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Abstract

Background: A variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if
publicly available whole genome and whole transcriptome sequencing data generated by large public cancer
genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer.
The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA
to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify
bacterial read pairs from the microbiome.

Results: Through careful consideration of all of the bacterial taxa present in the cancer types investigated,
their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as
likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the
ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with
the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia
spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained
between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in
stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic
contamination as seen in other samples.

Conclusions: This approach suggests that it is possible to identify bacteria that may be present in human tumor
samples from public genome sequencing data that can be examined further experimentally. More weight should be
given to this approach in the future when bacterial associations with diseases are suspected.
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Background
Given that bacteria live in and on our bodies, they have
a large potential to affect human health. An estimated
15–20% of cancers worldwide are linked to viral, para-
sitic, or bacterial infections that were responsible for 1.5
million cancer deaths in 2008 [1]. The best-studied
examples of cancer-associated infectious agents are
hepatitis B virus (HBV), human papillomavirus (HPV),
Epstein-Barr virus (EBV), human immunodeficiency
virus (HIV), Schistosoma haematobium, and Helicobac-
ter pylori. A subset of these viruses are known to inte-
grate into the human genome [2, 3], while viruses,
parasites, and bacteria can all promote cancer through
other mechanisms [4].
Of the bacteria known to be associated with carcino-

genesis, the mechanisms linking H. pylori to gastric car-
cinoma and gastric mucosa-associated lymphoid tissue
(MALT) lymphoma are best understood [5]. In addition
to H. pylori, many other microbes have been associated
with various carcinomas [6]. For example, S. haemato-
bium with bladder carcinoma [7], Salmonella typhi with
gallbladder cancer [8], Chlamydia pneumoniae with lung
cancer [9], Bacteroides fragilis [10, 11] and Streptococcus
bovis [12] with colon cancer, and Escherichia coli [13]
and Fusobacterium spp. [14–18] with colorectal cancer.
Frequently, bacteria are thought to contribute to car-
cinogenesis through increased inflammation, which pro-
motes DNA damage [19]. While most cancer-related
bacteria are the dominant member of the microbiome, it
is possible that rare members could cause driver muta-
tions and/or that dominant members might be more
abundant in tumors due to a favorable tumor
microenvironment.
S. haematobium is a parasitic flatworm classified as a

definite carcinogen [7, 20] and was one of the first asso-
ciations identified between an infectious agent and can-
cer formation [21]. The flatworm lays its eggs in the
bladder mucosa causing constant irritation and inflam-
mation [22] that is exacerbated when some eggs cannot
be excreted through the urine and become trapped in
the tissue [23]. The ability of S. haematobium to increase
inflammation [22–24], decrease apoptosis [20, 23], and
increase cell proliferation [20, 23] are the reasons for its
classification as a definite carcinogen.
H. pylori also increases host inflammation and was the

first bacterial species to be considered a carcinogen by
the International Agency for Research on Cancer [25].
H. pylori is present in 90% of non-cardia gastric cancer
cases and 86% of gastric MALT lymphoma cases [1]. H.
pylori can alter host signaling pathways [25] and methy-
lation of host genes [26]. Infections by H. pylori strains
containing the cytotoxin-associated gene (cag) pathogen-
icity island cause upregulation of the mitogenic signaling
pathway through activation of the c-fos and c-jun proto-

oncogenes [25, 27], in addition to altering a number of
other pathways.
The bioinformatics pipeline PathSeq [28] was used to

identify an increase in Fusobacterium sequences in data
from DNA [14] and rRNA-depleted RNA [15] from
colorectal cancer samples relative to normal samples, as
well as a decrease of Bacteroidetes and Firmicutes phyla
in these colorectal cancer samples [14]. These findings
were subsequently confirmed with 16S rRNA gene ana-
lysis and quantitative PCR on a larger group of samples,
as well as using FISH to visualize the bacteria within the
tumor cells [14]. While not definitively demonstrating
that a Fusobacterium sp. can cause cancer, these results
prompted more consideration for using sequencing data
to identify candidate bacteria involved in carcinogenesis,
without relying on culture-based techniques.
As more genome sequencing data becomes available,

secondary, retrospective studies can be carried out to
test other hypotheses. However, such studies are not
without biases since the analysis is conducted looking
through a lens that can often be clouded with uncer-
tainty related to sequencing type, unknown metadata
factors, and lack of access to original samples. For
example, bias can be introduced from the type of se-
quencing undertaken, which is not always clear in asso-
ciated metadata or text on methods in publications. For
example, human RNA sequencing (RNA-Seq) data is
often from a library constructed from poly-A-selected
RNA, which removes the RNA of many but not all bac-
teria. Therefore, it is impossible to determine which bac-
teria may be present in the sample, but missing from
poly-A-selected data. For example, The Cancer Genome
Atlas (TCGA) analysis of the poly-A-selected RNA-Seq
stomach adenocarcinoma (STAD) data detected H. pyl-
ori only sporadically, which they attribute to either the
decline of bacterial abundance upon progression from
chronic gastritis to subsequent carcinoma or the tech-
nical loss of luminal bacteria during specimen pro-
cessing [29].
Using a method analogous to PathSeq, we previously

presented evidence supporting the presence of various
microbes in tumor samples from TCGA. This study pre-
dominantly focused on identifying bacteria-human lat-
eral gene transfer (LGT) events in a subset of TCGA
data (Table 1). Putative bacteria-human LGT events
were found in tumor suppressor and proto-oncogenes in
stomach adenocarcinoma samples, as well as in the
mitochondrial genome of acute myeloid leukemia sam-
ples (AML) [30]. In these cases, it was reported that the
microbiome-associated bacteria of the samples with
putative LGTs were highly reflective of the bacterial
species from which the putative LGT originated [30].
Specifically, the STAD samples with putative Pseudo-
monas-like integrations had Pseudomonas spp. as the
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predominant member of their microbiome, while the
STAD samples lacking LGT had a higher relative abun-
dance of Enterobacteriaceae [30]. Also, the AML sam-
ples with putative Acinetobacter-like DNA integrations
had an increased relative abundance of microbiome-
associated Acinetobacter sequences [30].
We sought to more systematically examine the bacter-

