samples were collected 3 days prior to day
0 (treatment) and 3 days prior to day 16 (sacrifice).
Cecum samples were obtained on day 16 (Fig. 1). Cecal
(n = 20) and fecal (n = 117) microbial communities were
surveyed using Illumina amplicon sequencing of the 16S
rRNA gene (V4 region). For fecal samples, we had 60
pretreatment samples (20 samples/day for 3 days for all
treatments), 60 late treatment samples (20 samples/day
for 3 days for all treatments), and 20 cecum samples (n
= 140). Three samples over the course of the experiment
yielded insufficient reads to be included in this analysis
(Additional file 7). A total of 2,587,891 high-quality, clas-
sifiable reads were generated for the 137 samples. After
merging reads, clustering OTUs at 97% identity, and re-
moving chimeric sequences (see the “Methods” section),
we identified a total of 6045 OTUs that were present in
at least five samples. The OTU table with taxonomic as-
signment and the FASTA file is included (Additional
files 1 and 2, respectively).

Inflammation type (chemical or biological) structures gut
microbial communities
The relative similarity of microbial communities be-
tween samples (beta diversity) for all pretreatment fecal
(days −3, −2, −1), late fecal (days 13, 14, 15), and late
cecal samples was examined by calculating a Bray-Curtis
dissimilarity matrix and visualized using non-parametric
multidimensional scaling (NMDS) in two dimensions
(Fig. 2). These analyses revealed that DSS and Salmon-
ella-treated mice have statistically different late fecal
and cecal microbial communities compared to all pre-
treatment and control samples (Fig. 2). Pretreatment
fecal samples (regardless of experimental treatment)
clustered with late control fecal samples, demonstrating
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Fig. 1 Experimental design illustrating fecal and cecal sample collection for microbial community analysis. From left to right, gray boxes indicate
pretreatment, red boxes indicate treatment initiation, and colored boxes denote treatments (Control = blue, DSS = green, and Salmonella = orange).
Black arrows indicate fecal sample collection, and red arrows indicate cecal sample collection

Fig. 2 Non-metric multidimensional scaling (NMDS) showing the treatment response and designated groupings. Bray-Curtis similarity metric from the
pretreatment fecal, late fecal, and cecal samples (stress = 0.08) show a statistically significant (Mrpp, p = 0.001) separation of microbial communities from
control, DSS, low-responder, and high-responder groups at late time points. The orange ellipse represents the Salmonella treatment group (high and
low responders). The legend with sample assignment is shown in the gray box. The sample points are sized for Salmonella relative abundance. Open
symbols denote cecal, while closed denote fecal, samples
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the stability within the undisturbed normal gut micro-
biota over time.
Within the Salmonella treatment group, we saw a vari-

able response, as two distinct clusters were observed on
the NMDS, a finding confirmed by beta-dispersion ana-
lyses. The Salmonella treatment had the greatest within
treatment variability compared to the other treatment
groups (mean distance to centroid: Control = 0.306, DSS =
0.316, Salmonella = 0.470). Despite using identical inocula-
tion concentrations and procedures, Salmonella relative
abundance ranged from <1 to 71% in the late fecal and
cecal samples. At the end of the experiment, three of the
mice had much higher Salmonella relative abundance than
the other seven mice, with this high-responder group de-
fined as having a minimum Salmonella relative abundance
of 49 and 46% in the late time point fecal and cecal sam-
ples, respectively. This differential Salmonella response was
also visually verified upon autopsy, as ceca in the high re-
sponders were pus-filled, unlike the other Salmonella-
treated mice (Additional file 3: Figure S1). Alternatively, the
low responders had a maximum of 7 and 0.5% in the late
time point fecal and cecal samples, respectively. This range
in Salmonella relative abundance was represented in the
NMDS clustering, with high responders (red) clustering
distinctly from low responders (orange) and control (blue)
(multi-response permutation procedures (mrpp), p value
<0.05). While the latter two groups were statistically differ-
ent, low responders were more similar to the control than
high responders. Interestingly, this clustering was main-
tained when the Salmonella OTU was removed from the
analyses (Additional file 4: Figure S2; see the “Methods”
section), demonstrating that the differences observed be-
tween treatments were not attributed solely to pathogen in-
crease, but rather the overall impacts of the pathogen on
the surrounding microbial community.
Our data clearly show that mice given the same

Salmonella dose and treatment have variable susceptibil-
ity to Salmonella colonization. To confirm that we did
not underestimate Salmonella relative abundance in the
low-responder group due to our sampling schedule, we
subsequently sequenced all fecal time points between

the pre-treatment and late samples (Additional file 5:
Figure S3). Salmonella relative abundance in the low-
responder group was not uniform over time. Across all
time points in the low responders, the maximum
Salmonella relative abundance for each mouse ranged
from 0.3 to 16%. This analysis showed that Salmonella
relative abundance was higher at earlier time points,
compared to the final time points we reported initially,
but more importantly confirmed the low-responder
group never reached our designated high-responder Sal-
monella relative abundance (>46%). Our findings con-
firm that we did not miss the sampling window of
elevated Salmonella response in the low-responder mice.
For subsequent analyses, we divided the Salmonella in-
fected samples into “low-responder” and “high-re-
sponder” treatment groups.
We compared alpha diversity between fecal day −2

(pretreatment), fecal day 14 (late), and cecal communi-
ties. Consistent with our NMDS pretreatment results,
day −2 fecal communities had no discernable difference
in Shannon’s diversity between treatment groups (Fig. 3).
Comparison of fecal microbial communities from day −2
and day 14 revealed that only DSS and high-responder
groups had a significant decrease in Shannon’s diversity
over time, while the control was unchanged and the de-
crease in the low-responder group was not significant.
Notably, when examining the richness over time, only
the high-responder group had a significant decrease
(~54%) in OTUs (Additional file 6). Unlike our fecal
results, the cecal microbial communities from both low-
and high-responder groups had significantly lower
Shannon’s diversity compared to the control group. Our
findings show that in the gastrointestinal tract, high relative
abundance of Salmonella restructures the microbial diver-
sity more significantly than chemical treatment (DSS).

