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Abstract

Background: The gut microbiota has been shown to be closely associated with human health and disease. While
next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential,
metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut
metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance
and easy-to-implement gut metaproteomic approach is required.

Results: In this study, we developed a high-performance and universal workflow for gut metaproteome identification
and quantification (named MetaPro-lQ) by using the close-to-complete human or mouse gut microbial gene catalog

health and disease.

as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass
spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal
interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome
and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable
identifications with the matched metagenome database search strategy that is widely used but needs prior
metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which
showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant
responders to high-fat feeding in comparison to low-fat feeding.

Conclusions: We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein
identification and quantification, which functions as a universal workflow for metaproteomic studies, and will
thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in
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Background

Intestinal microorganisms, namely the gut microbiota,
have been shown to be important in multiple aspects of
physiological processes relating to health and disease, in-
cluding nutrition, metabolism, and immunity [1]. Host
genetics and nutrition have been shown to affect the
composition of gut microbiota; conversely, the microbial

* Correspondence: dfigeys@uottawa.ca; astintzi@uottawa.ca; DMack@cheo.on.ca
2Department of Paediatrics, CHEO Inflammatory Bowel Disease Centre and
Research Institute, University of Ottawa, Ottawa, ON, Canada

'Department of Biochemistry, Ottawa Institute of Systems Biology,
Microbiology and Immunology, Faculty of Medicine, University of Ottawa,
Ottawa, ON, Canada

( ) BiolMed Central

metabolites or the microbes themselves can also regulate
host metabolic processes [1-4]. Disruption of the homeo-
stasis surrounding these host-microbe interactions has re-
cently been shown to participate in the development of
many diseases including obesity, diabetes, and inflamma-
tory bowel disease (IBD) [1]. Therefore, the gut microbiota
is emerging as an important topic for public health and
scientific researchers.

Next-generation sequencing (NGS) has been widely
applied in gut microbiota studies using various experimen-
tal approaches [5]. Classically, NGS studies have focused on
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characterizing the taxonomic profile of the gut microbiota
through targeted amplicon sequencing (e.g., 16S hypervari-
able regions) or through shotgun metagenomics. More re-
cently, NGS has been used to characterize the metabolic
potential of the gut microbiota through metatranscriptomic
analysis [6]. While these approaches are quite useful,
they are unable to demonstrate that the predicted bio-
logical processes are actually present in the gastrointes-
tinal tract. Metaproteomics, which examines all the
expressed proteins in a microbial community, has been
shown to provide invaluable functional information for
the gut microbiota [7]. Moreover, the application of
proteomics and metaproteomics to host-gut microbe
interactions will help to provide meaningful informa-
tion on the roles of microbiota [8]. Although the first
shotgun metaproteomic study of the gut microbiota
was reported in 2009 [7], only few follow-up large-scale
gut metaproteomic studies have been published. The
reasons for this lack of progress have been discussed in
several reviews [8—12] and include (1) the inability to
detect low abundant proteins with current mass spec-
trometers coupled to the high diversity of the gut micro-
biota and, more importantly, (2) the low efficiency in
identifying gut microbial peptide or proteins from ac-
quired mass spectrometry (MS) spectra. The latter is
mainly due to the lack of a suitable database (in terms of
database coverage and size) for peptide-spectra matching
(PSM) which is the key step for current bottom-up
proteomic studies.

The ideal database for proteomics should be composed
of all potentially expressed proteins in samples being an-
alyzed with no additional spurious sequences; however,
this is challenging for gut metaproteomics due to the
enormous diversity and individual variations of gut
microbiome [12]. The NCBI nr database is often used in
metaproteomics due to its high sequence coverage.
Unfortunately, its enormous size (~80 million entries)
makes the database searching extremely time consuming
and also provides less sensitive peptide identifications
when using target-decoy approach for false discovery rate
(FDR) filtering [13]. To overcome these weaknesses, cus-
tomized databases are often employed and are composed
of a list of known gut microbial genomes that are manu-
ally chosen and combined to generate a synthetic meta-
genome database [14—16]. However, it is unclear how
representative these synthetic metagenome databases are
as compared to the actual metagenome since many intes-
tinal microbes are un-cultivable and/or their genomes
have not been sequenced. In addition, the researcher’s
choice of which bacteria taxa to include in the database is
often arbitrary and may result in biases, which also makes
the cross-study comparisons difficult. An alternative to
manually curating a custom database is using a matched
metagenome database. Briefly, either a “representative”
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subset or all the samples being investigated are subjected
to metagenomic sequencing to compile a database of
genes [14]. Since metagenomic sequencing introduces
additional costs, it has not been generally performed in
currently reported metaproteomic studies. These chal-
lenges have undoubtedly contributed to the fact that
most metaproteomic publications only identify around
3000 proteins, which is far less than expected. Recently,
Jagtap et al. [13] proposed a two-step database search
strategy where a first search is performed against the
target-only version of a database to generate a smaller
refined database, which is then used for a second clas-
sical target-decoy database search [17]. This has been
shown to increase the sensitivity of peptide identifica-
tion and greatly increase the number of peptides and
proteins identified. In a recent study by Tanca et al.
[18] over 13,000 peptides corresponding to 9000 pro-
teins were identified for mouse cecum samples by
combining a matched metagenome database with the
aforementioned two-step strategy. To the best of our
knowledge, this is the highest protein identification
for a single gut metaproteomic study to date. However,
as mentioned above, the matched metagenome approach
suffers from the need for metagenomic sequencing and
the differences of databases used in different studies. Thus,
a comprehensive gut microbial gene or protein database,
which covers the expressed proteins for all gut microbial
species, will make gut metaproteomics more affordable,
comprehensive and comparable, which will largely pro-
mote wide application of metaproteomics in microbiome
studies.