ial sequences detected across numerous sample types in
TCGA data and to develop techniques to distinguish the
presence of biologically/medically significant microbes
from the presence of bacterial contamination, which can
arise in numerous ways. For example, the presence of
bacterial DNA in laboratory kits and reagents was found
to impact the results of 16S rRNA gene and shotgun
metagenomics methods, particularly samples with a low
microbial biomass [31]. Microbial contamination has
been identified in nucleic acid extraction spin columns,
where column contamination during manufacturing was
responsible for the discovery of a novel DNA virus [32].
Another example of microbial contamination in a hu-
man genomics project was the identification of HPV-18
in cervical cancer and nine other cancer types from
TCGA [33]. This was determined to be contamination
in the non-cervical cancer samples when it was realized
that the HPV-18 reads had characteristics of the typical
HPV-18 integration in HeLa cells and lacked reads
aligning to the regions of the HPV-18 genome that
are typically not integrated [33]. Therefore, the pres-
ence of HPV-18 in the non-cervical cancer TCGA
data suggests that HeLa cells which contain this
HPV-18 integration were actually the cause of the
contamination [33]. Additionally, contamination from
liver cancer samples was the source of HBV in one
kidney cancer TCGA sample [34].

Here, we present the results of our analysis of an early
release of TCGA data for evidence of bacteria. This
examination reveals that some bacterial sequences can
be attributed to systematic contamination of all samples
or to batch effects likely associated with contamination,
while other bacteria are associated with particular tumor
types without an obvious source of contamination. Since
we cannot completely rule out contamination as a
source of these sequences, these bacteria-tumor associa-
tions should bear closer scrutiny in future studies aimed
at examining the roles bacteria might play in oncogenesis.

Results
Bacterial presence in TCGA data
In order to determine the microbial component of vari-
ous cancers, we analyzed the relative abundance (subse-
quently referred to as abundance) of bacteria-derived
paired-end Illumina sequencing in TCGA data that was
made available in the Sequence Read Archive (SRA), as
previously described [30]. Briefly, reads were aligned to
the human genome and RefSeq with Burrows-Wheeler
aligner (BWA) ALN/SAMPE, a likely taxonomic assign-
ment was made for each read pair (Additional file 1:
Figure S1), and the results (Additional file 2) were
loaded into a database for analysis and visualization with
Krona [35] and MicroView, which can be found at
http://microview.igs.umaryland.edu/tcga_v1/. MicroView
is an interactive website and derivative of our LGTview
[30], which enables the interrogation of metadata using
a graphical interface connected to an underlying data-
base of raw data for each bacterial read pair (Additional
file 2). MicroView is referenced in the remainder of the
manuscript to denote when data was mined from Micro-
View that could not be represented in an individual fig-
ure. An operational taxonomic unit (OTU) is assigned
to each read and read pair that should be considered
approximate, as the assignment is likely to be influenced
by the genomes in RefSeq. Therefore, for example,
Pseudomonas reads should be considered Pseudomonas-
like reads.
Nine cancer types were examined (Table 1) and found

to have differing abundances of putative bacterial read
pairs ranging from 11% of patients with at least one
sample containing bacterial read pairs in lung squamous
cell carcinoma (LUSC) to 100% of patients having at
least one sample with bacterial read pairs in STAD
(Table 2). STAD, AML, and ovarian serous cystadeno-
carcinoma (OV) have large proportions of Pseudomonas,
Acinetobacter, and Mycobacterium read pairs, respect-
ively (Fig. 1), which were not frequently identified in
other cancer types (MicroView). Despite different loca-
tions in the human body, read pairs from particular bac-
terial taxa were repeatedly present in most cancer types

Table 1 List of cancer types analyzed, their TCGA designated
abbreviations, and the sequencing type analyzed

Cancer type Abbreviation Sequencing type1

Acute myeloid leukemia AML RNA-Seq (192)

Breast cancer BRCA RNA-Seq (451)

Glioblastoma multiforme GBM RNA-Seq (1), DNA (10),
WGA (147)

Kidney clear cell carcinoma KIRC RNA-Seq (420)

Kidney papillary carcinoma KIRP RNA-Seq (15)

Lung adenocarcinoma LUAD RNA-Seq (76)

Lung squamous cell carcinoma LUSC RNA-Seq (174)

Ovarian serous
cystadenocarcinoma

OV WGA (310), DNA (13)

Stomach adenocarcinoma STAD RNA-Seq (71)
1 As denoted by the TCGA barcode, the sequencing types are RNA-Seq, DNA,
or whole genome amplified (WGA). The number of samples analyzed for each
sequencing type is denoted in the parentheses and is not the number of
samples where bacterial read pairs were identified
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(e.g., Enterobacteriaceae, Propionibacterium, Ralstonia,
and Staphylococcus taxa) (MicroView).

Dominant bacteria in TCGA sequencing projects
All of the cancer types investigated had one or more
samples containing read pairs present that were assigned
to bacterial taxa (Table 2). However, only STAD and kid-
ney papillary carcinoma (KIRP) had more sequencing

runs with bacterial read pairs than sequencing runs
without any bacterial read pairs present (Table 2,
Additional file 3: Figure S2). Some bacterial species
were the dominant taxa of a specific cancer type, as
was the case with Pseudomonas in STAD, Acinetobac-
ter in AML, and Mycobacterium tuberculosis complex
in OV tumor samples (Fig. 1). In the STAD samples,
62% of the bacterial read pairs were assigned as

Fig. 1 The proportion of read pairs with each bacterial operational taxonomic unit (OTU) is illustrated with Krona plots for AML samples (a), STAD
samples (b), OV tumor samples (c), and OV normal samples (d). While the STAD samples seem to be almost entirely Pseudomonas spp., the AML
samples show some Pseudomonas spp., Acinetobacter spp., and Ralstonia spp. The OV samples show evidence of Mycobacterium spp., as well as
Enterobacteriaceae. There is an increased abundance of Mycobacterium spp. in the 154 OV tumor samples and Rhodobacteraceae spp. in the 156
OV normal control samples
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Pseudomonas (Fig. 1), although most of the read pairs
are found in only a few samples (Fig. 2). In contrast,
the AML samples were dominated by 7% Pseudo-
monas, 10% Acinetobacter, and 15% Ralstonia read
pairs (Fig. 1). Although kidney clear cell carcinoma
(KIRC) also had Pseudomonas read pairs present in
the samples, it was responsible for 10% of the total
bacterial read pairs (MicroView). The OV samples
surprisingly revealed evidence of Mycobacterium read
pairs, as well as Enterobacteriaceae read pairs (Fig. 1).
The main difference in bacterial proportions when
comparing the tumor and healthy tissue samples for
OV is the increased abundance of Mycobacterium
read pairs in the tumor samples, as well as the pres-
ence of Rhodobacteraceae read pairs in the normal
samples (Fig. 1). A similar comparison for AML and
STAD cannot be made, as no normal samples were
available.
In general, samples of DNA and whole-genome ampli-