Inflammation and metabolites are correlated with
treatment groups
As a measure of inflammation, we utilized Lipocalin-2,
an innate immune protein induced during inflammatory

Fig. 3 Shannon’s diversity index (H’) by treatment in day −2, day 14, and cecum samples. Strip chart displaying Shannon’s diversity by treatment
in pretreatment (day −2), late (day 14), and cecum samples, with each point representing a single sample. Horizontal black lines show the mean,
and error bars represent one standard deviation from the mean. Significant changes relative to pretreatment communities and control
communities are denoted by brackets at the top of the figure
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responses (Fig. 4a, Additional file 7) [32, 33]. Fecal
lipocalin-2 levels provide a sensitive and broadly dy-
namic method to monitor inflammation, specifically for
low levels of inflammation [32]. All treatment groups
had increased Lipocalin-2 compared to the control and
were statistically different from each other (p value
<0.01). Controls had the lowest amount of Lipocalin-2,
followed by DSS, then low responders, and finally the
high responders, the latter with a 3 log-fold increase in
inflammation relative to the control. This indicates that
inflammation level correlated to treatment group micro-
bial communities.
Microbially produced short-chain fatty acids (SCFA)

maintain the gut barrier, participate in host signaling,
and contribute to host energy [34], so we were interested
in the impacts of inflammation on cecal SCFA concen-
trations. The cumulative concentrations of acetate, bu-
tyrate, and propionate (here reported as total SCFA) in
the ceca were not significantly different between the
control, DSS, or low-responder groups, but were signifi-
cantly decreased in the high-responder group (Fig. 4a,
Additional file 6). Individual SCFA had a treatment spe-
cific response. Acetate, butyrate, and propionate were all
below detection in the high-responder group, while

relative to the control, the DSS and low responders had
significantly decreased butyrate and increased propion-
ate concentrations, while acetate increased significantly
only in the DSS group. Across all samples, the amount of
inflammation negatively correlated to the total concentra-
tion of short-chain fatty acids and to butyrate concentra-
tions. At a more global level, changes in the chemical
environment (e.g., inflammation and SCFA concentrations)
corresponded to changes in cecal microbial community
structure (Fig. 4b) (envfit, p < 0.001).

Identifying key microbial determinants for each treatment
group
To be consistent with prior reports examining the
impacts of Salmonella colonization on the gut micro-
biota [5–7, 19, 20, 35], we examined our data to see
if groupings observed on the NMDS (Fig. 2) were
consistent with changes in membership at the class
level. Control fecal microbial communities at day 14
were dominated by Firmicutes and Bacteroidetes
phyla, especially within the Clostridia (62 ± 9%) and
Bacteroidia (34 ± 8%) classes (Additional file 8: Figure
S4). Despite differences in SCFA and inflammation
levels, Clostridia and Bacteroidia relative abundance did
not change significantly in the low-responders or DSS
groups relative to the control. Notably, the relative contri-
bution of these two classes was significantly decreased
when Salmonella exceeded 46% relative abundance (e.g.,
high-responder group only), but was not correlated to Sal-
monella relative abundance across the experiment. Relative
to the other treatments, microbial communities in the
high-responder group were enriched in the Gammaproteo-
bacteria (57%, driven largely by Salmonella) and the Bacilli
classes (Additional file 8: Figure S4).
To more specifically resolve which genera were re-

sponsible for driving the treatment group differences, we
performed linear discriminant effect size (LEfSe) analysis
on day 15 fecal samples [36, 37]. For taxa with linear dis-
criminant analysis (LDA) scores greater than 2 in at least
one group, we summarize the relative abundance across
the treatment groups (Fig. 5). Some of these discrimin-
ant genera had abundance patterns shared across treat-
ments, while others were unique to a specific treatment.
Within the control group, four discriminant genera were
identified, including members of the Clostridia (e.g., un-
cultured members within Lachnospiraceae) and Bacter-
oidia (Alistipes) (Fig 5a). Of these, the Alistipes response
was the strongest (LDA score 4.8) and driven by one
OTU (AY990081). The mean relative abundance of this
Alistipes OTU in the control group is significantly
higher (17%) than the relative abundance in DSS (2%),
low-responder (9%), and high-responder (2%) groups
(Fig. 5b). This finding indicates Alistipes may be espe-
cially sensitive to inflammation and in light of our