The Metagenomics of Human Intestinal Tract (Meta-
HIT) [19, 20] and the Human Microbiome Project (HMP)
consortiums [21] have aimed to compile comprehensive
gut microbial gene catalogs based on high-throughput se-
quencing to facilitate the analysis of multi-omic data. More
recently, the close-to-complete human and mouse gut mi-
crobial gene catalog databases have been published and
made freely available. Thus, in this study, we leveraged
these gene catalogs as unified databases for protein identifi-
cation in gut metaproteomics. We subsequently developed
a high-performance and universal approach for gut Meta-
Proteome Identification and Quantification (MetaPro-1Q),
which led to the quantification of approximately 120,000
peptides corresponding to >30,000 protein groups (defined
as the cluster of proteins identified by the same set or a
subset of peptides) in a single experiment. More import-
antly, since the gene catalog databases are centrally curated
and publicly accessible, the current approach can be widely
applied for gut microbiota studies to generate comparable
results from different researchers. Thus, the MetaPro-1Q
shows great potential as a universal approach which
would largely promote the wide application of gut
metaproteomics.
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Results and discussion

Implementation of the MetaPro-1Q workflow for gut
microbiota study

In this study, we developed a high-performance meta-
proteomic workflow for enhanced gut microbial protein
identification and quantification, namely MetaPro-IQ,
using the close-to-complete human and mouse gut mi-
crobial gene catalog databases and iterative database
search strategy. The implementation of MetaPro-IQ ap-
proach is illustrated in Fig. 1 and detailed as follows.
Briefly, in the first step, a database search against the
whole gene catalog database was performed to generate
a “pseudo-metaproteome” database for each sample. A
reduced database containing all possible proteins derived
from peptide-spectrum matches was generated and hy-
phenated with reversed sequence for each sample and
used for the second step, a typical target-decoy database
search [17]. The confidently identified peptide and pro-
tein lists were then generated by applying strict filtering
based on a FDR of 0.01, which is widely accepted for
proteomic identifications. To obtain accurate and nor-
malized quantitation information for all of the identified
proteins across samples, the resulting protein lists for all
samples were combined and de-duplicated to generate a
“combined non-redundant database.” The latter was

g DATABASE SEARCH FOR EACH SAMPLE
(no filtering)

D
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+ decoy + decoy + decoy
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= (FDR < 0.01)
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I

Cgmbined non-
redundant database

DATABASE SEARCH AND QUANTIFICATION
(MaxQuant, FDR < 0.01)

STEP3

Fig. 1 Overview of the MetaPro-IQ approach. The human or mouse
gut microbial gene catalog is freely downloadable online [20, 24].
For the first two steps of the database search, each of the samples
was processed individually. The identified protein sequences for all
the samples were then combined to generate a refined small
study-specific sub-database, which will be used for the final-step
quantitative analysis using MaxQuant
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then imported into MaxQuant software for protein
quantification using advanced MaxLFQ algorithms [22].

A gene/protein database is typically needed for the
purpose of peptide identification and is readily available
for most model organisms. A typical proteome database
contains 5000—20,000 entries which leads to a reason-
able database search time and FDR filtering sensitivity
[17]. However, the gut microbiota consists of thousands
of microbial species and most of them are remain largely
unknown or lack any available genome or proteome se-
quences [23]. This makes the gut metaproteomic studies
much more challenging. Therefore, in this study, we
used the newly generated, well-annotated gut microbial
gene catalog databases (available from http://meta.gen-
omics.cn/ and http://gigadb.org/) [20, 24], to improve the
database coverage for the gut microbial proteins. The hu-
man gut microbial gene catalog contains 9.9 million genes
generated from >1200 metagenomic sequencing samples
[20], and the mouse gut microbial gene catalog contains
2.6 million genes generated from 184 sequenced mouse
samples of diverse genetic and environmental back-
grounds [24]. These databases are the most comprehen-
sive for human and mouse gut microbial genes to date,
and more importantly, the application of these gene cata-
log databases allows the generation of unified protein lists
from different studies, thus enabling easy cross-study
comparisons. The latter is also one of the important disad-
vantages for the current gut metaproteomic studies as
aforementioned.

