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Abstract

Microbiota dysbiosis, Immune activation, Inflammation

Background: Adult survivors of childhood cancers such as acute lymphoblastic leukemia (ALL) have health
problems that persist or develop years after cessation of therapy. These late effects include chronic inflammation-
related comorbidities such as obesity and type 2 diabetes, but the underlying cause is poorly understood.

Results: We compared the anal microbiota composition of adult survivors of childhood ALL (N =73) with healthy
control subjects (N =61). We identified an altered community with reduced microbial diversity in cancer survivors,
who also exhibit signs of immune dysregulation including increased T cell activation and chronic inflammation. The
bacterial community among cancer survivors was enriched for Actinobacteria (e.g. genus Corynebacterium) and
depleted of Faecalibacterium, correlating with plasma concentrations of IL-6 and CRP and HLA-DR+CD4+ and
HLA-DR+CD8+ T cells, which are established markers of inflammation and immune activation.

Conclusions: We demonstrated a relationship between microbial dysbiosis and immune dysregulation in adult ALL
survivors. These observations suggest that interventions that could restore microbial diversity may ameliorate
chronic inflammation and, consequently, development of late effects of childhood cancer survivors.
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Background

Acute lymphoblastic leukemia (ALL) is the most
common childhood cancer, which now has 5-year
survival rates exceeding 80% as a result of improved
therapy [1]. Adult survivors of childhood cancer have
a higher risk of chronic comorbidities [2-4] and early
mortality compared to their age-matched controls [5].
These comorbidities include diabetes mellitus [3, 6],
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metabolic syndrome, cardiovascular disease [7], renal
insufficiency [3] and frailty [8]. The development of
these conditions could be attributed to radiotherapy
[9, 10] and chemotherapy [11], though the exact
mechanisms remain unclear.

Chemotherapeutic agents have a broad impact on the
gastrointestinal (GI) system including structural damage
to the gut, dysregulation of the gut-associated lymphoid
tissue [12] and alteration of the gut microbiota [13, 14].
Adult survivors of childhood cancer who received
abdominal radiation, as well as exposure to anthracy-
clines and alkylating agents, report a higher incidence of
GI tract complications [15]. In childhood myeloid
leukemia, chemotherapy has been associated with a
reduction in anaerobic bacteria and increased entero-
cocci, persisting up to at least 6 weeks post treatment
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[13]. Multiple courses of broad-spectrum antibiotics for
febrile neutropenia and antimicrobial prophylaxis [16, 17]
may also have long-term effects on the gut microbiota.

The relationship between the gut microbiota and
human health is now well-documented [18—20]. The im-
balance or dysbiosis of microbial communities is known
to be associated with the development of many different
diseases, including diabetes mellitus, metabolic syn-
drome [21], atherosclerosis [22, 23] and frailty [24-26],
all of which are also prevalent among childhood cancer
survivors [3, 4]. It is difficult to determine whether dys-
biosis is the cause or result of human disease [27], and
causality has only been demonstrated in mouse models.
In murine studies, dysbiosis can trigger systemic im-
mune dysregulation through its local effects on T cells in
the gut, as well as in the circulation [28-30]. The mech-
anisms by which microbes impact immune responses
during homeostasis and disease is an area of intense in-
vestigation. Alterations in bacterial metabolites [31, 32]
and increased intestinal translocation [33, 34] are mech-
anisms that have been proposed to link microbial dys-
biosis with immune dysregulation. Specific alterations to
the microbial communities are associated with markers
of immune activation and chronic inflammation. Hence,
monitoring gut microbial communities and inflam-
mation status of ALL survivors may be a potential sur-
veillance strategy for targeting health counseling. In
addition, data on microbial communities may also be
crucial for the design and testing of therapeutic inter-
ventions to restore microbial diversity thereby poten-
tially reducing systemic inflammation.