fied DNA were clustered together regardless of sequen-
cing center or cancer type since samples were sequenced

by both The Broad Institute of MIT and Harvard (Broad)
and Washington University in St. Louis from OV and
glioblastoma multiforme (GBM) (Fig. 2). DNA samples
had a lower mapped read count relative to the RNA
samples. However, while the DNA samples are in one
distinct cluster, the RNA samples formed many distinct
clusters that at times relate to cancer type (e.g., AML)
(Fig. 2). However, AML samples had multiple distinct
groups (Fig. 2).

A comparison of aggregate bacteria found in tumor and
normal samples
Only five sets of samples in the data set we used had
tumor-normal pairs. Breast cancer (BRCA), OV, and
GBM had both tumor and normal samples that con-
tained bacterial sequences. In contrast, bacterial read
pairs were only present in the tumor samples for KIRC
and LUSC, although LUSC only had two normal samples
sequenced in this release (Table 2). While the majority
of the bacterial taxa in the BRCA tumor and non-paired
normal samples were similar, there were some minor

Fig. 2 The normalized number of bacterial read pair counts for each sample is represented in this heat map for all bacterial taxa with >20 reads
per one million total reads. The dendrogram represents the agglomerative hierarchical clustering of the samples based on their bacterial reads.
Color-coded bars are present to represent the cancer type, tissue source site, sequencing type, sample type, and sequencing center. GBM and
OV samples have the lowest abundance of bacterial taxa, while the only samples showing increased read counts of Mycobacterium spp. are OV
samples. Enterobacteriaceae and “other” were the dominant taxa in most cancer types, except for Ralstonia spp. in GBM, Ralstonia spp. and “other”
in AML, and Enterobacteriaceae and Mycobacterium spp. in OV
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differences (MicroView). However, it is important to
note that only 3 of 26 normal samples and 87 of 425
tumor samples contained bacterial read pairs at the time
this data was downloaded and analyzed (Table 2). From
the samples containing bacteria, the normal samples
only had 4,526 bacterial read pairs compared to 983,611
bacterial read pairs from the tumor samples (Table 2).
The GBM dataset had approximately the same number
of bacterial read pairs per sample for both the tumor
and paired normal samples (Table 2). Both the tumor
and normal samples had about a third of the read pairs
from Ralstonia picketti with low levels of read pairs from
Enterobacteriaceae, Pseudomonas aeruginosa, and M. tu-
berculosis complex (Additional file 4: Figure S3). There
was a shift in the proportion of Propionibacterium acnes
read pairs with an ~10% increase in the aggregate for the
normal GBM samples (Additional file 4: Figure S3). Add-
itionally, there is a difference in the percentage of read pairs
classified as “unassigned bacteria” between the GBM tumor
and normal samples (Additional file 4: Figure S3). This
may happen, in general, if the bacterial read pairs in one
sample align to parts of conserved regions of bacterial ge-
nomes, thus making it more difficult to determine a spe-
cific taxon to assign to the read pair (Additional file 1:
Figure S1). Overall, these tumor-normal pairs clustered to-
gether in the heat map, indicating their similarity (Fig. 2).
Due to the similarity of the tumor and normal samples, in
the remainder of this analysis, they will be grouped to-
gether by cancer type, except when explicitly noted.

Mycobacterium spp. in samples
Upon evaluating the samples with read pairs that had
assigned bacterial taxa, it was surprising that read pairs
designated as M. tuberculosis complex could be found in
both the tumor and paired-normal samples of OV and
GBM (Fig. 1). In particular, bacteria are not expected in
the GBM samples as this is a type of brain tumor and
few bacteria can cross the blood-brain barrier. The taxo-
nomic assignment of the Mycobacterium read pairs from
the OV and GBM dataset was confirmed using
a BLASTN search against NT, which is a more compre-
hensive database of reference sequences than what was
used in the initial OTU assignment.
Five sequencing centers generated the data for all of

the cancer types in our analysis. All of the sequencing
centers with bacterial read pairs contained at least one
sample with Mycobacterium spp. read pairs (Micro-
View). To compare results, we normalized by the total
number of read pairs sequenced, using the log10-trans-
formed ratio of Mycobacterium read pairs to total read
pairs. A disproportionate number of OV samples se-
quenced at The Broad Institute had a log10 ratio of
Mycobacterium read pairs to a total read pairs of ≥−7
(Table 3), meaning there was at least one Mycobacterium

read pair for every ten million read pairs sequenced. The
difference between samples sequenced at The Broad
Institute and Washington University was considered sig-
nificant by Fisher’s exact test (p value = 4.03 × 10−7).
There was only one sample sequenced at Washington
University in St. Louis that had such a large proportion
of Mycobacterium read pairs, and none of the OV sam-
ples sequenced at Washington University in St. Louis
contained these elevated levels of Mycobacterium spp.
read pairs (Table 3).
The Broad Institute had a National Institute of Allergy

and Infectious Diseases-funded white paper to sequence
Mycobacterium spp. at approximately the same time that
these TCGA samples would have been sequenced. Com-
bined with the batch effects associated with the sequen-
cing center, we conclude that the Mycobacterium reads
most likely arose from contamination. This conclusion is
similar to another contamination analysis of TCGA OV
samples from The Broad Institute when dengue virus 2
was determined to be present in the sequence data due
to cross-contamination from the sequencers [33]. A cen-
ter that sequences many microbial genomes along with
human genomes (like The Broad Institute) will have
more contamination from those microbial genomes. A
sequencing center that primarily sequences human sam-
ples would not have as much likelihood of experiencing
these same microbial contamination issues but may have
similar levels of contamination from other sources.
However, overall, samples from The Broad Institute have
the lowest levels of bacterial sequences when normalized
for the amount of data sequenced (Fig. 2).