The sizes of the abovementioned gene catalog data-
bases are large (>10° entries), which will greatly limit the
database search sensitivity [13]. Iterative database search
strategy has been previously shown to increase the sensi-
tivity of peptide identification using huge databases, par-
ticularly for the metaproteomics and proteogenomics
[13]. Thus, the MetaPro-1Q conducted a first-step data-
base search against the whole gene catalog database,
which generated a reduced database from the original
gene catalog based on the acquired MS spectra in a sam-
ple. The reduced database was then used for a classical
target-decoy database search to obtain confident peptide/
protein identifications [13, 17].

In addition to the peptide/protein identification, quan-
tification is another important aspect for proteomics.
Spectra counting-based label-free quantification had
been used for protein quantitation in many previous gut
metaproteomic studies [7, 14, 15]. However, for data
generated from high-resolution mass spectrometers, such
as orbitraps, precursor-intensity-based algorithms have
been shown to have superior accuracy, particularly when
dynamic exclusion is enabled for spectra selection [22, 25].
MaxQuant is a widely used quantitative proteomics soft-
ware implemented with the advanced MaxLFQ algorithm,
which is based on precursor signal intensity and advanced
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delaying normalization across samples [22]. The MetaPro-
IQ approach adopted MaxQuant for the final-step quanti-
fication analysis, which enabled accurate quantifications of
the identified microbial proteins.

We then applied the MetaPro-1IQ approach on two
distinct datasets. The first dataset was from a mouse
metaproteomic study wherein a total of 32 stool samples
were collected from either high-fat diet (HFD)- or low-
fat diet (LFD)-fed mice. The bacteria from stool samples
were then processed, trypsin digested, and subjected to a
4-h gradient MS run for each sample on the Q Exactive
mass spectrometer. A total of 121,588 distinct peptide
sequences and 30,749 protein groups were quantified
with a median of 17,940 peptide identifications for each
sample (39 % of the total acquired tandem MS spectra,
Fig. 2). The second dataset was generated from human
mucosal-luminal interface (MLI) samples. Briefly, the
MLI samples were collected during endoscopy, from the
ascending colon of eight different children. The bacteria
were isolated, processed, and subjected to the same MS
analysis as described for the mouse metaproteome study.
We quantified 67,186 distinct peptides corresponding to
19,011 protein groups, with a median identification rate
of 32 % (23-46 %) and 15,210 peptide sequences
(11,310-21,889) for each sample (Fig. 2 and Additional
file 1: Table S2). To our best knowledge, the results we
obtained represent the largest number of gut microbial
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Fig. 2 Peptide identification of mouse stool and human MLI
metaproteome datasets. Scatter plots and box plots showing the
number of identified distinct peptide sequences (x-axis) and
identification rate (y-axis) for each sample in mouse stools (black) or
human mucosal-luminal interface (red) samples. The identification
rate was calculated by dividing the identified MS/MS by total
acquired MS/MS. The median (central thick lines), 25 and 75 %
quartile ranges (box width), and upper and lower limits (error bar)
were shown in the box plot. The median values were indicated
besides each of the box plot
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peptide and protein identifications from a single experi-
ment. In addition, the MS identification rate in our study
is comparable to those achieved in mono-culture micro-
bial proteomic studies [15, 26].

MetaPro-IQ reached comparable performance with
matched metagenome strategy

Matched metagenome database has been shown to be a
good choice for metaproteomic study with reasonable
database size and coverage [14, 18], although this approach
suffers from the need for metagenomic sequencing. The
current workflow aimed to skip the need for metagenomic
sequencing and instead generate a database akin to a
pseudo-expressed metagenome with the current MS sam-
pling sensitivity. To evaluate whether similar performance
could be reached to the matched metagenome strategy, we
conducted metagenomic sequencing for all the eight hu-
man MLI samples. A total of 243 million high-quality
paired-end 100-bp Illumina sequencing reads were gener-
ated (25-35 million paired-end reads for each sample,
Additional file 1: Table S3). The genes were then predicted
using the previously established MOCAT pipeline [27],
which generated an average of 119,777 non-redundant
genes per sample (Additional file 1: Table S3). The resulting
genes for each sample were then used for matched meta-
genome database searches for peptide/protein identifica-
tion. The matched metagenome strategy quantified 69,496
peptide sequences corresponding to 16,415 protein groups
for the whole dataset (Additional file 1: Table S2). As men-
tioned above, the MetaPro-IQ approach using the human
gut microbial gene catalog database quantified 67,186 pep-
tide sequences corresponding to 19,011 protein groups.
The average identification rate of the acquired MS spectra
was 34 and 33 % for the matched metagenome and the
MetaPro-1Q approaches, respectively. The MetaPro-IQ ap-
proach identified comparable number of peptides but more
protein groups for each of the samples (Fig. 3a). More than
76 % of the total identified peptide sequences were identi-
fied by both approaches, with 13 % (10,106 peptides) of all
the peptides only identified by the matched metagenome
approach and 10 % (7796 peptides) only by MetaPro-1Q ap-
proach (Fig. 3b). Among the peptides only identified with
the matched metagenome approach, 75 % (7554 peptides)
were present in the whole gene catalog database. However,
further examination of these peptides revealed an obvious
lower quality of identification (represented as posterior
error probability (PEP) scores) as compared to those identi-
fied with both approaches (Fig. 3c). Among the peptides
only identified with MetaPro-I1Q, 27 % (2106 peptides) of
the peptides were present in the matched metagenome da-
tabases. In contrast with the peptides only identified using
matched metagenome approach, there was no obvious
difference in PEP distribution for those only identified
using MetaPro-IQ as compared to those identified by
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both approaches (Fig. 3d). These findings suggest that
the MetaPro-IQ workflow using the gene catalog
database performed better for peptide and protein
identification than the workflow using the matched
metagenome database.

