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Abstract

Background: Microbiome sequencing projects typically collect tens of millions of short reads per sample.
Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be
assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very
difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a
gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes.

Methods: We present a new method for performing gene-centric assembly, called protein-alignment-guided
assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly,
based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a
gene family based on a classification such as KEGG and all reads binned to that gene family are assembled.

Results: Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show
that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently
published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the
percentage of reference sequence covered.

Conclusions: Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome
assembly in a new and very useful way.
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Background
Functional analysis of microbiome sequencing reads—by
which we mean either metagenomic or metatranscrip-
tomic shotgun sequencing reads—usually involves align-
ing the six-frame translations of all reads against a
protein reference database such as NCBI-nr [1], using a
high-throughput sequence aligner such as DIAMOND
[2]. Each read is then assigned to a functional family,
such as a KEGG KO group [3] or InterPro family [4],
based on the annotation of the most similar protein ref-
erence sequence.

A gene-centric assembly for a family of orthologous
genes F is the assembly of all reads associated with F.
One approach to this is simply to run an existing
assembly tool on the reads. In this paper, we present a
new approach to gene-centric assembly that we call pro-
tein-alignment-guided assembly. We provide an imple-
mentation of this approach in the latest release of the
metagenomic analysis tool MEGAN Community Edition
[5] and will refer to this as the MEGAN assembler. The
defining feature of the protein-alignment-guided assem-
bly is that it uses existing protein alignments to detect
DNA overlaps between reads. Our implementation of
this method is easy to use; it only takes a few mouse
clicks to obtain the assembly of any gene family of inter-
est, in contrast to other approaches that require some
amount of scripting.
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We compare the performance of the MEGAN assembler
to that of several standalone assemblers including IDBA-
UD [6], Ray [7], and SOAPdenovo [8], and we also compare
its performance to that of Xander [9], a gene-centric assem-
bler that employs protein profile HMMs (Hidden Markov
Models) rather than sequence alignment to recruit reads.
Performance comparisons are based on 41 gene families
from a synthetic microbiome community [10].
We use two measures of performance. To assess how

well individual gene sequences are assembled, we report
the percentage of sequence covered by the longest contig
that maps to a given reference sequence. To assess how
well gene sequences are detected for different organisms,
we report the number of organisms for which the lon-
gest mapped contig covers at least half of the corre-
sponding reference sequence.
All assemblers produce similar numbers of contigs

and few, if any, false positive contigs. In our evaluation,
we find that the MEGAN assembler performs best in
terms of the percentage of reference genes covered and
percentage of reference gene sequences detected.

Methods
The main technical contribution of this paper is the design
and implementation of a “protein-alignment-guided” as-
sembly algorithm that is explicitly designed for gene-centric
assembly. It is integrated in our metagenome analysis pro-
gram MEGAN and can be launched and run interactively.
The algorithm is based on the concept of a string graph
[11] and follows the overlap-layout-consensus paradigm
[12]. We use existing protein alignments to infer DNA
overlaps and provide a simple path-extraction algorithm to
layout reads into contigs. As we only consider perfect over-
laps, we obtain a consensus sequence for a contig simply by
concatenating reads (accounting for overlaps).
Let F be a family of orthologous genes. For example, the

KEGG orthology group K03043 represents the DNA-
directed RNA polymerase subunit beta, and there are 3216
protein sequences available for this family in the KEGG
database. Let R denote the set of all reads that are assigned
to F based on a DIAMOND alignment of all reads against
a protein reference database such as NCBI-nr or KEGG.

Our assembly approach is based on an overlap graph.
Usually, the set of nodes of an overlap graph is given by
the set of reads. However, in our construction, we only
use an aligned part of each read r, which we call the
aligned core of r. In more detail, we define the aligned core
c(r) of any read r to be the segment of the read that is cov-
ered by its highest-scoring local alignment to any protein
reference sequence in F, using the forward or reverse
strand of the read, depending on whether the frame of the
alignment is positive or negative, respectively.
We build an overlap graph G = (V,E) for F as follows.