a

b

Fig. 4 Quantification of short-chain fatty acid (SCFA) and inflammation
in the gut at late time points among treatments. a Bar chart shows the
average of SCFA (acetate, butyrate, and propionate, left y-axis) and
Lipocalin-2 (right y-axis, log scale) concentrations in cecal and fecal
samples with error bars representing one standard deviation. Significant
changes relative to the control are denoted (brackets). High responders
are below the limit of detection for SCFA, denoted by small circles. b
NMDS of Bray-Curtis similarity metric shows a statistically significant
separation of cecal microbial communities from control, DSS, low-
responder, and high-responder groups (stress = 0.07). Vectors were
calculated with envfit and represent statistically significant correlations of
chemical data relative to microbial community data (p values: acetate =
0.001, butyrate = 0.003, propionate = 0.046, inflammation = 0.001)
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chemistry data suggests it may also be a key butyrate
producer in the healthy gut.
Our findings showed that differences in inflamma-

tion type (chemical or biological) and inflammation
amount (DSS and low responder compared to high
responder) corresponded to altered microbial mem-
bership. In the chemical but not the biological inflamed
guts, LEfSe identified six genera unique to the DSS com-
munities including two genera within the Lachnospiraceae
(Coprococcus and an uncultured genus) and two uncul-
tured genera within the Ruminococcaceae. At day 15,
Coprococcus had a significantly higher mean relative abun-
dance in the DSS treatment group (2.2 ± 0.4%), compared
to all other groups (<0.05%). These findings suggest taxa
are finely tuned to tolerate the low levels of inflammation
induced by the chemical DSS treatment and thus could be
responsible for increased acetate production observed
only in this treatment relative to the control.
The low-responder group had higher levels of inflam-

mation relative to the control and DSS groups (Fig. 4).
In the low responder communities, LEfSe identified
eight genera including members of Akkermansia, Rose-
buria, and a formerly uncultivated Bacteroidetes family
S24-7 (Candidatus Homeothermaceae or Muribacula-
ceae) [38, 39]. Interestingly, several of these taxa were

also enriched by chemical inflammation (DSS), but were
not detected in the control or high responder groups.
For instance, Akkermansia mean relative abundance was
elevated in DSS (3%) and low responders (9%) but not
detected in high responders or control (<0.01%). The
same response was observed for S24-7 (Fig. 5). This re-
sult suggests that these taxa respond positively to low
levels of inflammation but are decreased when Salmon-
ella relative abundance or inflammation is high. These
taxa that co-occur across both treatments may also be
responsible for increased propionate observed in both
the DSS and low-responder groups,
The Salmonella high responders group had the most el-

evated levels of inflammation (Figs. 4a and 5a). Besides
Salmonella (LDA = 5.3), LEfSe identified five significant
Enterobacteriaceae genera within the Gammaproteobac-
teria (e.g., Enterobacter, Citrobacter, Enterococcus, Escheri-
chia/Shigella) that distinguished the high-responder
microbial communities from all other groups (Fig. 5).
LEfSe also identified Lactobacillus as discriminant taxa in
the high responders, and this genus is the primary driver
of the Bacilli class response enriched in all Salmonella-
treated mice, accounting for on average 9 and 26% in the
low- and high-responder treatment groups, respectively.
This response suggests that Lactobacillus may co-enrich

a b

Fig. 5 Heat map of discriminant genera determined by LEfSe analysis. a All taxa that were discriminant features in at least one treatment (LDA
score >2) are shown, with phylogenetic class reported as colored boxes. Relative abundance is shown scaled by relative abundance within a
genus, with a legend provided in the top left. A bar chart at the top of the heat map displays Lipocalin-2 concentrations in individual samples,
colored by treatment. All genera are discriminant features relative to the control, while some are discriminant features relative to all treatment
groups as denoted by asterisks. b The relative abundance of a single OTU representative from Alistipes, S24-7, Akkermansia, and Lactobacillus
within each treatment were graphed by treatment with median and standard deviation shown
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with the presence of Salmonella and may not be respond-
ing to the high levels of inflammation.
To verify that the trends observed in the Salmonella

treatment were also observed in the cecal samples, we
performed a Weighted Gene Correlation Network Ana-
lysis (WGCNA). This approach examined OTUs that
were positively and negatively statistically correlated to
Salmonella relative abundance (Fig. 6). Similar to our
fecal data, the relative abundance of the Lactobacillus
and Enterobacteriaeceae were positively correlated to
Salmonella, while multiple OTUs within the family
Lachnospiraceae, S24-7, and Alistipes were negatively
correlated. These analyses also demonstrated the value
of examining responses at the OTU level, and not
broader taxonomic levels (e.g. class), as a single Lach-
nospiraceae OTU was strongly positively correlated to
Salmonella abundance.

Discussion
Principal findings of the study
Here, we investigated the impacts of Salmonella expan-
sion in the mouse gastrointestinal tract on the com-
mensal microbial community and the chemical
environment. To our knowledge, this is the first study
to directly compare and contrast DSS-induced chemical
inflammation with Salmonella-induced inflammation.
Our principle findings are the following: (1) the extent
of Salmonella colonization in the mouse gastrointes-
tinal tract is variable; (2) gut microbial community
membership is congruent with Salmonella relative
abundance and inflammation level; (3) commensal Alis-
tipes and Lachnospiraceae taxa decrease along an in-
flammation gradient; (4) low levels of inflammation
(regardless of source) increase the relative abundance
of Akkermansia and S24-7; and (5) Lactobacilli and

members of the Enterobacteriaceae are co-enriched
with Salmonella.