Presence of Enterobacteriaceae in all cancer types
Enterobacteriaceae reads, which were present in most
cancer types (Fig. 2), may be a result of E. coli DNA
contamination in recombinant enzymes used in whole-
genome amplification and library construction. Consist-
ent with this, we previously identified junctions of E. coli
and human DNA in the OV data examined here that we
attribute to occurring during whole genome amplifica-
tion of these samples [30]. Given these concerns and the
presence of E. coli in all cancer types, we conclude that
these sequences have a high chance of arising via
contamination, and as such, we did not examine them
further. However, it is important to note that E. coli has
been associated with various forms of cancer [36], and
we could be overlooking an important biological
observation.

Potential bacterial contaminants found in samples
aggregated across cancer type
Read pairs from Staphylococcus epidermidis, P. acnes,
and Ralstonia spp. were present collectively at low levels
in all of the cancer types (Fig. 1, Additional file 4: Figure
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S3, Table 4, Additional file 2), suggesting they may be
contaminants. S. epidermidis and Propionibacterium spp.
are skin-associated bacteria and may contaminate
reagents after being shed from the skin of a laboratory
and manufacturing personnel. Ralstonia spp. is thought
to be a common environmental contaminant in labora-
tories [31].
We sought to develop a metric to identify taxa associ-

ated with a common contaminant source. Using ratios,
we compared the counts of bacterial taxa to that of
commonly identified bacterial taxa in these data sets, in-
cluding Pseudomonas, Acinetobacter, and M. tuberculosis
complex (Fig. 3). Log ratios that cluster tightly near the
mean, with a low standard deviation, are taken to repre-
sent taxa clustered from a common source of contamin-
ation across multiple tumor samples. For example, the
log-ratio comparing Staphylococcus spp. and Propioni-
bacterium spp. is consistently around one for every can-
cer type analyzed, which means there are ten times as
many Propionibacterium reads as Staphylococcus reads.
As Staphylococcus spp. and Propionibacterium spp.
could both be present on the human skin, this poses one
mechanism for co-contamination from these two bac-
teria. Outliers in this ratio-based analysis suggest a
different phenomenon for the two samples, which might
be an alternate form of contamination or might be
biologically relevant. For example, and as discussed pre-
viously, Mycobacterium reads were over-represented
when compared to Staphylococcus and Propionibacter-
ium reads in OV, with moderate ratios in GBM (Fig. 3);
this likely reflects Mycobacterium contamination at the
sequence center level. Other outliers include Acinetobac-
ter in AML, Pseudomonas in STAD, and Ralstonia in
AML. While Acinetobacter reads are over-represented
when compared to Staphylococcus reads and Propioni-
bacterium reads, Acinetobacter reads do not appear to
be over-represented compared to Ralstonia or Pseudo-
monas reads in AML (Fig. 3). This suggests that there

may be a relationship between Acinetobacter, Ralstonia,
and Pseudomonas taxa in AML.
When a relationship is expected between taxa, like

Staphylococcus and Propionibacterium, a low standard
deviation is observed, indicating that they may share a
common mechanism of contamination. However, other
sources of contamination can alter the standard devi-
ation, obscuring this observation. To further examine
the variation of these ratios across all nine cancer types
to identify a possible common mechanism, the standard
deviation was calculated for these ratios based on all
nine cancers and compared to the standard deviation
when outlier datasets were removed, namely AML, OV,
and STAD. We initially identified these three cancer
types as outliers in the ratio analysis, and more specific-
ally, it was expected that the specific higher abundances
of Acinetobacter reads, Mycobacterium reads, Ralstonia
reads, and Pseudomonas reads caused higher standard
deviations in those comparisons. The standard devia-
tions do decrease upon the removal of AML, OV, and
STAD (Fig. 3), and we interpret this to mean that low
levels of Acinetobacter reads, Ralstonia reads, and
Pseudomonas reads have a common source of contamin-
ation across all samples, while high levels may arise due
to an alternate explanation, which could be an alternate
source of contamination. Therefore, we sought to iden-
tify further sources of contamination for Pseudomonas,
Ralstonia, and Acinetobacter reads.

Examination of potential bacterial contaminants found in
individual samples
In AML, as with all the cancer types, there is very little
variation for the comparison of Staphylococcus reads to
Propionibacterium reads (Fig. 4), which is expected for
co-contaminants. In contrast, ratios including Ralstonia
reads or Pseudomonas reads have a bi-modal distribu-
tion. Samples on plates 735 and 736 have a higher abun-
dance of Ralstonia spp. (Fig. 4), suggesting that these

Table 4 Number of Propionibacterium spp., Ralstonia spp., and Staphylococcus epidermidis read pairs in all cancer types

Cancer type Total read pairs Total bacterial read pairs Propionibacterium read pairs Ralstonia read pairs Staphylococcus epidermis
read pairs

AML 7,955,502,437 29,458,420 46,372 4,502,338 9013

BRCA 6,093,925,360 988,137 14,526 78,895 1220

GBM 5,391,069,119 20,802 1976 8244 105

KIRC 5,070,366,679 356,674 31,553 5104 1428

KIRP 541,775,677 52,313 1394 669 128

LUAD 980,790,987 29,583 534 914 28

LUSC 1,166,304,426 107,515 12,403 5345 5714

OV 8,643,898,191 34,724 196 64 23

STAD 6,689,562,270 4,847,299 31,006 1983 1323
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plates may have been contaminated. Upon further examin-
ation of Ralstonia reads in other cancer types, there may
also be a batch effect by plate in BRCA. For example, plates
A056 and A084 appear distinct from plates A00Z, A034,
A109, A10J, A115, and A12D (Additional file 5: Figure S4).
Despite the relationship of Ralstonia, Acinetobacter, and
Pseudomonas in the AML samples described above, there
is no correlation between plate and either Acinetobacter or
Pseudomonas. Therefore, we conclude that Ralstonia read
pairs arose from a contamination that occurred at the plate
level in AML while Acinetobacter and Pseudomonas read
pairs result from either a separate contamination that
could not be identified or from a biologically relevant
source, like the microbiome. The initial correlation may
have resulted from using a single average on the aggregate
study containing such broad bi-modal distributions of indi-
vidual samples.
In the OV data set containing the Mycobacterium read

pairs described above, we did not find any such associa-
tions with available metadata when examining samples
individually (Fig. 5). Color-coding by patient or sample
type revealed no obvious trend (Fig. 5a), while color-
coding by sequencing center reveals that Mycobacterium