The set of nodes V consists of the aligned cores of all
reads that have at least one significant alignment to a
protein reference sequence. Two such nodes r and s are
connected by a directed edge e from r to s in E, if there
exists a protein reference sequence p∈F such that:

1. A suffix of r and a prefix of s each have a significant
alignment with p;

2. A suffix of the former alignment overlaps a prefix of
the latter;

3. The induced gap-free DNA alignment between r and
s has perfect identity; and

4. The length of the induced DNA alignment exceeds a
specified threshold (20 bp, by default).

We define the weight ω(e) of any such edge e to be the
length of the induced DNA alignment. See Fig. 1 for an
illustration of the overlapping process.
One advantage of using the aligned cores of reads, ra-

ther than the complete reads, is that this reduces the need
to perform quality trimming of reads, as local alignments
should not usually extend into stretches of low-quality se-
quence. The net effect is that reads are filtered and
trimmed, not based on some arbitrary quality valued-
associated thresholds as with standard read trimming and
filtering procedures, but rather based on the outcome of
alignment as protein sequence to reference genes.
We emphasize that overlaps between reads are not only

inferred from alignments to just one particular reference
sequence (which would be a simple reference-guided
assembly), but rather, each read usually participates in

Fig. 1 Induced DNA overlap edges. If two reads r and s both have a protein alignment to the same reference protein p, then this defines an
overlap edge between the corresponding nodes if the induced DNA alignment has 100% identity. This induced DNA alignment is of length 12,
as we ignore any induced gaps
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overlaps that are induced by alignments to a number of
different reference proteins (typically orthologous proteins
from different organisms). There is no need to explicitly
reconcile these alignments as they only serve to help
detect potential DNA overlaps.
The construction of the overlap graph for a given set

of reads and associated alignments to protein references
is computationally straightforward to implement. We
first build a dictionary mapping each reference sequence
to the set of reads that align to it. Then, for each refer-
ence sequence, we investigate all pairs of overlapping
alignments to determine whether to place an overlap
edge between the two nodes representing the corre-
sponding aligned cores. Let k denote the number of
reference sequences on which at least two alignments
overlap. In the worst case, all n reads align to all k refer-
ences in an overlapping manner and so the number of
edges to add to the overlap graph is at most O(kn2).
Once the overlap graph has been constructed, the task

is to extract contigs from the graph, by first identifying
paths through the graph and then computing a consen-
sus sequence from the sequences along those paths.
When implementing a sequence assembler under the
overlap-layout-consensus paradigm, the layout phase,
which consists of determining appropriate paths through
the overlap graph that will give rise to contigs, is made
difficult by repeat-induced cycles and other artifacts in
the overlap graph [12].
Cycles appear only very rarely when assembling the

reads of a single gene family. Before processing the
graph, we break any directed cycle that exists by deleting
the lightest edge in the cycle. Thus, the overlap graph is
a directed acyclic graph.
Let P = (r1,e1,r2,…,rn-1,en-1,rn) be a directed path of

edges in the overlap graph G, where ei is the overlap
edge between reads ri and ri+1 for i = 1,…,n − 1. We
define the weight of P as ω(P) = Σi ω(ei) the total number
of overlapping nucleotides along the path.
Our layout algorithm operates by repeating the follow-

ing steps:

1. Determine a path P of maximum weight;
2. Construct a contig C by concatenating all read

sequences along P, accounting for overlaps;
3. Report C if the contig exceeds a specified threshold

for minimum length and/or minimum average
coverage;

4. Remove all nodes and edges of P from the graph G; and
5. Terminate when no paths remain.

The problem of determining a path of maximum
weight in an acyclic-directed graph is solvable in linear
time by relaxing vertices in topological order (see [13, p.
661–666]).