Mice have differential Salmonella susceptibility
Here, we report infected mice have a large range in
Salmonella colonization relative abundance (<1 to 71%),
with three of the ten mice classified as high (>46%) re-
sponders. This variation was shared between cecal and
fecal samples, demonstrating it was not an artifact of
gastrointestinal tract sampling location. We did verify that
timing had a negligible effect on Salmonella relative abun-
dance, as some of the low responders had increased abun-
dance at earlier time points (0.25–16%) relative to the last
time points we sampled (0.25–7%). Importantly, however,
none of the low-responder mice ever had sufficient Sal-
monella relative abundance to be considered a member of
the high-responder group; thus, the groupings likely
reflect the unique chemical and biological environ-
ments caused by different amounts pathogen induced
inflammation.
While we recognize our high responder sample size is

limited (n = 3), similar to our findings, others have
hinted at this variation (and also recovered high re-
sponders) in Salmonella relative abundance in infected
mice. Our findings expand upon prior studies in several
ways [5–7, 19, 20, 35]. First, most prior studies used a
“streptomycin mouse model,” where antibiotics are given
prior to Salmonella inoculation, thereby confounding
whether the observed Salmonella relative abundance
variation was due to an altered initial microbial commu-
nity or Salmonella colonization effectiveness. In con-
trast, the CBA/J mouse model does not require
antibiotic treatment prior to inoculation; thus, our Sal-
monella treated mice had highly similar initial microbial
community membership and structure (Fig. 2; Bray-

Fig. 6 Network analysis showing OTUs with a significant positive or negative co-correlation to Salmonella. Each line represents a correlation between a
single OTU and Salmonella relative abundance (all p values <0.05). Circles are sized by log relative abundance and colored by class, with the exception
of Salmonella (orange—center node). OTUs above the dashed black line are positively correlated to Salmonella (green arrow), while OTUs below are
negatively correlated (red arrow)
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Curtis similarity >93% for pre-treatment communities),
despite clear differences in the terminal communities.
Second, the variability in Salmonella relative abun-

dance may not have been emphasized previously due to
differences in data reporting, as studies often report the
average Salmonella relative abundance in the terminal
sample for the entire treatment. For instance, reporting
our fecal data in that fashion would result in an average
Salmonella relative abundance of 19%, absolutely con-
sistent with prior reports of ~25%, but obscuring the
true variation. Analysis of published data sets with the
same mouse model (n = 5), but using the high-
responder criterion established here (>46%), revealed a
high responder rate of 33% [5], which was nearly identi-
cal to the 30% observed here (n = 10). Here, we are the
first to quantify Salmonella infection efficiency and re-
port differential chemical and microbial responses
caused by variability. Future quantification of pathogen
relative abundance can better inform investigations on
the host and microbiome mechanisms underlying Sal-
monella resistance, a feature also commonly reported
in humans [40–42].

Inflammation gradient correlates with SCFA and microbial
community profile
Hosts rely on their gut microbiota to produce SCFA for
energy, with acetate, propionate, and butyrate being the
most abundant. Furthermore, SCFA are often implicated
as regulators for intestinal inflammation. Many human
and animal studies show decreased SCFA concentration
with intestinal inflammation including instances of en-
teropathogenic infections, colitis, and irritable bowel
syndrome [43–45]. Here, we also show the SCFA types
(acetate, butyrate, propionate), and overall total concen-
trations are altered by changes in inflammation amount
and source (biological and chemical). These changes in
SCFA corresponded to differences in microbial member-
ship across treatment groups.
The chemical environment of the gut was reflected in

the microbial community, as the inflammation gradient
and SCFA concentrations were significantly related to
microbial community sample clustering. The most obvi-
ous changes in SCFA occurred in the highly inflamed
Salmonella gut, where SCFA were significantly depleted
relative to the non-inflamed control. Consistent with
prior reports in germ-free mice [45], decreased SCFA
levels may feedback to further exacerbate inflammation,
contributing to the 3 log-fold higher lipocalin-2 levels
detected in our high responder Salmonella samples.
We consider several possibilities for the drastically de-

creased SCFA in the high-responder group. First, it is
possible that SCFA are not produced due to significant
remodeling of the microbial community (decreased rich-
ness and membership of commensal taxa). Baumler and

colleagues first reported that the relative abundance of
commensal taxa (especially members of the class Clos-
tridia) and butyrate decreased with Salmonella infection
[5], and this decreasing butyrate [5], as well as reactive
oxygen species from inflammation, provided alternative
electron acceptors like oxygen, nitrate, and tetrathionate
that allow for Salmonella expansion in the gut [9]. Here,
we extend the findings to include decreased acetate and
propionate co-occurring with Salmonella expansion and
Clostridia reduction in the high-responder group. Fur-
thermore, our low responder and DSS groups shed new
light on the links between Salmonella and butyrate. For
example, in the DSS and low-responder groups, butyrate
decreased significantly from the control, while there was
no significant change in Clostridia class level relative
abundance, showing that this response is due to inflam-
mation (DSS or Salmonella induced) and not just the
pathogen presence. A second explanation for the de-
creased SCFA in the high responders is that these mice
may have consumed less food, yielding less SCFA. A
third explanation for below detectable SCFA only in the
high responder group is that SCFA may be rapidly con-
sumed by Salmonella and other respiratory Enterobacte-
riaceae taxa stimulated by presence of alternative
electron acceptors produced during high inflammation
levels [9, 10, 43]. Our findings demonstrate the need for
time series metatranscriptomic studies that account for
butyrate production and consumption activities in light
of inflammation and pathogen expansion.