To compare the abilities of the two approaches for
extracting functional information, all the quantified pro-
teins were annotated with Clusters of Orthologous
Group (COG) categories. Twenty-three COG categories
were observed with the matched metagenome approach,

which were all found with the MetaPro-IQ approach.
There is no obvious difference in the relative abundance
of the high abundant COG categories between the two
approaches (Fig. 3e). Several COG categories such as B,
Z, and X were solely present or with obviously higher
observed LFQ intensity using the MetaPro-IQ approach
(Fig. 3e). This may result from the lack of low abundant
genes in matched metagenome databases due to inad-
equate sequencing depth. The low abundant genes may
have relatively high protein-expression levels which are
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detectable using mass spectrometers, and thereby were
identified by MetaPro-1Q approach.

To examine whether the above observations are data-
set dependent, the murine fecal metaproteome dataset
(MEM; two replicates with two runs for each replicate)
from the study of Tanca et al. [18] were re-analyzed with
the MetaPro-1Q workflow. In total, we quantified 19,497
peptides and 4549 protein groups for replicate 1 and
19,972 peptides and 4630 protein groups for replicate 2.
More than 92 % of the peptides were quantified for both
replicates (Additional file 2: Figure S1A). Tanca et als
study, using a matched metagenome database search
strategy, identified 14,085 peptides for replicate 1 and
15,669 peptides for replicate 2 with an overlap of 63 %
[18]. Compared to the matched metagenome strategy,
the MetaPro-IQ workflow identified more peptides with
a better overlap between replicates for their dataset. In
addition, a Pearson’s correlation coefficient of 0.89 was
obtained between the two replicates, and more than 0.86
between runs (two mass spectrometry runs were con-
ducted for each replicate in Tanca et al.’s study, Additional
file 2: Figure S1B—F), which is also in agreement with the
findings in their study.

Taken together, the MetaPro-IQ metaproteomic work-
flow using the gut microbial gene catalog database showed
better performance for identifying gut microbial proteins,
when compared to the workflow using a matched metagen-
ome database. MetaPro-IQ allows high efficient protein
identification from MS spectra in metaproteomics without
the need for prior metagenomic sequencing (greatly re-
duces the experimental cost) and is readily applicable for all
researchers from various disciplines.

MetaPro-1Q approach revealed metaproteome response
of gut microbiota to diet in mice