We recently observed that a cohort of adult survivors
of childhood leukemia in Malaysia exhibited signs of
increased immune activation and chronic inflammation
[35]. We hypothesized that this inflammatory phenotype
could be associated with persistent changes in microbial
communities. Using subjects from this cohort, we inves-
tigated whether adult survivors of childhood ALL have
reduced microbial diversity compared to controls with-
out history of cancers.

Methods

Study cohort

Participants for this study were selected from a larger
study originally to explore the presence of a phenotype
of aging on young adult leukemia survivors [35]. Adult
survivors of childhood ALL who attended a late-effect
surveillance clinic at the University of Malaya Medical
Centre (UMMC), Malaysia, for their annual follow-up
were recruited. Inclusion criteria were (1) individuals
aged between 18 and 35 years, (2) at least 5 years since
completion of leukemia treatment, (3) no history of
bone marrow transplant and (4) no acute illness and not
pregnant at the point of recruitment. Healthy controls
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who also fulfilled the inclusion criteria but without
history of cancers were recruited among healthcare
workers, siblings and volunteers. The study protocol was
approved by the institutional ethical committees (refer-
ence number: MEC 2014/1093.65), and signed informed
consent was obtained from all the participants for
sample collection and data analysis.

DNA extraction and 16S ribosomal RNA genes sequencing
Fecal microbiome sample was collected using sterile anal
swabs and stored at —80 °C prior to processing. Anal
swabs were more practical for collection in the clinic
setting as opposed to obtaining a fecal sample. We
assumed the microbiota obtained from anal swabs would
resemble that of fecal samples as has been demonstrated
in previous studies [36, 37].

DNA from anal swabs were extracted using the
NucleoSpin® Tissue kit according to the manufacturer’s
protocol (Macherey-Nagel, Germany). DNA was eluted
with 50 pl of Buffer BE and stored at -20 °C. Subse-
quently, DNA library preparation and sequencing were
performed in New York University Genomic Centre.
Briefly, DNA samples were amplified for the variable 4
region (V4) of 16S rRNA gene using the method and
primer constructs as previously described [38]. The
forward primer construct contained the 5 Illumina
adapter, the forward primer pad, a two-base linker (‘GT’)
and the 515F primer (5'-AAT GAT ACG GCG ACC
ACC GAG ATC TAC ACT ATG GTA ATT GTG TGC
CAG CMG CCG CGG TAA-3'). The reverse primer
construct contained the 3’ Illumina adapter, a unique
12-base error-correcting Golay barcode, the reverse
primer pad, a two-base linker sequence (‘CC’) and the
806R primer (5'-CAA GCA GAA GAC GGC ATA CGA
GAT NNN NNN NNN NNN AGT CAG TCA GCC
GGA CTA CHV GGG TWT CTA AT-3). 16S rRNA
V4-targeted polymerase chain reaction (PCR) was carried
out in triplicate with thermal cycling of 94 °C for 3 min,
followed by 35 cycles of 94 °C for 45 s, 50 °C for 60 s, 72 °C
for 90 s, and lastly, 10 min at 72 °C to confirm full amplifi-
cation. Three replicate amplicons were measured using
TapeStation for DNA concentrations and pooled at equimo-
lar ratio. Sequencing on the amplicons was conducted on
the Illumina MiSeq system (Illumina, San Diego CA, USA).

16S rRNA gene sequences analysis

The paired-end sequencing reads were joined using the
fastq-join function from EA-utils with default parameters
followed by demultiplexing using the 12-base Golay
barcodes. Demultiplexing was done with the default
quality-filtering parameters: minimum quality score of 25,
minimum/maximum sequence length of 200/1000, no
ambiguous bases and no mismatches in the primer se-
quence [39]. Sequences were then analyzed with QIIME
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version 1.8.0 [40]. Using pick_open_reference_otus.py
workflow, operational taxonomic unit (OTU) picking was
performed first, with a closed reference method by
aligning the sequences to reference in Greengenes 13.8
database. Unaligned sequences were clustered by de novo
method using the UCLUST consensus taxonomy assigner,
at the minimum of 97% sequence similarity.