Microorganisms depleted by inflammation
Given the class Clostridia contains over 12 families with
considerable OTU richness (457,466 OTUs), and broad
metabolic diversity [46–48], we examine the relationship
between Salmonella and Clostridia at more resolved
taxonomic levels (genus, OTU). For instance, within the
Clostridia class, different Lachnospiraceae OTUs were
enriched in each treatment (high, low, and DSS), with
one OTU even increasing in response to Salmonella
(New.ReferenceOTU56). Consistent with the differential
response of certain members of the Lachnospiraceae
across treatments, the genomic potential of the known
isolates is also diverse. Of the 69 isolate Lachnospiraceae
genomes, 82 and 97% encode the capacity for butyrate
and acetate production, respectively. Together, these
findings demonstrate that moving forward, OTU level
changes should be considered, as members of the class
Clostridia are present in all treatments, but strains are
niche differentiated enabling unique biological and
chemical treatment responses.
In addition to response of specific Clostridial mem-

bers, our results show that a single dominant Alistipes
OTU, a member of the Bacteroidia, decreased signifi-
cantly in all defined groups relative to the control at day
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15 (Fig. 5). This OTU is a defining feature of the non-
inflamed microbial community, and given the inclusion
of a DSS chemical inflammation treatment, we can
clearly show that this response is not necessarily to
Salmonella but rather inflammation. Alistipes depletion
in inflamed gut environments has been demonstrated in
humans with liver disease and in murine models for col-
itis [49–51]. We show a correlation between decreasing
Alistipes relative abundance and decreasing butyrate
concentrations, findings that may be attributed to end
products of Alistipes metabolism. We mined publically
available Alistipes isolate genomes and found that 14 out
14 genomes contain the capacity for butyrate production
via butyrate kinase (see the “Methods” section). It is also
possible that Alistipes produce butyrate from amino
acids, as metagenomic studies have shown that members
of the Alistipes have the capacity to ferment lysine to
produce butyrate [52, 53]. We also mined publically
available Alistipes genomes for this capacity and found
that 14% of Alistipes genomes have the entire pathway
to produce butyrate from lysine (see the “Methods” sec-
tion for pathway). Furthermore, isolate studies show suc-
cinate as a significant end product of Alistipes
metabolism which may stimulate butyrate production by
other commensal microorganisms in the gut through the
succinate pathway [54, 55]. While our Alistipes OTU is
<95% similar to 16S sequences in isolate genomes, our
findings taken together with Alistipes genomic evidence
and Alistipes isolate studies suggest that future Salmon-
ella work should be expanded beyond Clostridia to
examine the contribution of Alistipes to maintaining
host homeostasis.

Known mucin-degrading microorganisms are enriched by
low-level inflammation
Our experimental design allowed us to investigate the re-
sponse to inflammation amount regardless of the causative
agent (e.g., chemical, pathogen), with low inflammation
levels represented by the DSS and low-responder groups. It
has been documented that inflammation upregulates a
dose-dependent host response, such that lower levels
stimulate mucin production while high levels inhibit mucin
production [56, 57]. Mucin is the major protective compo-
nent in the gastrointestinal epithelium, providing a barrier
between human epithelial cells and invading pathogens.
Akkermansia, a member of the Verrucomicrobia, is known
to degrade mucin as its sole carbon and nitrogen source
[58]. Consistent with its role as a mucin degrader, Akker-
mansia is increased from controls only during treatments
with low levels of inflammation, when mucin may be pro-
duced. In addition, recent genomic evidence also suggested
members of the family S24-7 have similar mucin deg-
radation capacity to Akkermansia, perhaps explaining the
co-occurrence pattern of these two taxa in our low

inflammation treatments [37]. Our findings suggest it is
the amount (low not high) of inflammation not the source
that dictates Akkermansia and S24-7 relative abundance,
findings which may explain the lack of congruence be-
tween inflammation and Akkermansia in the literature
today [58–62].
Another interesting finding from our study is that pro-

pionate concentrations increased in both the low-
inflammation treatments. Given the enrichment of
Akkermansia and S24-7 in both these low-inflammation
treatments, we mined publically available genomes for
propionate production. Of the three known pathways for
propionate production [63], the pathway that proceeds
through succinate via methylmalonyl-CoA decarboxylase
(E.C. 4.1.1.41) is the most prevalent in these genomes.
Both Akkermansia genomes and the recently published
genomes within the family S24-7 encode the capacity for
propionate production [38]. This increased propionate
production may be a positive feedback on inflammation,
as recent reports have suggested propionate stabilizes in-
flammation in the gut [64, 65]. Our findings provide
insight into possible microbial probiotics that may en-
hance propionate stabilization through addition or stimu-
lation of key taxa found here, including Akkermansia and
members of S24-7.