The alteration of gut microbiota in HFD-fed animals has
been considered to be involved in the development of
HFD-induced metabolic disorders [28]; however, the
mechanism remains unclear. In-depth metaproteomic
analysis of the functional changes in the microbiota dur-
ing HED feeding may provide valuable information on
diet-microbiota-host interactions. Thus, in this example,
the response of the gut microbiota to diet in mice was
studied using the MetaPro-IQ metaproteomic approach.
Briefly, eight mice were fed with either HFD or LFD for
43 days. As expected, the HFD-fed mice gained sig-
nificantly more body in 4 weeks (Additional file 2:
Figure S2). Stool samples were collected at days 0, 14, 29,
and 43 of the trial and subjected to metaproteomic ana-
lysis. In total, we quantified 30,749 protein groups from 32
samples, and a large overlap between the HFD and LFD
groups for both quantified peptides (88 %) and protein
groups (92 %) was observed (Fig. 4a, b). Relatively fewer
unique peptides and proteins were quantified in HFD
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groups compared to the LFD groups, which might be due
to the reduced microbial diversity in HFD-fed mice [29].
The principal component analysis (PCA) score plot
showed three obvious clusters corresponding to the base-
line, HFD-fed mice, and LFD-fed mice (Fig. 4c). The HFD
and LFD diets are matched in terms of ingredients with
different proportions of fat (Additional file 1: Table S4)
and are different from the normal chow diet used at
the baseline. Since the samples from days 14, 29, and
43 clustered closely together under both HFD and LFD
feeding conditions (Fig. 4c), the data for each group at
days 14, 29, and 43 were combined and compared to
identify key proteins relevant to dietary fat composition,
using a two-sample ¢ test with a Benjamini-Hochberg FDR
correction. A total of 849 significantly changed proteins
(g < 0.05) were identified with 438 increased and 411 de-
creased, respectively, in the HFD group compared to LFD
group (Fig. 4d and Additional file 1: Table S5). Among
these 849 significantly changed proteins, 583 proteins
were found to be significantly different between baseline
and HFD-fed mice and 246 between baseline and LFD-fed
mice (Additional file 1: Table S5). Hierarchical clustering
analysis with those key proteins showed that the samples
from the same mouse clustered together in the LFD
group, while this was not the case in the HFD group
(Fig. 4d). In addition, the metaproteome patterns of LFD-
fed mice clustered with the normal-chow-diet-fed mice
(baseline), far apart from the HFD groups, which also sug-
gest that the identified significant proteins might be re-
lated to the dietary fat composition. COG analysis
showed that the most abundant COG categories were
G (carbohydrate transport and metabolism), C (energy
production and conversion), and ] (translation, riboso-
mal structure, and biogenesis) in both HFD- and LFD-
fed mouse microbiota (Additional file 2: Figure S3),
which is in agreement with previous studies [15].
Among the 23 COG categories, category O (posttrans-
lational modification, protein turnover, chaperones)
was significantly increased in HFD group, while cat-
egory S (function unknown) was significantly decreased
(Additional file 2: Figure S3). Protein posttranslational
modifications have been considered to present under
various pathological conditions or following exposure
to toxic agents in cells [30]. Our findings suggest that
the microbiota in the gut of the HFD-fed mice may ex-
perience substantial stress from either the host or the
diet, which may be an important part of the disrupted
homeostasis of diet-microbiota-host interactions during
high-fat feeding.

More than 94 % of the key microbial proteins have a
greater than twofold change between HFD and LFD
groups, while thirty eight of them have more than a 100-
fold change, representing the major responders to HFD
(Additional file 1: Table S5). Proteins S-Fe9_GL0178463
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and S-Fe7_GL0107273 were the most markedly changed
proteins with more than 1000-fold decrease in the HFD
group, and both of them were annotated as hypothetical
proteins from Eubacterium plexicaudatum (Additional
file 1: Table S6). Further examination of peptide identifi-
cations revealed that protein S-Fe9 GL0178463 had
high-quality PSMs (scores up to 323) in all samples in
the LFD group, but no PSM was obtained for HFD
groups (Additional file 2: Figure S4). The MaxQuant
software has been designed to identify and quantify pep-
tides from precursor ions without any MS/MS scan, by
matching to the high-quality PSMs in paralleled samples
based on retention time and mass-to-charge (m/z) ratio
[22]. This resulted in an average of three peptides quan-
tified for the samples in HFD group (Additional file 2:
Figure S4). The lack of PSM for protein S-Fe9_GL0178463
in the HFD group might be the result of low protein levels
in the samples, such that their precursor ions were not
abundant enough to be selected by mass spectrometer for

fragmentation. However, the precursor ions were still
present allowing accurate quantification and thereby
selection of key proteins with huge differences between
the different groups. This scenario, where certain pep-
tides/proteins are almost totally absent from a single
group, is expected to be common in gut microbial stud-
ies, where some species may be substantially inhibited
by other species or environmental compounds in one
group as compared to another.

Taxonomy analysis was performed using the unique
peptide-based approach as described previously [31, 32].
In agreement with previous metaproteomic and metage-
nomics studies [15, 18, 33], Firmicutes, Bacteroidetes,
Verrucomicrobia, Proteobacteria, and Actinobacteria were
the most abundant phyla in mouse stool (Fig. 5a, b). The
Firmicutes-to-Bacteroidetes (F/B) ratio was significantly in-
creased in HFD-fed mice (Fig. 5¢), which was also in agree-
ment with previous metagenomic studies [34]. A total of
595 unique peptides were found for E. plexicaudatum,
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which was identified to have two proteins with a >1000-
fold decrease in the HFD group. The relative abundance of
this species, which was represented as the sum intensity of
all the unique peptides, was also significantly decreased in
the HFD group by sevenfold compared to the LFD group
(Fig. 5d). E. plexicaudatum is a butyrate-producing bacter-
ium [35], which has been shown to protect the integrity of
the intestinal epithelium and exert anti-inflammatory ef-
fects [28, 36, 37]. Butyrate-producing bacteria are reported
to be decreased in HFD-fed animals and in some human
diseases such as obesity and IBD [28, 36, 38, 39]. The
current study suggests that the proteins S-Fe9_GL0178463
and S-Fe7_GL0107273 may participate in the response
to HFD in Eubacterium, which is worthy of further
investigation.