reads are associated predominantly with just one se-
quencing center (Fig. 5b).
In STAD, there appears to be no difference in bacterial

abundances or ratios correlated with sequencing center,
collection center, or plate when samples are examined indi-
vidually (Fig. 6). The samples have a unimodal distribution
for all of the comparisons, except for the comparisons with
samples containing Pseudomonas reads where a small sub-
set of samples collected from Asterand have an increased
abundance of Pseudomonas read pairs, therefore separating
them from the other samples. A more precise attribute to
distinguish these samples from the others could not be
determined. This indicates that there is little variation
within the single sequencing center, collection center, and
plate from which these samples were collected. As the plot
of all the cancer types illustrated, there is very little vari-
ation for the comparison of Staphylococcus read pairs to
Propionibacterium read pairs (Fig. 3), reinforcing that these
two species are likely co-contaminants. Therefore, we con-
clude that Pseudomonas read pairs result from either separ-
ate contamination for which a source could not be
identified or from a biologically relevant source like the
stomach adenocarcinoma microbiome.

Fig. 3 The log10-transformed ratios of bacterial read pairs are shown for all nine cancer types comparing counts of Mycobacterium (M),
Acinetobacter (A), Pseudomonas (Ps), Staphylococcus epidermidis (S), Ralstonia (R), and Propionibacterium (P) read pairs. Staphylococcus and
Propionibacterium were grouped together after an initial comparison found them to frequently have the same relative proportions. In addition,
they are both commonly found on the human skin and may arrive in the samples through the same mechanism. The black horizontal lines
represent the average of the log10-transformed ratios across all the cancer types. When points are clustered near the mean from all cancer types,
it suggests a common source of the bacterial reads. Given the diverse cancer types and the numerous collection and sequencing centers, we
interpret those contributions to be from a general source of contamination, whereas when a set of samples does not cluster with the others (e.g.,
OV and GBM in M/R), it suggests a more specific source of the bacterial sequences. The latter can be due either to contamination or a biological
reason, which cannot be distinguished here. This was found for comparisons containing (a) Mycobacterium in OV and GBM, (b) Pseudomonas in
STAD, and (c) Acinetobacter, Ralstonia, and Pseudomonas in AML. The standard deviations with all data, depicted by the vertical black line, of each
of the bacterial comparisons are shown across all nine datasets. AML, OV, and STAD, which are cancer types that have at least one predominant
bacterial species, not including Enterobacteriaceae, were excluded from a subsequent mean and standard deviation calculation, depicted by the
gray horizontal and vertical lines, respectively. Excluding AML, OV, and STAD decreases the standard deviation for the comparisons involving
Acinetobacter spp. and Pseudomonas spp. This suggests that the presence of Acinetobacter spp. and Pseudomonas spp. may be attributed to
similar levels of general contamination of all samples by a similar mechanism, except in AML, OV, and STAD
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To determine if removal of these contaminants from
our dataset would reduce bacterial diversity within each
cancer type, alpha diversity was calculated before and
after applying a filter to remove the contamination iden-
tified above. For filtering, all S. epidermidis and Propi-
onibacterium read pairs were removed. Additionally,
Mycobacterium read pairs were removed from the OV
and GBM datasets and Ralstonia read pairs were re-
moved from the AML dataset. After subsampling all
cancer types to the minimum number of reads in the smal-
lest cancer type, the numbers of OTUs were counted
(Additional file 6: Figure S5). KIRC had the highest amount
of diversity across the cancer types, while AML had the
lowest amount of diversity (Additional file 6: Figure S5). It
does not appear that filtering for these potential contami-
nants substantially altered the alpha diversity of any cancer
type (Additional file 6: Figure S5).

Discussion
Lack of evidence supporting contamination as origin of
some dominant bacterial species
Through this comprehensive evaluation of the bacterial
taxa present in the Illumina paired-end reads from an
early release of TCGA data, we describe the presence of
bacteria associated with specific cancer types. Many re-
searchers suggest removing reads from commonly con-
taminating taxa. However, this poses numerous
problems, most notably that you introduce a bias. It also

assumes that contamination sources are static, when
they are actually fluid. For both technical and practical
reasons, there is no negative control for sequencing.
With this in mind, all of the data were processed and an-
alyzed in the same manner. However, we recognize that
the GBM samples can serve as a quasi-negative control
since a brain tumor is unlikely to have resident bacteria
due to the blood-brain barrier. The only bacterial reads
found to be substantially associated with GBM samples
were of Mycobacterium origin, which was deemed to be
a sequence center-level contamination issue.
Upon conclusion of the various tests and proxies used

to examine bacterial contamination of the samples, the
presence of Acinetobacter and Pseudomonas spp. in
AML and Pseudomonas spp. in STAD could not be
attributed to contamination. Regardless of the measures
taken to associate metadata with these bacteria, no asso-
ciations between the collection centers, plates, sequen-
cing centers, etc. were found. We also examined the
sequencing projects that occurred at the British
Columbia Genome Sequencing Center (BCGSC), which
sequenced the AML and STAD samples. We could not
find Pseudomonas spp. or Acinetobacter spp. sequencing
projects ongoing at the approximate time the samples
may have been sequenced, and we did not find many
bacterial sequencing projects there, in general. This
lends support to the Pseudomonas-like and Acinetobac-
ter-like sequencing reads being biologically relevant. In

Fig. 4 The log10-transformed ratios of bacterial read pairs from a specific taxon to the total number of bacterial read pairs from that patient were
calculated for all AML samples as described in Fig. 3. Ratios where the numerator was 0 were assigned an arbitrary value of −7, ratios where both the
numerator and denominator were 0 were assigned an arbitrary value of 0, and comparisons where the denominator was 0 were assigned an arbitrary
value of 7. Counts for the number of patients where one of these arbitrary values were assigned are shown below the x-axis. When >5 points are at a
given value, some data points may overlap each other making it impossible for all data points to be seen. The samples were all collected and sequenced
at the same locations, and the data are color-coded by plate. The samples on plate 735 and 736 have a higher abundance of Ralstonia spp., suggesting
that these samples may have been contaminated and this may be responsible for the bimodal distribution of samples in those comparisons. As was seen
with the plot of all the cancer types, there is very little variation for the comparison of Staphylococcus spp. to Propionibacterium spp
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the STAD dataset, samples were collected from two differ-
ent collection centers, and while there was no correlation
between the bacteria present and collection centers for
most samples, a small subset of samples from Asterand
had an increased abundance of Pseudomonas-like read
pairs. As AML and STAD samples were only sequenced
at BCGSC in this release of TCGA data, no further con-
clusions based on sequencing center could be made.
However, there are factors that complicate these ana-