Bacterial taxa that benefit from Salmonella-triggered
inflammation
We show that specific members of the Proteobacteria
are exclusively enriched when Salmonella relative abun-
dances exceed 46% (high responders, n = 3). Co-
enrichment of members of the family Enterobacteriaceae
with Salmonella infection has also been reported in sev-
eral other mouse models [5, 7, 10, 20, 66]. Additionally,
a study conducted on feces from human patients with
Salmonella gastroenteritis reported an increase in
Enterobacteriaceae including Citrobacter, which was one
of the most abundant members in our study [35]. These
findings suggest that high amounts of Salmonella and
concurrent high inflammation levels induce specific
microbial community changes different from low inflam-
mation levels, which favors the expansion of closely re-
lated organisms [7, 66].
Our findings also show enrichment of Lactobacil-

lus within the Salmonella (low and high) treatment.
Lactobacillus is generally used as a probiotic for en-
teric infections, as some of these organisms secrete
compounds that inhibit Salmonella virulence factors
and motility [67]. To further investigate if Lactoba-
cillus increased with Salmonella in other studies, we
mined 16S rRNA reads that were publically available
from studies with the same mouse model as ours
[5]. Interestingly, we found enrichment of two Lacto-
bacillus OTUs from the colon of Salmonella-infected
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mice. Similarly, in humans with enteric infections in-
cluding Salmonella, Lactobacillus increased in in-
fected patients [34, 35]. While the Lactobacillus
OTUs are not shared across these studies, this find-
ing suggests the relationship between Salmonella and
Lactobacillus may be significant. One possibility is
that the Lactobacillus members enriched during Sal-
monella infection are functionally distinct from the
strains used as probiotics. Alternatively, the enrich-
ment of Lactobacillus may be what eventually helps
to eliminate Salmonella, consistent with the efficacy
of probiotics [68, 69].

Conclusions
Enhancing our understanding of how intestinal micro-
bial communities change in response to inflammation is
critical to managing a multitude of diseases including
enteric infection, Crohn’s disease, irritable bowel syn-
drome, and colon cancer. Here, we report microbial and
chemical changes in the host gut environment in re-
sponse to DSS- and Salmonella-induced inflammation,
in order to distinguish between changes caused by en-
teropathogenic takeover and those caused by intestinal
inflammation. While several studies have also shown
that Salmonella-induced inflammation causes an enrich-
ment of Enterobacteriaceae and depletion of Clostridia
[5, 7, 9, 35], these identifications were at a broad taxo-
nomic level. The effects of enteropathogenic expansion
and the consequences of host inflammation on the intes-
tinal microbiota are only beginning to be elucidated.
Further metagenomic studies with strain-resolved infor-
mation and paired transcript data are required to under-
stand how the key taxa presented here are enhanced or
diminished in response to the unique chemical environ-
ment created by increased Salmonella biomass.

Methods
Strains and media
S. enterica serovar Typhimurium strain 14028 (S.
Typhiumurium 14028) was grown in Luria-Bertani (LB)
broth in a roller drum at 37 °C overnight. For inocula-
tion, the overnight culture was washed and resuspended
in water.

Animals and experimental design
Female, age-matched (6 to 10 weeks old) CBA/J mice
were purchased from Taconic Farms, Inc. Animals were
housed in groups of five by treatment (Control = 1 cage
of 5, DSS = 1 cage of 5, and Salmonella = 2 cages of 5)
and were fed ad libitum Harlan mouse chow (mean 16%
protein, 5% fat, 3.5% crude fiber).
Mice in the control group (n = 5) did not receive any

treatment throughout the experiment. Concurrent with
controls, experimental inflammation treatments, DSS

(dextran sulfate sodium) (abiotic inflammation) and Sal-
monella (biotic inflammation), were run for 16 days.
Mice in the DSS group (n = 5) received 4% DSS in drink-
ing water the entire duration of the experiment. We se-
lected DSS as a control to our pathogen-induced
inflammation, as it is commonly used to initiate an in-
flammatory response [18] and has been shown that DSS
is not a substrate that supports growth of intestinal
microflora [70]. Mice in the Salmonella group (n = 10)
were orally inoculated with 109 CFU of a washed over-
night culture of S. typhimurium 14028 on day 0 with no
subsequent treatment. This animal experiment was per-
formed using protocols approved by The Ohio State
University Institutional Animal Care and Use Committee
(IACUC; OSU 2009A0035).

Sample collection
Fecal samples were collected from all mice for three
consecutive days prior to treatment on day 0 and prior
to sacrifice on day 16. Fecal pellets were collected from
each mouse on autoclaved aluminum foil. Fecal pellets
were immediately transferred to pre-labeled microcentri-
fuge tubes, flash frozen in liquid nitrogen, and stored at
-80 °C until further processing. Cecal samples were har-
vested from all mice on day 16 post-treatment, flash fro-
zen in liquid nitrogen, and then stored at −80 °C until
further processing.

DNA extraction and sequencing
Total nucleic acids were extracted using the PowerSoil
DNA Isolation kit (MoBio), eluted in 100 μl of elution
buffer provided, and stored at −20 °C until sequencing.
DNA was submitted for sequencing at Argonne National
Lab at the Next Generation Sequencing facility using
Illumina MiSeq with 2 × 251 bp paired end reads follow-
ing established HMP protocols [71]. Briefly, universal
primers 515F and 806R were used for PCR amplification
of the V4 hypervariable region of 16S rRNA gene using
35 cycles. The 515F primer contained a unique sequence
tag to barcode each sample. Both primers contained se-
quencer adapter regions.