After picking for OTUs, samples with low reads
(<1000) were removed using filter_samples_from_otu_-
table.py script. We had on average 7313 reads per
sample for 134 samples (a total of 980,062 reads, ran-
ging from 1127 to 28,299 reads). After that, OTUs
were grouped at different levels of taxonomy classifi-
cation (phylum, class, order, family and genus) and
normalized at each level to get the relative abundance
of each taxonomy using summarize_taxa_through_plots.py
script.

Microbial diversity analysis

OTU-based alpha diversity was estimated by calculating
three diversity matrices, phylogenetic distance, observed
OTUs and Chaol using QIIME workflow (alpha_rarefac-
tion.py). First, rarefaction analysis was iterated over 10
depths up to the 1000 reads depth (to match the mini-
mum sampling depth) with 10 times subsampling at each
depth. Rarefaction curves were generated for each matrix.
Non-parametric test was used to compare the statistical
significance of the rarefraction curves between the sur-
vivor and control groups implemented in QIIME function
(compare_alpha_diversity.py) as the data distribution was
not normal. Chaol index, phylogenetic distance and num-
ber of observed OTUs at the rarefaction of 1000 reads
were compared.

Inferred metagenomics and functions using PICRUSt
Closed-reference OTU table was generated using QIIME
script pick_closed_reference_otus.py for community meta-
genome functions inference. First, the original 16S rRNA
sequencing data was quality-filtered and demultiplexed,
followed by taxonomy assignment of the representative
sequences to the reference sequences from Greengenes
13.8 database at 97% similarity. The resulting closed-
reference OTU table was passing through the PICRUSt
workflow on the online Galaxy interface from the Hutten-
hower Lab (https://huttenhower.sph.harvard.edu/galaxy/).
Each OTU was first normalized for 16S rRNA copy
number, followed by metagenome prediction. Func-
tional annotation and pathway inference of the meta-
genome was done using Kyoto Encyclopedia of Genes
and Genomes (KEGG) database at pathways of hier-
archy levels 2 and 3 [41]. Linear discriminant analysis
(LDA) Effect Size (LEfSe) was used to identify the dif-
ferentially abundant KEGG pathways in the survivor
and control groups.
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LDA Effect Size analysis

To identify the bacterial taxa and the predicted KEGG
functional pathways that are differentially abundant in
the survivors’ and controls’ microbiome, LEfSe analysis
was performed using the online Galaxy interface (http://
huttenhower.sph.harvard.edu/galaxy/). LEfSe uses the
non-parametric factorial Kruskal-Wallis rank-sum test to
detect features that are significantly different in abundance
between the survivor and control groups. The effect sizes
of the identified features were then estimated with linear
discriminant analysis model [42]. False discovery rates of
the resulting p values were corrected using the p.adjust()
function with the Benjamini-Hochberg algorithm imple-
mented in R, and reported as g values (also summarized
in Additional file 1: Table S1).

Group associated with OTU selection using sparse partial
linear square discriminant analysis (sPLS-DA)

sPLS-DA [43] was conducted to select the most discrim-
inative OTUs associated with survivor or control groups.
OTU data was added with a single pseudocount prior to
compositionally normalization using total sum scaling
(TSS) and centered log-ratio (CLR) transformation.
sPLS-DA analysis was then performed using the splsda()
function to select 10 features (OTUs) each on the first
and second principal components respectively to best
discriminate survivor group or control group. Individual
samples were presented on a PCA plot based on the se-
lected OTUs and are distinguished by group with color
and 95% confidence eclipses using the plotindiv() func-
tion. The contribution of the OTUs that were associated
to each group on the first and second components are
presented with contribution plots using the plotLoad-
ings() function. The abundance of each selected OTUs
are presented on clustering heatmaps using the cim()
function. The taxa hierarchy of each OTU is summa-
rized in Additional file 1: Table S2. All the analyses were
conducted using mixOmics package version 6.1 imple-
mented in R software [43].