Conclusions

MetaPro-IQ approach provides a universal, easy, and
high-performance metaproteomic workflow for studying
human or mouse gut microbiota and dramatically im-
proves microbial protein identification and quantifica-
tion. The workflow was established based on the usage
of the close-to-complete gut microbial gene catalog

database and an iterative database search. These enabled
high protein-database coverage and better sensitivity for
peptide identification. More importantly, it allows easy
comparison for the results obtained from different
studies. The MetaPro-IQ approach also makes matched
metagenome sequencing unnecessary for general gut
metaproteomic studies. Moreover, the workflow gener-
ated quantitative results based on precursor intensity
and advanced normalization method, which allows ac-
curate comparison across samples.

The limitation of the MetaPro-IQ also happens to the
gene catalog databases since they are mainly generated
from stool samples and will not represent all types of
intestinal microbiomes, for example, the biopsy micro-
biomes. For uncommon samples, the gene catalog database
could be enhanced with additional matched sample meta-
genomic sequencings, and thus will improve the perform-
ance of MetaPro-IQ. In addition, the current gut microbial
gene catalog databases represent well for the gut-related
bacteria and archaea; the studies focusing on other taxa
such as fungi and virus will need further addition of their
protein sequences or alternative databases. However, the
concept of MetaPro-IQ is applicable for any research as
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long as the gene catalog or reference protein database is
available.

Methods

Mouse stool sample collection and processing

The animal experiments were performed at the Ottawa
Hospital Research Institute and conducted in strict ac-
cordance with the guidelines on the Care and Use of Ex-
perimental Animals of Canadian Council on Animal
Care (CCAC). The animal use protocol (2009-012) was
approved by the Animal Care Committee at the Univer-
sity of Ottawa. A total of eight male C57BL/6] mice
(Charles River, Sherbrooke, QC) were housed individu-
ally in the same room at 25 °C with a strict 12-h light/
dark cycle. Food and water were available ad libitum.
Mice were acclimatized to the facility for 2 weeks and
fed a normal chow diet (containing 18 % fat by energy;
Harlan Laboratories, Inc.,, Madison, WI) and then ran-
domly divided into two groups (1 = 4/group). One group
of mice was fed a high-fat diet (containing 39.7 % fat by
energy; TestDiet, St. Louis, MO), and the other group a
low-fat diet (containing 15.8 % fat by energy; TestDiet)
for 43 days. Body weight for each mouse was monitored
weekly. Stool samples were collected at days 0, 14, 29,
and 43 and stored at —80 °C until analysis.

For proteomic analysis, bacterial proteins were ex-
tracted from the stool samples. Briefly, stool samples
(~1 g) were suspended in 1.5 mL ice-cold PBS (pH 7.0)
with thorough vortexing. The slurries were centrifuged
at 300g, 4 °C for 5 min. Supernatants were carefully
collected, and the pellets were subjected to the above
procedure three times. All the supernatants for each
sample were then combined followed by three more
centrifugations at 300g, 4 °C for 5 min to remove debris.
The supernatant was then centrifuged at 14,000g, 4 °C for
20 min to pellet bacterial cells. The pellet was then re-
suspended in fresh PBS and washed another three times.
The bacterial cells were then lysed with 4 % sodium dode-
cyl sulfate (SDS) and 6 M urea in 50 mM Tris-HCI buffer
(pH 8.0) with sonication. SDS was removed by protein
precipitation in acidified acetone/ethanol buffer at —20 °C
overnight. The precipitated proteins were dissolved in 6 M
urea in 50 mM ammonium bicarbonate (pH 8) for trypsin
digestion.

Human MLI sample collection and processing

Eligible subjects were under 18 years of age and sched-
uled to undergo diagnostic colonoscopy (Additional
file 1: Table S1). The protocol was approved by the Re-
search Ethics Board of the Children’s Hospital of Eastern
Ontario (CHEO). Colonoscopy preparation was done as
per standard protocol modified to 1 day [40]. During colon-
oscopy, once the proximal ascending colon was intubated,
any fluid and loose debris was aspirated and discarded.
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Thereafter, sterile water was flushed onto the mucosa to
dislodge adherent mucus from mucosal epithelial cells and
the mixture was then aspirated into a sterile container
through the colonoscope. The samples were immediately
placed on ice and transported to the lab for processing.

To remove any debris in the aspirate sample, a first
centrifugation at 700g, 4 °C for 5 min was performed
and the supernatant was transferred into a new tube.
The bacterial cells were then collected with a centrifuga-
tion at 14,000g, 4 °C for 20 min. The pellets were then
used for protein extraction according to the procedures
described above.

Liquid chromatography-tandem mass spectrometry
In-solution trypsin digestion for bacterial proteins recov-
ered from both mouse stool and human MLI samples
was conducted as described previously [41]. Briefly, the
proteins were first reduced and alkylated with 10 mM
dithiothreitol (DTT) and 20 mM iodoacetamide (IAA),
respectively. The urea concentration was then diluted
to <1 M with 50 mM ammonium bicarbonate. Trypsin
(Worthington Biochemical Corp., Lakewood, NJ) was
then added at a protein-trypsin ratio of 50: 1 (w/w) for
digestion overnight with agitation at 37 °C. The tryptic
digest was desalted with a 10-pm C18 column and
eluted with 80 % acetonitrile/0.1 % formic acid. The
eluent was then evaporated with a Speed-Vac concen-
trator and tryptic peptides dissolved in 0.1 % formic
acid for mass spectrometry analysis.