We then build a second overlap graph H whose set of
nodes consists of all contigs assembled from reads. Any
two contigs c and d are connected by a directed edge
(c,d) in H if and only if there exists an overlap alignment
between a suffix of c and a prefix d of length ≥20 (by
default) and percent identity of at least 98%.
First, we use the graph H to identify any contig that is

completely contained in a longer one with a percent
identity of 98% or more. Such contained contigs are dis-
carded. This addresses the issue that sequencing errors
give rise to shorter contigs that differ from longer ones
by a small number of mismatches. We then proceed as
described above for G to assemble the remaining contigs
into longer ones, if possible. The number of overlap
edges is usually very small, and thus, only a small num-
ber of contigs are merged.
The latest release of MEGAN provides an implementa-

tion of protein-alignment-guided assembly. The program
allows the user to import the result of a BLASTX or
DIAMOND alignment of a file of reads against a protein
reference database and assigns the reads to nodes in a
taxonomy and a number of functional classifications
(KEGG, SEED [14], eggNOG [15], or InterPro2GO).
When importing a BLASTX file or “meganizing” a DIA-
MOND file, the user must instruct MEGAN to perform
the desired functional classifications by selecting the
appropriate check boxes and providing appropriate map-
ping files that map NCBI accession numbers to
functional entities, as described in [5]. In addition, we
provide a command-line implementation called gc-as-
sembler for use in a non-interactive setting.
The MEGAN assembler can be used in a variety of

ways. First, the user can select any node(s) in any of the
functional classifications to define the gene family or
families to assemble. Clicking the “Export Assembly”
menu item will then launch the assembler on each of
the selected nodes, and the output will be written to one
file per gene family in FASTA format. Second, when
viewing the alignments of reads against a particular ref-
erence sequence in the MEGAN alignment viewer, the
user can launch the assembler for the particular refer-
ence sequence. In addition, the user can have the align-
ment viewer layout reads by their membership in
contigs. Figure 2a shows the alignment of the reads
against a protein reference sequence in the alignment
viewer, and Fig. 2b shows the alignment of reads laid out
by their membership in contigs.
The main parameters of the assembly algorithm are

minOverlapReads, the minimum number of bases that
two reads should overlap by; minReads, the minimum
number of reads required for a contig; minLength, the
minimum length of a contig; minAvCoverage, the mini-
mum average coverage of a contig; minOverlapContigs,
the minimum number of bases that two contigs should
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Fig. 2 Alignment viewer. a Alignment of 13,623 reads against one of the reference sequences representing bacteria rpoB, as displayed in
MEGAN’s alignment viewer. b More detailed view in which nucleotides that do not match the consensus sequence are highlighted in color.
c Reads are ordered by contig membership and decreasing length of contigs
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overlap by to be merged; and minPercentIdentityCon-
tigs, the minimum percent identity at which contigs are
deemed to overlap or be contained.
To assemble a given gene, MEGAN first needs to ex-

tract the associated reads and alignments from the
indexed file containing the full set of reads and align-
ments. This usually takes a couple of minutes. Once this
step has been completed, protein-alignment-guided
assembly of the reads will take on the order of seconds
to minutes (see below).

Experimental evaluation
We downloaded a dataset of 108 million Illumina reads
(54 million per paired-end file) obtained from sequen-
cing a synthetic community containing 48 bacterial spe-
cies and 16 archaeal species (SRA run SRR606249; [10]).
The read length is 101 bp. We aligned these reads
against the NCBI-nr database (downloaded February
2015) using DIAMOND (E value cutoff of 0.01), which
resulted in more than one billion alignments, involving
87 million reads. We ran the resulting DIAMOND file
through our program daa-meganizer, which performs
taxonomic and functional assignment of all reads in the
dataset based on the alignments found by DIAMOND,
and then appends the resulting classifications and indi-
ces to the DIAMOND file. This “meganized” DIA-
MOND file is publicly accessible in MEGAN via
MeganServer.
We based our experimental analysis on a set of single-

copy phylogenetic marker genes [16] so as to simplify
the task of evaluating the performance of the different
methods. We also consider some other genes, archaeal
and bacterial rpoB, cheA, ftsZ, and atoB, to see how the
assembly methods perform on other types of genes.
For each gene family in the study, we determined the