lyses. Experimental methods for extracting DNA and
RNA can confound these results, as these samples were
collected for the primary purpose of analyzing the cancer
genome and not studying bacteria. Some DNA extraction
methods are preferred for breaking bacterial cell walls,
meaning that samples undergoing methods that are more
efficient at breaking the bacterial cell wall, such as bead
beating, could have a higher bacterial yield than those ex-
tracted with other methods. Another complication of this
analysis is that all of the AML samples were collected
from a single center and sequenced at a single center.
Therefore, there were no samples from an alternate collec-
tion center or sequencing center to use as a comparison,
at least in this release of TCGA data. Additionally, the
AML and STAD datasets were poly-A-selected RNA-Seq
data, which will impact the bacteria identified by these
analyses as discussed in the “Background” section. One
might assume that this poly-A-selected RNA-Seq data is
devoid of bacterial mRNA; however, we have observed in

multiple projects that this is not the case. In terms of
identifying cancer-related bacteria in poly-A sequencing,
we only identified 142 H. pylori read pairs across the en-
tire TCGA dataset (MicroView). However, we have been
able to identify many more read pairs attributed to H. pyl-
ori in other poly-A-selected transcriptomics data gener-
ated by our group (data not shown). Therefore, in the case
of TCGA data, we believe the lack of H. pylori read pairs
was not caused by poly-A selection, but other factors (e.g.,
samples being collected from individuals who did not have
an active H. pylori infection). An additional example of
identifying bacteria in poly-A-selected data is a project on
the fruit fly Drosophila ananassae and its Wolbachia
endosymbiont (SRA Project SRP061993). A total RNA li-
brary contained 193,612 Wolbachia reads and 8,889,348
fruit fly reads that mapped while a poly-A-enriched RNA
library contained 1923 Wolbachia reads and 9,318,954
fruit fly reads that mapped. This indicates that poly-A-
selected RNA libraries contain bacterial reads that can be
used to examine the microbiome. However, it is likely that
they do not provide a complete, unbiased picture of the
bacterial transcripts present in the sample.

Pitfalls of explorations of public sequence data
The 2003 Fort Lauderdale agreement on “Sharing Data
from Large-scale Biological Research Projects” and it
predecessor, the 1996 Bermuda Principles, laid out foun-
dations for the sharing of biological data, most notably

A B

Fig. 5 The log10-transformed ratios of bacterial read pairs from a specific taxon to the total number of bacterial read pairs from that patient were
calculated for all ovarian cancer patients. These comparisons include counts of Mycobacterium (M), Acinetobacter (A), Pseudomonas (Ps), Staphylococcus
epidermidis (S), Ralstonia (R), and Propionibacterium (P) read pairs and the total (T) number of bacterial read pairs from that patient. For example, A/T is
the log10-transformed ratio of the number of Acinetobacter-like read pairs divided by the number of total bacteria-like read pairs. The black horizontal
line represents the average of the log10-transformed ratios, after excluding those samples lacking data. The patients are color-coded by sample type
(a) and by sequencing center (b). The number of samples from each sequencing center is denoted (b). Ratios where the numerator was 0 were
assigned an arbitrary value of −7, ratios where both the numerator and denominator were 0 were assigned an arbitrary value of 0, and comparisons
where the denominator was 0 were assigned an arbitrary value of 7. Counts for the number of patients where one of these arbitrary values
were assigned are shown below the x-axis and are broken down by sequencing center when the sequencing center denotes the color
(b). When >5 points are at a given value, some data points may overlap each other making it impossible for all data points to be seen
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genomics data. Combined with ever-evolving policies
from funding agencies that support these data sharing
ideals, vast amounts of data are publicly available for
secondary uses. While data is frequently deposited, it is
less frequently used for such secondary analyses. Our
group uses such data to identify previously undetected
interdomain lateral gene transfers [30, 37], while other
notable examples of secondary data use involve studies
on identifying biomarkers for preeclampsia [38], cell sur-
face targets of medulloblastoma [39], and factors associ-
ated with organ transplant rejection [40, 41]. When
possible, it is best to merge multiple datasets and find
characteristics in common across those datasets, lending
support to those conclusions. Here, we use such com-
mon results to identify common contaminants in some
datasets, like staphylococci and propionibacteria, which
are frequently found across all datasets and in a similar
relative proportion to one another.
While such cross dataset analysis is possible when

numerous datasets can be aggregated, it is not always
possible. In such cases where a limited number of data-
sets of a given type are available, it can be informative to
evaluate potential batch effects or other correlations that
can be linked via the metadata. In the case of our ana-
lysis, this revealed a correlation between sequencing cen-
ter and M. tuberculosis complex in the OV and GBM
samples and a correlation between plates and Ralstonia
spp. in AML samples.
It is also important to recognize the limitations of such

secondary data analyses, especially when data is used to
address an alternate question. For example, much of the
TCGA data is RNA-Seq or whole exome data collected

following selective capture of certain nucleic acids such
that bacterial profiles examined may be incomplete. A
recent study showed that microbial communities in the
saliva were not biased in exome sequence data compared
to whole genome sequence data [42]. However, it is not
clear how widespread this observation may be, and while
some bacterial associations can be identified, others may
be lost due to the methods used. In the release of the
TCGA that we used, there were no samples that had
whole genome sequencing (WGS), whole exome sequen-
cing (WXS), and RNA-Seq data. One GBM sample had
DNA and RNA extracted, and both sequence types
possessed bacterial read pairs. The RNA data had 208
bacterial read pairs, primarily comprised of Enterobacte-
riaceae. The DNA sample contained 1421 bacterial read
pairs with one third of the read pairs contributed by P.
acnes. Both of these bacteria we attribute as contamin-
ation, and otherwise, the bacterial taxa identified were
very similar. This is not surprising given that GBM sam-
ples are not expected to have bacterial sequences
present, as noted above. We also compared one STAD
RNA-Seq sample in this dataset with WGS and WXS
data from the same sample from a subsequent TCGA
data release. While there were a few minor differences
between WGS and WXS, the bacterial taxa identified
were very similar between the two sequencing types
(Additional file 7: Figure S6). There were almost equal
proportions of Firmicutes, Fusobacteria, and Bacteroi-
detes when compared between the WGS and WXS
results. The specificity of the taxonomic assignments
was also very similar between WGS and WXS. However,
there were large differences in bacterial diversity when