Tryptic peptides equivalent to 4 pg of proteins were
loaded for liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis on a Q Exactive mass
spectrometer (ThermoFisher Scientific Inc.). The separ-
ation of peptides was performed on an analytical column
(75 pm x50 cm) packed with reverse phase beads
(1.9 umy; 120-A pore size; Dr. Maisch GmbH, Ammerbuch,
Germany). A 4-h gradient was performed from 5 to
35 % acetonitrile containing 0.1 % formic acid at a flow
rate of 200 nL/min. The instrument method consisted of
one full MS scan from 300 to 1800 m/z followed by
data-dependent MS/MS scan of the 12 most intense
ions, a dynamic exclusion repeat count of 2, and repeat
exclusion duration of 30 s. All data were recorded with
the Xcalibur software and exported as.raw format for
further analysis.

Metagenomic DNA extraction, sequencing, and gene
prediction

Total DNA was extracted from intestinal aspirate sam-
ples using the Fast DNA spin kit (MP Biomedicals, Santa
Ana, CA) and using a FastPrep-24 (MP Biomedicals).
Briefly, MLI samples were thawed and contents pelleted
by centrifuging at 14,000¢ for 10 min in a bench top
centrifuge. The pellets were re-suspended in 1 mL of cell
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lysing solution (CLS)-TC and subjected to two mechan-
ical lysis cycles at speed 6.0 for 40 s. The extracted DNA
was then used to construct sequencing libraries using an
[Mlumina TruSeq DNA Sample Prep kit v3 according to
the manufacturer’s instructions. The sequencing was
performed on an Illumina HiSeq 2000 (generating paired-
end 100-bp reads) at the Génome Québec Innovation
Centre, McGill University (Montreal, Canada).

Gene prediction was performed on each sample indi-
vidually using the previously published MOCAT pipeline
[27]. Briefly, raw reads were first filtered and trimmed to
remove sequencing adapters and low quality reads. Reads
with human origin were removed using SOAPAligner 2
against the human genome database (hgl9) [42]. The
remaining reads were then used for scaftig assembly and as-
sembly revision to generate assembled sequences for gene
prediction with the MetaGeneMark algorithm [43]. The
resulting gene sequence lists for each of the sample were
then compiled into FASTA files and used as a matched
metagenome database for benchmarking MetaPro-1Q.

Bioinformatics for metaproteome data analysis
Implementation of MetaPro-IQ approach

The implementation of the MetaPro-IQ approach is illus-
trated in Fig. 1 and details are highlighted in the “Results
and discussion” section. The human and mouse gut micro-
bial gene catalog databases were downloaded from the IGC
website (http://meta.genomics.cn/) and the GigaScience
Database (http://gigadb.org/dataset/view/id/100114/token/
mZIMYJIF04LshpgP), respectively [20, 24].

In MetaPro-I1Q, the first- and second-step database
searches were carried out with X! Tandem (release
2015.04.01) [44, 45], and the third step was carried out
with MaxQuant software (version 1.5.2.8) [46]. For the
X! Tandem database search, each raw file obtained in the
current study or from Tanca et al’s study (downloaded
from PeptideAtlas Repository at http://www.peptideatla-
s.org/PASS/PASS00355) was converted into mgf format
with an in-house software platform. The tandem search
was performed with up to two miss-cleavages (trypsin/P),
carbamidomethylation of cysteine as a fixed modification,
and oxidation of methionine as a potential modification. A
fragment ion tolerance of 20 ppm and a parent ion toler-
ance of 10 ppm were used. All matched protein sequences
for the first-step search were extracted as the sample-
specific database (sample_all-macth.fasta). The X! Tandem
outputs of the target-decoy database search (step 2) were
summarized with an in-house software to generate an
identified protein list at a FDR cutoff of 0.01 and max-
imum expect value of 0.05. The resulting protein list for
all samples was then combined, and duplicates were re-
moved for generating a “combined non-redundant data-
base” to use for protein quantification using MaxQuant.
Similar peptide identification parameters with X! Tandem
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database searches were used for MaxQuant (parameter
files were uploaded together with the raw data and result
files to ProteomeXchange). For quantification, the LFQ al-
gorithm was used for label-free quantification. Both razor
and unique peptides were used for protein quantification,
and the minimum ratio count was set as 1. An alignment
retention time window of 20 min and match time window
of 5 min were applied to match the same accurate masses
between different runs. Proteins identified by the same set
or a subset of peptides were grouped together as one
protein group.