corresponding KEGG orthology (KO) group and ran the
MEGAN assembler on all reads assigned to that family.
The assembler was run with the default options of min-
OverlapReads = 20, minReads = 2, minLength = 200,
minOverlapContigs = 20, and minPercentIdentityCon-
tigs = 98. In addition, for each KO group, we saved all
assigned reads to a file and then assembled them using
IDBA-UD, Ray, and SOAPdenovo. All assemblers were
run with default options.
To evaluate Xander, we downloaded all associated

amino acid and nucleotide KEGG gene sequences for
the 41 gene families, aligned the amino acid sequences
with MAFFT (using the –auto option; version 7.187 [17,
18]), and built HMMs and configured supporting files
according to Xander documentation.
Running Xander using default parameters (min_bits =

50 and min_length = 150) gave rise to small number of
contigs per gene family that was much lower than the
number of gene family members in the community,

resulting in an unacceptable number of false negatives.
To address this, we experimented with different param-
eter settings until Xander produced a number of contigs
that is similar to that produced by the other four
assemblers. We used the following parameters for
Xander: min_bits = 1, min_length = 1, filter_size = 39,
min_count = 1, and max_jvm_heap = 64 GB.
Table 1 shows the number of reads assigned to each

gene family, as well as the number of reference gene
DNA sequences that represent each gene family.
For a typical gene family with ≈20,000 assigned reads,

the MEGAN assembler took approximately 30 s to run,
while for other assemblers the time taken was as follows:
55 s (IDBA-UD), 75 s (Ray), and 3 s (SOAPdenovo), on
a server with 32 cores. Xander took approximately 1 h
(excluding the time required to build the de Bruijn
graph) to run on a server with 20 cores. Maximum
memory usage was set to 12 GB for the MEGAN assem-
bler and 64 GB for Xander, whereas the other assem-
blers used 1.5–3 GB of memory.
Using a minimum contig length of 200 bp, all assem-

blers produced a similar average number of contigs per
gene family: 73 (MEGAN), 48 (IDBA-UD), 69 (Ray), 78
(SOAPdenovo), and 93 (Xander). The number of contigs
produced per gene family is shown in Fig. 3.
To allow an analysis of the performance of the

different methods, we aligned all contigs to all refer-
ence genes associated with the synthetic community
using BLASTN. In nearly all cases, we found an
alignment of at least 98% identity to a reference or-
ganism that was part of the synthetic community. In
the few remaining cases, a high-identity BLASTX
alignment of at least 98% identity to the correspond-
ing protein sequence was found. In nearly all cases,
the alignments covered at least 99% of the contig.
This indicates that there are only very few, if any,
false positive contigs.
To assess assembly performance, for each assembly,

each gene family and each species in the synthetic com-
munity that contains a member of the gene family, we
determined the percentage of reference gene sequence
covered by the longest contig aligned to it (Fig. 4). In
this calculation, only matching bases are counted.
To assess detection performance, we consider a ref-

erence gene sequence to be successfully detected by
an assembler if the longest contig covers 50% or
more of the sequence, again, counting only matching
bases. In Table 1, for each gene and each assembler,
we report the number of reference sequences detected
(as defined above) and provide a summary of the pro-
portion of reference sequences detected per gene
family in Fig. 5, showing that the protein-alignment-
based assembler implemented in MEGAN performs
best for most genes.
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Table 1 For each gene family studied, we report the KEGG orthology group, number of reads assigned to that group by DIAMOND,
number of reference gene sequences that exist in the synthetic community, and number of reference genes “detected” by each
method: MEGAN, IDBA-UD, Ray, SOAPdenovo, and Xander