A B

Fig. 6 The log10-transformed ratios of bacterial counts by patient were calculated as described in Fig. 3 for stomach adenocarcinoma samples with
the various panels color-coded by collection center (a) and plate (b). For each bacterial comparison, there is a mostly unimodal distribution indicating
that there is little variation across samples. The ratios with Pseudomonas spp. have a few outliers from the Asterand collection center, but otherwise, no
correlation between these factors and the relative abundance of the specific bacteria can be identified
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comparing RNA-Seq data to WGS or WXS, with RNA-
Seq data having an enrichment of Proteobacteria and
lacking a significant number of read pairs from other
phyla (Additional file 7: Figure S6). While the WGS and
WXS data also contained bacterial read pairs from
Proteobacteria, these read pairs were in the minority
(Additional file 7: Figure S6).
There may also be a difference in the types of genes

found from each bacterial taxa (Additional file 8: Table S1).
GBM and OV were the only cancer types investigated
where DNA sequencing was completed, which is reflected
by the increased percentage of GBM read pairs that aligned
to protein coding regions (CDSs) compared to the other
cancer types. The other eight cancer types, which were
RNA-Seq datasets, had 68–90% of the bacterial read pairs
aligning to rRNA, with only 3–31% of the reads aligning to
coding sequences (Additional file 8: Table S1). This likely
reflects the normal composition of these nucleic acids, with
total RNA dominated by rRNA while DNA has a compos-
ition reflecting the entire genome.
In the cases of the Acinetobacter association with

AML and the Pseudomonas association with STAD, we
cannot distinguish between contamination and a bio-
logically relevant association. Since samples are not
available for follow-up studies, prospective samples will
need to be collected to test these hypotheses in the
future. Despite the need for further experimentation,
analyses of large public data repositories such as this
one, provide an important and cost-effective opportunity
to develop numerous new hypotheses that have the
potential to challenge dogma.

Conclusions
A more thorough evaluation of publicly available se-
quence data with a microbiome-focused analysis may be
fruitful. However, methods to examine contamination
and batch effects should be used. In the case of public
sequencing data, it can sometimes be very difficult to
determine experimental protocol and determine what
bacterial taxa in the samples may be due to batch effects
from experimental protocols and what bacteria are actu-
ally in the samples. This suggests that more metadata, as
well as better structured metadata, may be necessary to
ensure these datasets can be used more successfully in
secondary analyses. Based on our analysis, we suggest
that nucleic acid extraction method, collection site,
sequencing site, tissue type, sequence type, library type,
library methods, and antibiotic treatment must be in-
cluded in a manner that is easy to retrieve. In addition,
researchers acutely need methods to track other nucleic-
acid-based projects simultaneously occurring in the
source sites, including the tissue source site, the sequen-
cing center, and any other collection sites.

Methods
Pipeline for identifying bacterial reads and taxonomic
assignments
The pipeline for executing alignments with BWA version
0.5.9-r16 and discarding low complexity and duplicate
reads with PRINSEQ version 0.20.3 [43] has previously
been described [30]. Briefly, alignments were con-
structed to all complete bacterial genomes in RefSeq as
well as the human reference genome, hg19, using BWA
ALN version 0.5.9-r16 [44]. Other alignment algorithms
including BWA MEM and MOSAIK were tested on
other datasets. BWA MEM is more sensitive, but less
specific, unless the database includes the host and all
microbes, which was not possible here.
After aligning the read pairs to all of the references,

pairs of reads where neither read matched hg19, but
both matched bacteria were selected for further analysis.
OTUs were calculated for each read pair using the BWA
results [30, 45]. Each individual read in the read pair was
given the taxonomic assignment of its best match, or the
aggregate common taxonomy of all of its best matches.
The read pair was then assigned an OTU by compar-
ing the two taxonomic assignments of the reads in
the pair and using the common taxonomy (Additional
file 1: Figure S1). Reads were attributed to the bacter-
ial portion of the microbiome when both reads had
an OTU suggesting “bacteria.”

Construction of MicroView interactive data browser
Taxonomic assignments and metadata for approximately
36 million de-identified reads were loaded into a Post-
greSQL relational database. Materialized views were then
created to summarize read counts by every observed
combination of metadata field values and taxonomic
assignment. Components of the LGTView user inter-
face [30] were combined with a new set of Python
CGI scripts to create MicroView, an interactive inter-
face that allows a user to drill down into the 36
million reads and 9 cancer types using any combin-
ation of the available metadata fields: cancer type,
plate, sequencing center, tissue source site, SRA run
ID, sample/vial, analyte, taxonomic assignment, and
anonymized sample id.

Heat map preparation
The 36 million putative microbiome reads were parsed
into their most specific taxonomic category to the family
level with the exception of reads classified as arising from
Ralstonia, Mycobacterium, Propionibacterium, Staphylo-
coccus, Acinetobacter, or Pseudomonas, where a genus
level assignment was used. The log10-transformed read
counts per sample per taxonomic category were normal-
ized to the number of total reads per sample, multiplied
by 100,000 and plotted in a heat map (Fig. 2). A sample
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was defined as a specific nucleic acid sequenced by a spe-
cific center. Therefore, DNA and RNA would be consid-
ered different samples as would the same DNA that was
sequenced by two different sequencing centers. Only taxa
with >20 reads per one million total reads are visualized.
Samples were clustered using agglomerative hierarchical
clustering in the heatmap.2 function of GPLOTS version
3.0.1 running in R version 3.3.1. Each sample was color-
coded by the associated metadata, which is organized in
the key by the numeric code assigned by the TCGA.

BLASTN searches for Mycobacterium
Searches to confirm M. tuberculosis complex read pairs
were completed using the NCBI tool BLASTN [46] with
the default settings. All of the OV and GBM read pairs
with matches identified by BWA to M. tuberculosis com-
plex were searched against the NT database. Figures
representing the bacterial proportions in cancer and nor-
mal samples were created using Krona [35].