Cytokine and inflammatory markers

Peripheral blood was collected from participants in
EDTA vacutainer and processed within 4 h of sampling
as previously described [44]. Plasma IL-6 was measured
by enzyme-linked immunosorbent assay (ELISA) using
the Quantikine HS IL-6 kit (R&D Systems, Minneapolis,
USA). All assays were conducted in duplicate and ac-
cording to manufacturer’s instructions. Plasma CRP was
measured by the hospital central diagnostic laboratory.

T cells activation markers

T cells activation was assessed with the expression of
HLA-DR using flow cytometry and reported as %HLA-
DR+ CD4 or CD8 T cells. Immunophenotyping was
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performed on peripheral whole blood as previously de-
scribed [35]. Briefly, 100 pl of blood was stained for
surface markers CD3-PerCp-Cy5.5 (clone SK7), CD4-
PE-Cy7 (clone SK3), CD8-APC-H7 (clone SK1) and
HLA-DR-BV421 (clone G46-6) using antibody cocktails
for 15 min in the dark. Red blood cells were then lysed
using a 1:10 dilution of BD lysis buffer (all antibodies
and reagents are from BD Pharmigen, San Jose, CA) for
10 min, and the cells were washed once with phosphate-
buffered saline (PBS). Samples were acquired on a BD
FACSCanto II (BD Biosciences, San Jose, CA) for
100,000 events and analyzed using the FACS Diva
software (version 6.0). The gating strategy used is shown
in Additional file 1: Figure S1.

Statistical analysis

Statistical analysis was performed using SPSS software
(version 21, IBM) and R software (version 3.3.0). Data
was checked with Shapiro-Wilk test for distribution
prior to significance tests. Unpaired two-tailed ¢ tests
(Student’s ¢ test for normally distributed data and
Mann-Whitney test for skewed data) were used to
evaluate differences between two groups. Correlation of
each taxa feature identified from LEfSe analysis with
immunological markers were estimated with Spearman
rank partial correlation test adjusted for age, gender
and BMI using the pcor.test() function in the ppcor
package implemented in R [45].Correlation analysis was
performed on the combined data (survivors and con-
trols), survivor only group and control only group, to
show if the correlation for all of the other taxa of inter-
est is observed when data from both or either survivors
or controls are used separately. Correlation coefficient
(rho) and p value are presented in Additional file 1:
Table S3.

Results

Adult survivors of childhood ALL have reduced anal
microbial diversity

Anal swab samples were collected from 73 adult survi-
vors of childhood ALL and 61 healthy controls (see
Table 1). The demographic characteristics of survivors
and controls were comparable. We noted a slightly
higher median age in survivors (26 years, interquartile
range (IQR) 22-29.5) compared to that in controls
(23 years (IQR 21-24)). For the survivors, median age at
diagnosis was 5 years (IQR 2.25-9) and median duration
since treatment cessation was 18.5 years (IQR 14-23).
The clinical and demographic characteristics of the
study participants are summarized in Table 1.

Despite being asymptomatic, the adult survivors of
childhood ALL had significantly reduced microbial
diversity compared to the controls as determined by
measurements of alpha-diversity. Estimations with three
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different alpha diversity matrices (Chaol, observed OTUs
and phylogenetic distance) consistently showed signifi-
cantly reduced diversity (p <0.01) for the survivor group
compared to the control group (Fig. 1a, b). Reduced
microbial diversity is often associated with chronic
diseases [46—48].