Gene family KEGG Reads References MEGAN IDBA-UD Ray SOAP Xander

Acetyl-CoA C-acetyltransferase K00626 58,135 64 31 16 12 12 23

Archael rpoB1 K03044 17,875 16 7 7 6 3 9

Archael rpoB2 K03045 12,025 16 8 8 6 5 5

Cell division protein K03531 45,881 48 37 39 12 7 12

Bacterial rpoB K03043 105,212 64 43 16 12 13 50

Phenylalanyl-tRNA synthetase alpha subunit K01889 44,779 64 57 56 47 51 48

Phenylalanyl-tRNA synthetase beta subunit K01890 73,072 64 53 50 42 38 35

Phosphoribosylformylglycinamidine cyclo ligase K01933 31,919 64 58 59 46 45 54

Ribonuclease HII K03470 18,707 64 54 55 53 45 48

Ribosomal protein L1 K02863 24,190 64 57 49 45 48 53

Ribosomal protein L10 K02864 23,970 64 58 48 55 57 55

Ribosomal protein L11 K02867 17,113 64 60 50 51 60 59

Ribosomal protein L13 K02871 17,642 64 58 54 53 57 45

Ribosomal protein L14 K02874 13,435 64 56 42 49 58 60

Ribosomal protein L15 K02876 13,087 64 59 56 50 55 55

Ribosomal protein L16 K02878 10,058 64 46 34 36 44 44

Ribosomal protein L18 K02881 14,856 64 57 48 56 57 55

Ribosomal protein L2 K02886 29,849 64 60 54 46 55 57

Ribosomal protein L22 K02890 15,875 64 59 54 55 57 51

Ribosomal protein L24 K02895 11,786 64 60 46 56 58 44

Ribosomal protein L25 K02897 12,941 64 41 41 39 42 41

Ribosomal protein L29 K02904 4913 64 29 8 33 34 8

Ribosomal protein L3 K02906 30,192 64 59 47 51 57 51

Ribosomal protein L4 K02926 14,539 64 44 41 39 43 44

Ribosomal protein L5 K02931 20,533 64 60 58 55 59 58

Ribosomal protein L6 K02933 20,645 64 58 41 56 59 60

Ribosomal protein S10 K02946 11,327 64 56 42 48 56 54

Ribosomal protein S11 K02948 10,793 64 47 43 51 52 56

Ribosomal protein S12 K02950 14,199 64 61 41 48 60 58

Ribosomal protein S13 K02952 13,975 64 59 46 56 60 58

Ribosomal protein S15 K02956 10,795 64 54 16 43 55 50

Ribosomal protein S17 K02961 10,235 64 58 36 49 44 60

Ribosomal protein S19 K02965 12,479 64 59 39 51 59 58

Ribosomal protein S2 K02967 25,926 64 61 46 41 53 48

Ribosomal protein S3 K02982 25,722 64 59 46 48 57 57

Ribosomal protein S5 K02988 21,761 64 59 55 53 53 56

Ribosomal protein S7 K02992 20,520 64 60 42 54 60 61

Ribosomal protein S8 K02994 14,543 64 62 57 58 60 57

Ribosomal protein S9 K02996 12,927 64 59 52 52 58 61
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Results and Conclusions
The work reported on in this paper provides simple and
fast access to assemblies of individual gene families from
within MEGAN, a popular microbiome sequence ana-
lysis tool. Protein-alignment-guided assembly makes use
of pre-computed protein alignments to perform gene-
centric assembly. Alternative ways of performing gene-
centric assembly include running an external assembly
tool on the reads assigned to a specific gene family or
using an HMM-based framework such as Xander for
read recruitment and assembly.
Based on percent coverage by longest contig and num-

ber of gene sequences detected, the MEGAN assembler
performs best in our experimental study (Figs. 4 and 5).
The average percent coverage values over all gene fam-
ilies are 75.4% (MEGAN), 62.4% (IDBA-UD), 64.6%
(Ray), 67.8% (SOAPdenovo), and 69.6% (Xander).