16S rRNA data processing
Data processing was performed using QIIME 1.9.0, with
specific processing steps as follows [72, 73]. Briefly, raw
fastq data were demultiplexed and quality filtered to a
Phred score of 20. OTUs were chosen in a two-step
process. First, sequences were clustered into OTUs
using UCLUST followed by de novo OTU picking.
OTUs were checked for chimeras using RDP gold data-
base and assigned taxonomy using the 97_SILVA_111
rep set [74]. Sequences were used for comparison of
the relative abundance of OTUs in at least five samples.
A total of 6078 OTUs were found when using at least
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one sample and did not alter beta diversity of samples,
as the NMDS had all of the same attributes (stress,
ANOSIM, mrpp, betadispersion). Raw reads were de-
posited on NCBI under bioproject PRJNA348350
(pending). The final OTU table and a fasta file for
above methods are included (Additional files 1 and 2).
Raw reads from Chavez et al. were downloaded from
NCBI and processed as above.
We inferred metabolic capacity of key taxa identified

in our 16S rRNA analysis by using publically available
genomes. Specified genes (e.g., methylmalonyl-CoA de-
carboxylase, butyrate kinase) were queried to each gen-
ome using BLASTp [75]. Genomes were accessed via
NCBI and JGI-IMG (analysis performed with data
from December 2016) [75, 76]. Alistipes genomes
were mined for the lysine pathway: lysine-2,3-amino-
mutase (EC 5.4.3.2), lysine-5,6-amino mutase (alpha and
beta, EC 5.4.3.4), 3,5-diaminohexanoate dehydrogenase
(EC 1.4.1.11), 3-keto-5-aminohexanoate cleavage enzyme
(EC 2.3.1.247), 3-aminobutyryl-CoA ammonia-lyase (EC
4.3.1.14), butyryl-CoA dehydrogenase (EC 1.3.99.2), and
butyryl-CoA:acetoacetate CoA-transferase beta subunit
(alpha and beta, EC 2.8.3.9).

Statistical analyses
Alpha diversity of microbial communities was calculated
using the diversity function, with richness and Shannon’s
diversity (H’) used as the indices [77, 78]. To analyze beta
diversity among samples, analysis of Bray-Curtis dissimi-
larities was calculated using the relative abundance of
OTUs and was visualized using non-parametric multidi-
mensional scaling (NMDS) with R (ggplot package). The
goodness of fit for the data was determined by the stress of
the non-parametric fit [78, 79]. Significance of community
composition differences among classified sample groups
was determined by analysis of similarities (ANOSIM) and
mrpp) [77, 79]. For analysis of beta diversity without the
Salmonella OTU (Additional file 4: Figure S2), the domin-
ant Salmonella OTU was removed from Additional file 1
and relative abundance was recalculated for each OTU
within each sample by normalizing to the remaining sample
relative abundance. An NMDS was generated as described
above with this new OTU table. Beta dispersion was calcu-
lated using the betadisp command with vegan package in
R, while significance of dispersion was tested via anova. For
all R commands regarding diversity measures, see
Additional file 9. All above analyses were done using the
vegan package in R.
Day 15 fecal samples were analyzed using linear dis-

criminant analysis effect size (LEfSe) [36]. Linear dis-
criminant effect size (LEfSe) analysis was performed
at the genus level to find features (genera) differen-
tially represented between defined groups. DSS, low-
responder, and high-responder groups were compared

individually to the control, and all groups were com-
pared together. LEfSe combines the standard tests for
statistical significance (Kruskal-Wallis test and pair-
wise Wilcoxon test) with linear discriminate analysis
[36]. It ranks features by effect size, which puts fea-
tures that explain most of the biological difference at
top. LEfSe analysis was performed at the α value of
0.05 for the Kruskal-Wallis test and the threshold of 2
on the logarithmic LDA score for discriminative fea-
tures. A heat map of discriminant features was gener-
ated using heatmap function in the statistics package in
R. Side panels of key taxa were generated in R. All R
scripts used to generate Fig. 4 are included as an Add-
itional file 9.
Weighted correlation network analysis (WGCNA)

was used to generate OTUs that were positively and
negatively correlated to the Salmonella OTU among
day 15 samples in the Salmonella treatment group
(high and low responders) using the WGCNA package
in R [80]. A Kruskal–Wallis test was used to compare the
relative abundance of distinct taxonomic units and chem-
ical metadata between treatment groups. Significance
claimed in the text refers to a p value less than 0.05, unless
noted otherwise. We used false discovery rate (FDR)
adjusted p values to control for multiple comparison
false positives, data included in Additional file 10 [81].

Inflammation marker quantification
Lipocalin-2 levels were measured in fecal sample su-
pernatants using the Duoset murine Lcn-2 ELISA kit
(R&D Systems, Minneapolis, MN). This method has
been shown to detect low-grade inflammation and se-
vere colitis, and compared to histopathology, lipocalin
is more sensitive for detecting low-grade inflammation
[32, 33]. Briefly, frozen fecal samples were reconsti-
tuted in PBS containing 0.1% Tween 20 (100 mg/ml)
and vortexed for 20 min. This homogenous fecal
suspension was then centrifuged for 10 min at
12,000 rpm and 4 °C.