A different microbial signature in adult survivors of
childhood ALL

The dominant phyla in both groups are the Firmicutes
and Bacteroidetes (Fig. 2a and Additional file 1: Figure
S2a), consistent with previous findings that microbial
composition of anal swab samples closely resemble fecal
samples [36]. Survivors and controls did not cluster into
clear distinct groups with beta-diversity estimates (Add-
itional file 1: Figure S2b). However, supervised compari-
son between the two groups by LEfSE analysis [42] and
after correction with FDR adjustment identified several
differentially abundant microbial taxa between the sur-
vivor and control groups (Fig. 2b, ¢, Additional file 1:
Table S1). At the phylum level, the survivors’ microbiota
community was slightly enriched for Actinobacteria
while depleted of phylum Bacteroidetes and Proteobac-
teria (Fig. 2a). Although relative abundance of the phyla
Firmicutes is not significantly different between groups,
specific members of Firmicutes were enriched (Tissierel-
laceae and Staphylococaceae), while others were reduced
(Ruminococaceae and Lachnospiraceae) in the survivor
group. Also of interest is the reduced relative abundance
of Faecalicabacterium. LDA score, p value and FDR-
corrected g value of the significantly differently abun-
dant taxa are summarized in Additional file 1: Table S1.
In this study, we show that the microbial composition
among ALL survivors exhibit abundant differences in
comparison to healthy controls, indicating a potential
microbial signature for these survivors. Of particular
interest, the bacterial taxa, such as Faecalicabacterium,
Ruminococaceae and Lachnospiraceae that are known to
be reduced in abundance for other chronic diseases (for
example, inflammatory bowel disease and psoriatic arth-
ritis) [47, 49], were also less abundant among the cancer
survivors. Therefore, adult survivors of childhood ALL
share some features of microbial dysbiosis with individ-
uals with chronic diseases [50, 51] despite being other-
wise asymptomatic.

We next utilized an alternative approach to further
reduce potential noise and compositional artifacts in the
dataset, by using a sparse (to ensure selection of rela-
tively few OTUs) partial least squares discriminant ana-
lysis (sPLS-DA) to identify specific OTUs that could
potentially distinguish between the cancer survivors
from controls. With a threshold set at 10 OTUs, we
observed comparable separation of survivors and con-
trols as sPLS-DA analysis with larger number of OTUs
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Table 1 Participant clinical and demographic characteristics
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Group p value
Survivors Controls
Number in each group N=73 N=61
Sex, n (%) 0.378Chi
Male 28 (38.4%) 28 (45.9%)
Female 45 (61.6%) 33 (54.1%)
Ethnicity 0.159Chi
Malay 23 (31.5%) 21 (34.4%)
Chinese 45 (61.6%) 29 (47.5%)
Indian 5 (6.8%) 10 (16.4%)
Others 0 1 (1.6%)
Age at recruitment, years (IQR) 26 (22-29.5) 23 (21-24) 0.00TMW
Age at diagnosis, years (IQR) 5(2.25-9) -
Diagnosis, n (%) -
ALL 73 (100%) -
Duration of cancer therapy, years (IQR) 18.5 (14-23) -
Cancer therapy history -
Anthracyclines, n (%) 53 (73.6%) -
Alkylating agents, n (%) 55 (76.4%) -
Anthracylines and alkylating agents, n (%) 52 (72.2%) -
Radiotherapy received, n (%) 36 (50%) -
Cancer relapse, n (%) 2 (2.7%)
Second neoplasms, n (%) 3 (4.1%) -
Diabetes mellitus or hypertension, n (%) 3 (4.1%) 0
BMI, kg/m? (IQR) 23.5 (20.7-27.5) 218 (203-252) 0.006T
Mode of birth (caesarean/vaginal), n/n 5/63 9/50 0.238Chi
“Antibiotic intake, n (%) 7 (9.6%) 7 (11.5%) 0.789Chi

Data shown are median (interquartile range, IQR) or n (%). n = number of subjects. Variables are significantly different between survivors compared to controls if

p <0.05 on T = Student’s t test, MW = Mann Whitney test or Chi = Chi-square tests

Number of subjects who consumed any antibiotic within 1 month prior to recruitment