Log ratio calculations comparing Mycobacterium read
pairs to total read pairs
The log10 ratio comparing the number of Mycobacter-
ium spp. read pairs per run to the total number of reads
per run was calculated as the log10 of the number of
Mycobacterium spp. read pairs in each run divided by
the total number of read pairs in each run. The ratio
comparing the number of Mycobacterium spp. read pairs
per sample to the total number of read pairs per sample
was calculated as the log10 of the number of Mycobacter-
ium spp. read pairs in each sample divided by the total
number of read pairs in each sample.

Log ratio calculations comparing select bacterial read
pairs
Mycobacterium (M), Acinetobacter (A), and Pseudo-
monas (Ps) read pairs were defined as microbiome-
associated bacteria. S. epidermidis (S), Ralstonia (R), and
Propionibacterium (P) read pairs were defined as poten-
tial contaminant bacteria. The log10 ratios comparing
the microbiome-associated bacteria to the potential con-
taminant bacteria were calculated by taking the log10
(number of microbiome-associated bacteria read pairs/
number of contaminant bacteria read pairs). Subse-
quently, S. epidermidis and Propionibacterium (S + P)
were grouped together after an initial comparison found
them to frequently have the same relative proportions.
They are both commonly found on the human skin and
may arrive in the samples in the same manner. The aver-
age of each log10-transformed ratio across all the cancer
types or across all of the samples was calculated and
illustrated by a black horizontal line. As not all of the
samples had read pairs with a particular bacterial OTU,
some of the comparisons would not be calculated. Ratios

where the numerator was 0 were assigned an arbitrary
value of −7 for that ratio, ratios where both the numer-
ator and denominator were 0 were assigned an arbitrary
value of 0, and ratios where the denominator was 0 were
assigned an arbitrary value of 7.

Alpha diversity calculations
Alpha diversity was calculated by counting the total
number of OTUs present from each cancer type before
and after filtering for potential contaminants. Due to the
large discrepancies in the number of bacterial read pairs
across all of the cancer types, subsampling was neces-
sary. Therefore, all cancer types were subsampled to the
number of bacterial read pairs from GBM, which had
the fewest bacterial read pairs. Subsampling was done
with Mothur [47] version 1.36.1, using the sub.sample
function with default settings. From this, the total num-
ber of OTUs present within each cancer type were
counted and plotted. In the filtered dataset, all S. epider-
midis and Propionibacterium read pairs were removed.
In addition, all Ralstonia read pairs were removed from
the AML dataset and all Mycobacterium read pairs were
removed from the OV and GBM datasets.

Gene feature calculations
The mappings of each bacterial read pair to all of the
complete bacterial genomes in RefSeq were combined
with genome annotations to determine the gene features
for each bacterial read pair alignment.

Additional files

Additional file 1: Figure S1. This schematic illustrates how taxonomy
was assigned to the bacterial read pairs. Reads not aligning to the human
genome reference were aligned to all complete bacterial genomes in
RefSeq using BWA. After the alignment is complete, our pipeline determines
which reads have aligned to each of the bacterial reference genomes. An
approach is used to identify a taxonomic assignment that encompasses all
of the operational taxonomic units of all of the matches for a read. Then,
the assignments for read pairs are combined such that the most specific
taxonomic assignment is used as the bacterial OTU as illustrated using this
previously described scheme [30]. (PDF 521 kb)

Additional file 2: This file is a tab-delimited text file of all TCGA read
pairs and their corresponding metadata and bacterial taxonomic
assignments. Comments are denoted by a #. Abbreviations for
sequencing center and tissue source site are as follows: BCGSC—British
Columbia Genome Sequencing Center; Broad—The Broad Institute of MIT
and Harvard; Fox Chase—Fox Chase Cancer Center; MSKCC—Memorial
Sloan Kettering Cancer Center; UCSF—University of California San Francisco;
UNC—University of North Carolina; Wash Univ St. Louis—Washington
University in St. Louis. Additional File 2 unfortunately cannot be accessed
from this article. However, it can be accessed via a Dryad file available from
the following link: http://dx.doi.org/10.5061/dryad.96584 if downloaded as a
gzip archive and opened with WinRAR. (GZ 259 kb)

Additional file 3: Figure S2. These histograms illustrate the variation in
counts of bacterial taxa per sequencing run across cancer types. The
number of bacterial read pairs per run is shown for tumor and normal
samples for all cancer types investigated. (PDF 919 kb)
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Additional file 4: Figure S3. The proportions of bacterial read pairs for
both tumor (panel A) and normal-matched tissue (panel B) for glioblast-
oma multiforme (GBM) are illustrated. The GBM dataset had about the
same number of bacterial read pairs per sample for both the 78 normal
and the 78 tumor samples. Both sample types had about a third of the
read pairs from Ralstonia picketti with low levels of read pairs from Entero-
bacteriaceae, Pseudomonas aeruginosa, and Mycobacterium tuberculosis
complex. (PDF 841 kb)

Additional file 5: Figure S4. The log10-transformed ratios of bacterial
counts by patient were calculated for the breast cancer data as described in
Fig. 3. Samples were color-coded by sample type in panel A and by plate in
panel B. All of the samples were sequenced at the same center. In panel B,
the samples segregate by plate for ratios containing Ralstonia spp., suggesting
that these plates may have been contaminated. (PDF 329 kb)

Additional file 6: Figure S5. Alpha diversity for all cancer types was
compared pre- and post-filtering. The total number of OTUs before and after
filtering for potential contaminant bacterial read pairs is plotted for each
cancer type. Subsampling was done to accurately compare the large datasets,
like AML and STAD to the smallest dataset, GBM. No major differences in alpha
diversity were observed after filtering. (PDF 118 kb)

Additional file 7: Figure S6. The proportion of bacterial read pairs for
RNA-Seq (panel A), whole genome sequencing (WGS, panel B), and
whole exome sequencing (WXS, panel C) for an individual stomach
adenocarcinoma (STAD) sample are illustrated. The RNA-Seq data shows
an enrichment of Proteobacteria that have low proportions in the WGS and
WXS data. WGS and WXS sequencing methods resulted in a more diverse
collection of bacterial read pairs with only minor differences between the
two methods. (PDF 445 kb)

Additional file 8: Table S1. Types of gene features represented by the
bacterial read pairs of each cancer type. (DOC 54 kb)
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