Figure 4 indicates that all approaches have difficulties
assembling ribosomal protein L29. The reason for this is
that members of this gene family are very short, less
than 70 aa in many cases, and so the resulting contigs
rarely exceed the 200-bp length threshold that we use.
All assembly methods fail on the species Sulfurihy-

drogenibium yellowstonense. In our analysis, only
approximately 46,000 (of 108 million) reads are classi-
fied as coming from this species and so this species
is represented by substantially less reads than the
other species in the mock community. The NCBI-nr
database contains 1700 reference proteins for this
species, and so, the average number of reads assigned
to each protein is only 27. In addition, none of these
reference sequences is annotated by one of the 41
KOs (KEGG orthology groups) used in this study. So,
the failure is due to a combination of low coverage

Fig. 3 Summary of number of contigs produced. For each gene family along the x-axis, we plot the number of contigs of length ≥200 bp
produced by each assembler

Table 1 For each gene family studied, we report the KEGG orthology group, number of reads assigned to that group by DIAMOND,
number of reference gene sequences that exist in the synthetic community, and number of reference genes “detected” by each
method: MEGAN, IDBA-UD, Ray, SOAPdenovo, and Xander (Continued)

Signal recognition particle protein K03110 27,386 64 35 48 36 19 46

Two-component system K03407 47,904 64 29 17 15 15 27

Mean absolute deviation 9.34 19.73 18.24 15.41 14.17

Best results are shown in bold. Mean absolute deviation between the number of references genes and the number detected by each method is reported as a
summary statistic
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Fig. 4 Reference gene coverage heat map. For each assembler, each gene family (rows), and each reference gene sequence associated with a
species in the synthetic community (columns), we indicate the percentage of the reference gene covered by the longest contig. We also plot the
average percent coverage per gene family for all assemblers
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and the absence of any directly corresponding refer-
ence sequences.
Note, however, that there are a number of other spe-

cies (Bacteroides vulgatus, Desulfovibrio piger, Gemmati-
monas aurantiaca, and Salinispora arenicola) for which
there is no directly corresponding reference sequence
for any of the 41 KOs, yet for these, the gene-centric
assembly appears to work well. In particular, we
emphasize that for Gemmatimonas aurantiaca, the
closest species that has reference proteins for (any and
all of ) the 41 KOs is Gemmatirosa kalamazoonesis,
which belongs to a different genus.
In our performance analysis, we assign each contig to

at most one organism in the synthetic community. How-
ever, in some cases, the same contig aligns equally well
to the gene reference sequence of two closely related or-
ganisms and as a consequence, the analysis reported in
Fig. 4 slightly under-predicts the true performance of all
methods. This happens, for example, for ribosomal pro-
tein L16 for Thermotoga sp. RQ2 and Thermotoga petro-
phila RKU-1. We use a threshold of 98% identity to
determine whether contigs generated by our assembler
are deemed to be containing or overlapping each other.
This is to ensure that the number of contigs produced
by our assembler is similar to that produced by the other
approaches. Increasing the threshold to 99% produces a

handful of additional correct gene detections, while
roughly doubling the number of contigs.
Gene-centric assembly does not replace the computa-

tion of a full assembly of all reads, which remains a chal-
lenging problem [19], with some recent advances [20].
DIAMOND alignment of all 108 million reads in the
synthetic community [10] against the NCBI-nr database,
followed by the gene-centric assembly of all 2834
detected KEGG families using MEGAN, took only one
and a half days on a single 32-core server. In contrast,
assembly of all 108 million reads from the described syn-
thetic community [10] using Ray-2.3.1 took 6 days on
the same server. The resulting assembly contains 52,821
contigs of length ≥200 bp, with a median length of
802 bp, mean length of 3789 bp, and maximum length
of 600,408 bp. We estimate that running Xander on all
2834 KEGG families present in the synthetic community
will take 10–100 days on a single server with 20 cores.
We emphasize that protein-alignment-guided assembly

as currently implemented in MEGAN only constructs
contigs that span known protein domains and so inter-
spersed unknown domains will result in contig fragmen-
tation. Here, the application of a full-featured assembler
to all protein-alignment-recruited reads and their mates
may result in longer contigs that cover some of the
unknown domains.

Fig. 5 Reference gene coverage summary. For each gene family along the x-axis, we plot the number of reference gene sequences detected by
each method
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As an all-in-one GUI-based desktop application,
MEGAN is especially designed for use by biologists and
medical researchers that have limited bioinformatics
skills. The built-in assembler now provides such users
with simple access to sequence assembly techniques on
a gene-by-gene basis.
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