(Additional file 1: Figure S3 (show heatmaps of 20
OTUs, 100 OTUs, and optimal number of OTUs
selected with the MixOmics tune.splsda() process)).
However, there is still considerable overlap between
survivors and controls (Fig. 3a, b, d, Additional file 1:
Figure S3). Notably, the OTUs identified to contribute
towards component 1 (8% variance explained) and
component 2 (4% variance explained) predominantly
belong to taxa such as Faecalibacterium, Finegoldia and
Peptoniphilus that were previously identified using
LEfSe analysis (Fig. 3c, e). Details of taxa hierarchy and
contribution score for each of the OTUs selected with
sPLS-DA are summarized in Additional file 1: Table S2.
Overall, consistent differences were observed between
survivors and controls for specific components of the
microbiota, but this was insufficient to clearly distin-
guish survivors from controls.

T cell activation and systemic inflammation markers are
associated with dysregulated microbial taxa

The T cells of the immune system are heavily influenced
by the microbiota and play an important role in homeo-
stasis [52, 53]. It has been previously reported that
young adult leukemia survivors show increased immune
activation [35]. Immune activation quantified by the ex-
pression of HLA-DR on CD4+ and CD8+ T cells was
correlated to the anal microbiota composition. We first
demonstrated that the ALL survivors exhibited increased
activation (%HLA-DR) of CD4+ and CDS8+ cells, in
comparison to controls (Fig. 4a, b), which is consistent
with our previous report [35]. We then asked whether
the activation status of the T cells was associated with
the observed differences in microbial taxa between the
survivor and control groups after adjustment for age,
gender and BMI. We found that there was indeed a
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Fig. 1 Reduced microbial diversity in adult survivors of childhood ALL. Rarefaction curves for alpha diversity measured with three different
matrices: Chaol, phylogenetic distance and observed OTUs. Microbial diversity was reduced among the survivors as compared to controls (a).
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significant positive correlation between relative abun-
dance values of the phyla Actinobacteria and the fre-
quency of HLA-DR+CD4+ cells and HLA-DR+CD8+
cells (Fig. 4¢, d, Additional file 1: Table S3). More specif-
ically, two genera in the Tissierellaceae family, Aneero-
coccus and Finegoldia, were positively associated with
activation of CD4+ T cells (Fig. 4c, Additional file 1:
Table S3) and CD8+ T cells (Fig. 4d, Additional file 1:
Table S3). Interestingly, relative abundance of Finegoldia
was predominantly associated with CD8+ T cell activa-
tion among the survivors (rho =0.474, p <0.001), but
there was no association in the control group when we
analyzed the groups separately (Fig. 4e, Additional file 1:
Table S3). In contrast, relative abundance of Actinobac-
teria was predominantly associated with CD4+ T cell
activation among the controls (rho =0.404, p <0.001),
but there was no association in the survival group when
we analyzed the groups separately (Fig. 4f, Additional
file 1: Table S3). This raises the possibility that an ele-
vated abundance of Finegoldia may specifically drive
higher CD8+ T cell activation among the survivors
while Actinobacteria abundance is associated with CD4
T cell activation among controls but not among the
survivors. The implications of these associations are
unclear and would require further experimentation to
demonstrate causality.

In addition to increased activation of T cells, we found
that some biomarkers of inflammation, namely, circulat-
ing levels of interleukin (IL)-6 and C-reactive protein
(CRP) as determined by ELISA, were elevated in the
adult survivors of childhood ALL compared to controls
(Fig. 5a, b). Notably, IL-6 and CRP measurements are
negatively associated with the relative abundance values
of Faecalibacterium and Ruminococcus, while being
positively associated with Peptoniphilus (Fig. 5e, f,
Additional file 1: Table S3). Changes in abundance of
Faecalibacterium prausnitzii in particular has been
linked with dysbiosis in several human diseases (e.g.
reduced in inflammatory bowel disease [49, 54] and
ulcerative colitis [50]). Furthermore, F. praumnitzii has
been shown to induce IL-10 secretion, which is an anti-
inflammatory cytokine [55]. The reduced abundance of
F. praunitzii and its association with the increase inflam-
matory biomarkers may be significant for the childhood
ALL survivors; however, demonstration of a causal
relationship would require further experimentation.