Short-chain fatty acid quantification
To quantify short-chain fatty acids (SCFA), scraped
cecal contents from five mice in the control group,
five in the DSS group, and ten in the Salmonella in-
fected group were collected and stored at −80 °C.
After being lyophilized, cecal content dry weights were
recorded and contents were ground on ice. Although
lyophilization may reduce the total SCFA content, we
selected this method to ensure equal loading of dry
weight. Additionally, we conservatively report the rela-
tive SCFA amounts in one treatment group versus an-
other rather than absolute values. Cecal contents with
3.8 to 8 mg dry weight for different samples were each
transferred into a new 1.5-ml centrifuge tube, followed

Borton et al. Microbiome  (2017) 5:47 Page 11 of 15



by the addition of 500 μl chilled methanol (Fisher Sci-
entific) and 300 μl water (Fisher Scientific) spiked with
1.6 nmol [13C]-F-Asn. After being vortexed and cen-
trifuged at 14,800 g for 1 h, the supernatant was ali-
quoted into four new 1.5-ml centrifuge tubes, frozen
and lyophilized. An aliquot of each sample was re-
suspended in 100 μl water, followed by filtration with a
0.2-μm PTFE filter (Thermo Scientific). A chemical de-
rivatization was performed based on a protocol from
Han et al. Twenty microliters of the solution was
sequentially mixed with 10 μl of 10 mM 3-
nitrophenylhydrazine (3NPH) (Sigma-Aldrich) and
10 μl of 6 mM N-(3-dimethylaminopropyl)-N’-ethylcar-
bodiimide (EDC) hydrochloride (Thermo Scientific)
with 0.3% pyridine (Sigma-Aldrich). The reaction sys-
tem was incubated at 40 °C for 2 h and cooled on ice
for 1 min before dilution with 60 μl water. The solution
was further diluted ten times with water before being
injected for liquid chromatography-mass spectrometry
analysis. A nanoACQUITY Ultra Performance Liquid
Chromatography (UPLC) system (Waters, Milford, MA,
USA) with a UPLC HSS T3 column (Waters, 75 μm ×
100 mm, 1.8 μm) was coupled to a triple quadrupole
mass spectrometer (Waters Xevo TQ-S) for SCFA ana-
lysis. Buffer A, 0.1% formic acid (Thermo Scientific) in
water with 10% acetonitrile (Fisher Scientific), and buf-
fer B, 0.1% formic acid in acetonitrile (Fisher Scientific),
were used as mobile phases for gradient separation,
which started with 100% A for 1 min at a flow rate of
0.8 μl/min and then followed by gradient: 1–5 min,
100–50% A; 5–7 min, 50–0% A; 7–10 min, 0% A; 10–
12 min, 0–100% A; 12–30 min, 100% A. The mass
spectrometer was operated in positive ion nano-
electrospray ionization mode (nano-ESI+) with a capil-
lary voltage of 3 kV, source temperature 70 °C, cone
voltage 2 V and source offset 2 V. The gas flow rate for
the collision cell was 0.15 ml/min. Transitions m/z
196→ 137, m/z 210→ 137, and m/z 224→ 137 with
collision energy 20 eV were used for quantification of
acetate, propionate, and butyrate, respectively, in
multiple-reaction-monitoring mode. Another transition
for each acid (m/z 196→ 138, m/z 210→ 138, m/z
224→ 138, respectively) was used for validation of
quantification of acetate, propionate, and butyrate, re-
spectively, and gave values within 14% of the first set of
transitions. Standard curves were made by spiking deri-
vatized acetic acid (Fisher Scientific), propionic acid
(Acros Organics), and butyric acid (Acros Organics)
into 1000-time diluted pooled cecal content extraction
solutions from the high responder group and running
the same LC-MS/MS analysis. Skyline-daily (v 3.5,
MacCoss Lab, Department of Genome Sciences, Uni-
versity of Washington, Seattle, WA, USA) was used for
calculating the peak area of transitions [82].

Additional files

Additional file 1: OTU table of all samples with taxonomic assignment.
(CSV 3174 kb)

Additional file 2: Sequences of all OTUs in fasta format. (FNA 10560 kb)

Additional file 3: Figure S1. Pictures showing the cecum of one low
responder and one high responder. Pictures are denoted by outline
color, with orange representing the low responder group and red
representing the high responder group. Black arrow indicates the pus-
filled area described in the text and was only visually present in the
cecum from the high-responder group. (PDF 124 kb)

Additional file 4: Figure S2. Non-metric multidimensional scaling (NMDS)
ordination of all samples without Salmonella OTU. A NMDS of Bray-Curtis
similarity metric among microbial communities in each pretreatment fecal, late
fecal, and cecal sample (stress = 0.10) shows a statistically significant (mrpp, p
< 0.001) separation of cecal microbial communities from control, DSS, low-
responder, and high-responder groups. Each point represents one sample
with colors denoting treatment. (PDF 136 kb)

Additional file 5: Figure S3. Salmonella relative abundance through
time in low-responder group. A line graph depicts Salmonella relative
abundance through time for each low responder mouse. To better see
the trends, Mouse 1 was put on a second, larger axis (right), while all
other mice are scaled to the smaller axis (left). (PDF 352 kb)

Additional file 6: Mapping file detailing time point, treatment,
Shannon’s diversity and richness for each sample. (CSV 5 kb)

Additional file 7: Mapping file of metadata detailing Lipocalin-2 and
SCFA concentrations by mouse. (CSV 1 kb)

Additional file 8: Figure S4. Microbial communities of day 15 fecal
samples. Stacked bar chart representing day 15 fecal microbial
communities by class of Salmonella-treated mice, with each bar
representing one mouse. Defined groups are distinguished from high at
the bottom of the bar chart. (PDF 355 kb)

Additional file 9: All R commands used. (R 5 kb)

Additional file 10: FDR adjusted p-values. (CSV 88 kb)
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