Matched metagenome database search strategy

Matched metagenome database searches were performed
with exactly the same parameters as the MetaPro-IQ ap-
proach, except that the metagenome database (gene se-
quences) was used for each sample instead of the whole
gene catalog database. To ensure a fair comparison, the
same multi-step database search strategy and MaxQuant
quantification was performed. The outputs of MaxQuant
(namely the results included in the txt folder) were
then compared between the matched metagenome and
MetaPro-1Q approaches.

Functional annotation into COGs

All the quantified protein sequences were aligned
against the COG database (ftp://ftp.ncbi.nih.gov/pub/
COG/COG2014/data) with DIAMOND using default
parameters (e-value cutoff of 0.001) [47, 48]. The best
hit for each query was selected for annotation, and the
COG id, name, and category information for each of
the matched sequences were extracted from the anno-
tation file of the COG database. If the leading protein
(defined as the top rank protein in a group; ranking is
based on the number of peptide sequences, the num-
ber of PSMs, and the sequence coverage) in a protein
group had no match for COG id, the others were
checked for the existence of any match. The LFQ in-
tensity of all the protein groups annotated with the
same COG category were summed together to repre-
sent the COG category abundance for each sample.

Taxonomic analysis

Taxonomic analysis was performed based on taxon-
specific unique peptides using Unipept (version 3.1)
[31]. All of the quantified peptide sequences from Max-
Quant were imported into the Unipept for analysis with
the “Equal I and L” and “Advanced miss cleavage hand-
ling” options allowed. The results were then exported as
a table format. The relative abundance of each taxon
(namely phylum or species in this study) is represented
as the sum of intensity for all the unique peptides found
with Unipept.
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Multivariate statistical analysis

The protein group results from MaxQuant were first
imported into Perseus (version 1.5.2.4) to remove any
contaminants, reverse sequences, and those identified
only by site. The LFQ intensity was logo-transformed
and used for statistical analysis. Only those protein
groups with valid LFQ intensity values in at least 29 of
the 32 samples (>90 %) were kept for subsequent statis-
tical and multivariate analysis. This resulted in a strin-
gently quantified dataset of 5299 protein groups for the
bacteria from 32 stool samples. Hierarchical clustering
analysis was also conducted in Perseus with default pa-
rameters. Significant proteins between HFD and LFD
groups were identified by a two-sample ¢ test with Benja-
mini-Hochberg FDR correction. Those proteins with a
FDR corrected p value (g value) of <0.05 were considered
as significant proteins.

PCA was performed in MATLAB (version 2010b, The
MathWorks Inc.), and the first two PCs were used for
generating the score plot. A prior missing value imputation
was done with the nearest-neighbor method in MATLAB
with the knnimpute function (http://www.mathworks.com/
help/bioinfo/ref/knnimpute.html) [49].

Additional files

Additional file 1: Tables S1-S7. Table S1. Clinical information of the
eligible pediatric volunteers involved in the mucosal-luminal interface
sample collection. Table S2. Comparison of peptide and protein
identifications between the MetaPro-IQ and matched metagenome
approaches. Table S3. Summary of metagenomic sequencing and gene
prediction for pediatric mucosal-luminal interface samples. Table S4.
Ingredient comparison of high-fat and low-fat diets. Table S5. List of 849
significant proteins responding to the high-fat feeding. Table S6. Best
hits of BLASTP alignments against NCBI nr database. Table S7. Names
and one-letter codes for identified COG categories. (XLSX 611 kb)

Additional file 2: Figure S1-S4. Figure S1. Analysis of murine fecal
metaproteome data in the study of Tanca et al. using MetaPro-IQ
approach. (A) Venn diagrams depicting the overlap of identified peptides
between the two replicates; (B) scatter plot illustrating the Pearson’s
correlation between the LFQ intensity of all peptides identified in both
replicates; (C) and (E) showing the overlap of identified peptides between
two runs for replicate 1 and replicate 2, respectively; (D) and (F) showing the
Pearson’s correlation between the LFQ intensity of all peptides identified in
both runs for replicate 1 and replicate 2, respectively. Detailed information
on the sample information of murine fecal metaproteome (MFM) data was
described in the study of Tanca et al. Figure S2. Effects of diet on the
mouse body weight gain. Statistical differences were examined with
two-sample t test. Mean £ SD was shown. *p < 0.05. Figure S3. COG
category distributions of mouse stool microbial proteins. The COG
category distributions of all proteins were shown. LFQ intensity was
used for the analysis, and mean + SEM was plotted. Each letter shows
one COG category according to the standard naming in NCBI website
and also shown in Additional file 1: Table S7. Question mark (?) denotes
proteins without a COG assignment. Statistical analysis was performed
using a two-sample t test with a Benjamini-Hochberg FDR correction.
#*EDR-corrected P < 0.001. Figure S4. MS/MS count and peptide distribution
of protein S-Fe9_GL0178463. The number of identified MS/MS and peptides
for each sample was shown in the bar chart. The yellow box highlighted the
samples with peptide identification only by matching instead of by MS/MS.
(DOCX 583 kb)
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