Functional differences in bacterial communities among
adult survivors of childhood ALL

We next utilized inferred metagenomic analysis [41] to
determine if there are specific alterations in metabolic
pathways encoded by bacterial communities between the
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survivor and control groups (Fig. 6a). Interestingly, the
bacterial microbiome of the survivors are enriched
for several inferred amino acid pathways, including
purine metabolism and tryptophan metabolism, as
well as for DNA repair and recombinant proteins
(Fig. 6b). Tryptophan metabolism in particular is of
significant interest because it has been associated
with microbial dysbiosis in HIV-infected patients
[56]. The inferred pathways that are reduced in
abundance in the survivors’ microbial communities
encode for bacterial motility proteins, sporulation
and bacterial chemotaxis. These results indicate that
in addition to community differences, there may be
differences to the functionalities of the microbiome
between survivors and controls.

Discussion

Our results provide the first evidence that asymptomatic
adult survivors of childhood ALL have indications of mi-
crobial dysbiosis that share characteristics with alterations
previously associated with the risk of immunological and
metabolic diseases, including obesity. Additionally, there
are specific relationships between the altered bacterial taxa
and biomarkers of T cell activation and systemic inflam-
mation, raising the hypothesis that differences in the
bacterial communities may be associated with dysregu-
lated immune activation. There is increasing evidence that
environmentally induced alterations to the microbiota can
be irreversible [57, 58]. Here, we also found that dysbiosis
can be detected and probably persist for years after
successful completion of cancer therapy.
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using CLR transformation and sPLS-DA model. Individual samples were

Of particular significance is the reduction in microbial
diversity among the adult survivors of childhood ALL
compared to controls. Such clear differences in alpha
diversity between groups (with a relatively small sample
size) are rarely observed between healthy, or even dis-
eased individuals (e.g. [59]), unless they are suffering
from intestinal diseases such as inflammatory bowel

disease [60, 61]. Microbial diversity increases and stabi-
lizes over the first 3 years of life [58]; hence, dysbiosis
during childhood is more likely to persist. It is now well
documented that birth by caesarean section [62], obesity
and antibiotic use are correlated with reduced microbial
diversity, and reduced diversity during early life can be
associated with inflammatory diseases such as allergic
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diseases [63], and children at high risk of type 1 diabetes
have decreased microbial diversity over time [64].
Although there are significant differences in age and
BMI (Table 1 and Additional file 1: Figure S4) between
the survivors and controls, we corrected for potential
confounding effects of age, BMI and gender with partial
correlation analysis (as described in methodology sec-
tion), and the relationship between bacterial taxa and
immune activation markers remain significant. Colonic
transit time is another potential confounder [65] that we
did not measure in our study participants. We also did

not assess incidences of GI complications, which has
been reported to be greater in the adult survivors of
childhood cancer [15] and could be associated with
microbiome diversity and composition. Prolonged treat-
ment with antibiotics during cancer therapy may con-
tribute to microbial dysbiosis. All the childhood ALL
survivors in this cohort received cotrimoxazole through-
out the 2-year course of cancer therapy as prophylaxis
against Pneumocystis jerovici; however, gut decontamin-
ation with quinolones was not practiced. Future studies
with longitudinal samples from childhood ALL survivors
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are crucial to determine if this reduction in microbial
diversity is a result of radiation and chemotherapy and
persists into adulthood. Data from a few ALL survivors
(N'=19) that are of a younger age (9-17 years old) indi-
cates this reduced microbial diversity is present prior to
adulthood (Additional file 1: Figure S5).

We also noted with interest that relative abundance
values of the genus Faecalibacterium were reduced
among the adult survivors of childhood ALL and nega-
tively associated with the inflammatory biomarkers IL-6
and CRP. F. prausnitzii is one of the most abundant com-
ponents of the gut microbiota [66]. For inflammatory

bowel disease patients in particular, there are multiple
studies showing differences in abundance for Faecalibac-
terium relative to healthy controls [50, 51, 55]. Addi-
tionally, a reduced abundance of F. pausnitzii has also
been associated with the frailty index in a recent large
population-based study [26], a phenotype previously de-
scribed to be prevalent among young adult survivors of
childhood cancer [8]. As a producer of short-chain fatty
acids (SCFA) such as butyrate [67], it may be linked to
regulation of intestinal inflammation through increas-
ing regulatory T cells [68]. Future studies, including
longitudinal studies, should monitor the abundance of
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F. prausnitzii in the feces of young adult survivors of
childhood ALL as an indicator of intestinal health. A
reduction in F. prausnitzii abundance was also ob-
served in children with acute myeloid leukemia during
treatment and 6 weeks post treatment [13], indicating
that the dysbiosis we find here may have persisted years
after cessation of chemotherapy.

Because of the limited quantities of microbial DNA
available, it was not possible to perform complete meta-
genomic analyses of the participant samples. We instead
used an inferred metagenomic approach to generate a
preliminary overview of differences in microbiome func-
tionality between the survivors of childhood ALL and
controls. We noticed that tryptophan metabolism is
higher among the survivors. Increase in tryptophan me-
tabolism has also been previously reported in HIV-
infected patients, and the higher level of tryptophan
catabolism correlates with markers of chronic immune
activation and inflammation [56]. While we have not
measured production of kynurenine in this study, circu-
lating levels of the inflammatory cytokine IL-6 have been
shown to correlate with kynurenine production in HIV

patients. The interferon-inducible enzyme indoleamine
2,3-dioxygenase 1 (IDO1) is associated with intestinal
lymphoid tissue disruption, depletion of TH17 cells and
chronic inflammation [69]. Consistent with the HIV
study, we find here that bacterial taxa enriched among
the survivors of childhood ALL may encode for enzymes
that performs the same catabolic function as human
IDO1, raising the hypothesis that the survivors may bear
similarities in the mechanism of intestinal disruption
that was previously described in HIV-infected patients
[69, 70]. While interesting, these observations are based
on inferred function with 16S sequences only and hence
highly speculative. The microbially derived tryptophan
catabolites and their effects on the host are considerably
diverse [71, 72]. Future studies quantifying trytophan
catabolites (such as kynurenine) will help determine the
relationship between microbial changes in the childhood
cancer survivors and tryptophan metabolism.

Conclusions
While the mechanisms underlying our observed associa-
tions here are still poorly understood, the basic observation
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of dysbiosis and reduced microbial diversity in adult survi-
vors of childhood ALL raises several crucial hypotheses.
The composition of certain members of the microbial
communities are associated with biomarkers of immune
activation, namely, the higher levels of T cell activation and
circulating levels of IL-6 and CRP. Hence, community dys-
biosis may be driving low-grade inflammation, although, to
establish causation, additional functional studies (e.g. trans-
fer of microbiota samples into germ-free animals) would be
required. More importantly, our findings here raise the
possibility that therapeutic interventions that could restore
microbial diversity and reverse dysbiosis to the ALL survi-
vors may help to mitigate long-term effects. While we still
do not know how to restore a healthy microbial community
in people, multiple approaches (e.g. probiotics [73]), fecal
transplantation [74] and helminth colonization [75, 76] are
being investigated, which may be applicable to ALL survi-
vors in the future. It is also important to note that in this
study, we have not demonstrated a causal relationship be-
tween the altered microbial taxa and chronic inflammation.
Future work to establish causality would involve isolation
of specific taxa and transferring of anaerobically cultured
clones into germ-free animals and demonstrating an in-
creased inflammatory response in the recipient animals.
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