Ning and Beiko Microbiome (2015) 3:47
DOI 10.1186/s40168-015-0114-5

(ii) Microbiome

RESEARCH Open Access

Phylogenetic approaches to microbial

community classification

Jie Ning and Robert G. Beiko”

@ CrossMark

Abstract

models and predictions.

Background: The microbiota from different body sites are dominated by different major groups of microbes, but
the variations within a body site such as the mouth can be more subtle. Accurate predictive models can serve

as useful tools for distinguishing sub-sites and understanding key organisms and their roles and can highlight
deviations from expected distributions of microbes. Good classification depends on choosing the right combination
of classifier, feature representation, and learning model. Machine-learning procedures have been used in the past
for supervised classification, but increased attention to feature representation and selection may produce better

Results: We focused our attention on the classification of nine oral sites and dental plaque in particular, using data
collected from the Human Microbiome Project. A key focus of our representations was the use of phylogenetic
information, both as the basis for custom kernels and as a way to represent sets of microbes to the classifier. We
also used the PICRUSt software, which draws on phylogenetic relationships to predict molecular functions and

to generate additional features for the classifier. Custom kernels based on the UniFrac measure of community

dissimilarity did not improve performance. However, feature representation was vital to classification accuracy, with

microbial clade and function representations providing useful information to the classifier; combining the two types
of features did not yield increased prediction accuracy. Many of the best-performing clades and functions had clear
associations with oral microflora.

Conclusions: The classification of oral microbiota remains a challenging problem; our best accuracy on the plaque

dataset was approximately 81 %. Perfect accuracy may be unattainable due to the close proximity of the sites and
intra-individual variation. However, further exploration of the space of both classifiers and feature representations is

likely to increase the accuracy of predictive models.

phylogenetic prediction

Keywords: Human microbiome, Support vector machine, Feature selection, Phylogenetic kernel, Functional and

Background

Marker-gene profiles of human microbiota can provide a
detailed view of microbial diversity across many body
sites [1]. Body sites typically show very distinctive
profiles; for example, healthy human gut samples are
dominated by Bacteroidetes and Firmicutes, while skin
samples tend to be much richer in Actinobacteria and
other groups [2—4]. Clustering and ordination approa-
ches such as principal coordinates analysis (PCoA) can
illustrate the differences among different classes of body
site [5, 6]. Similarly, many medical conditions are
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associated with dysbiosis, which is readily detectible
through changes in the diversity or composition of
human-associated microbes [4, 7-10]. Distinguishing
samples within a site, such as on the skin (e.g., volar
forearm, plantar, foot) or in the oral cavity (e.g., plaque,
throat, saliva) is often more difficult [11-14]. Under-
standing these finer-grained degrees of variation is critical
for building models of healthy microbiota. Models that
conflate different sites, or fail to distinguish successional
patterns, may not be as sensitive in the detection of, for
example, the transition from a healthy to diseased state.
The similarity of sites can be understood in a meta-
community framework [15] as a combination of selective
factors and proximity. From a selective point of view,
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similar environmental conditions such as site pH, oxy-
gen availability, or adhesion potential may support the
growth of taxonomically similar sets of bacteria [16, 17].
Geographic proximity can support mass-effect models
where microbes from one site are transferred to another
via migration processes. Examples of these processes can
include skin-to-skin contact within or between individ-
uals [18] and the transfer of microbes within the oral
cavity due to direct contact and salivary mixing [17, 19].
The oral microbiome provides a particularly interesting
test case for the classification of biodiversity, for several
reasons. First, many ecologically distinct sites including
different types of plaque, different surfaces, and saliva
are found in close proximity [12, 20]. The oral habitat is
highly variable with frequent inputs of nutrients, often
followed by mechanical removal of the biofilm (e.g., via
tooth brushing). The oral microbiome is also subject to
well-characterized successional patterns [12] and fre-
quently transitions to a diseased state [7, 21].

Unsupervised approaches such as ordination and clus-
tering build associations from the most salient patterns
of variation in a dataset; these primary patterns may or
may not correlate with the features of interest [1]. By
contrast, supervised classification approaches use know-
ledge of features to train models that can draw on any
pattern of co-variation in the data [22, 23] and may
perform better than unsupervised approaches when
between-sub-site variation is small. Supervised approa-
ches have previously been used to classify human
microbiota [22, 24-26], using species or operational
taxonomic units (OTUs) to distinguish different types of
samples. However, microbiome data are typically high-
dimensional, with potentially thousands of OTUs ob-
served in each sample. Feature selection aims to identify
a subset of all features that are most promising for clas-
sification, thereby eliminating uninformative features
and decreasing the running time for the classifier [27].
Even when the accuracy of a classifier is not substantially
improved, feature selection can still reveal key species or
molecular functions of particular biological interest, be-
cause only the set of features that are most useful to
classification (typically a very small subset of all features)
is retained.

Supervised methods are effective for many classification
problems; however, many previous studies took all oral
samples as one class and tried to distinguish them from
microbes from body sites such as skin or gut [22, 24]. One
area of potential improvement is the augmentation of gen-
eric machine-learning techniques with biological and evo-
lutionary insights. For example, support vector machines
(SVMs) can base their classifications on customized simi-
larity values between samples from the same or different
body sites; distances such as UniFrac [28-30] can be
informed by phylogenetic relationships among species or
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OTUs. Similarly, the use of OTUs in classification builds
on an assumption that groups of closely related organisms
can be treated as functional or ecologically cohesive units.
This assumption may be violated by strain-level variation
and conversely may apply to aggregations of clades that
are broader than a single OTU, which again suggests a
phylogenetic approach. Finally, the recently developed
PICRUSt [31] algorithm can map taxonomic samples
to functional profiles, based on known gene reper-
toires of closely related organisms: although less in-
formative than shotgun metagenomic sequencing,
such functional-prediction approaches may be more
informative than taxonomic ones if key functions are
decoupled from phylogenetic similarity due to processes
such as lateral gene transfer and convergence. Transferred
functions can become characteristic traits of phylogenetic-
ally distinct lineages [32] and PICRUSt can potentially
identify sets of clades whose similarities are functional ra-
ther than phylogenetic. Some of these approaches yield
significant increases in classification accuracy, while fea-
ture selection highlights key phylogenetic and functional
features. We have implemented these ideas in a machine-
learning framework and used oral microbiome samples
from the Human Microbiome Project [33] as a challen-
ging test case.

Methods

Dataset and sequence preprocessing

We obtained the oral microbiome marker-gene dataset
from the Human Microbiome Project Data Analysis and
Coordination Center (HMP DACC) [34] in February
2014. The oral dataset was originally collected from 242
volunteers ranging from 18 to 40 years old and included
samples from nine sites within the oral cavity: saliva,
supragingival and subgingival plaque (plaque above and
below the gingival margin), tongue dorsum (top surface
of the tongue), hard palate (roof of the mouth), buccal
mucosa (inside lining of the cheek), attached keratinized
gingiva (gums covering the jaw bones), and palatine ton-
sils (sides at the back of the throat) (see Additional file 1
drawn by SitePainter [35]). Sequences in this reference
dataset included amplified regions of the V1-V3 and
V3-V5 regions of the 16S rRNA gene (Additional file 2),
although there were more sequences associated with the
V3-V5 region (Table 1). In initial trials, we found that
the V3-V5 region gave accuracy scores between 5 and
10 % higher than V1-V3, and focused on the better-
performing region in the rest of this work.

The pre-processed dataset with barcode and primer
sequences removed was obtained directly from the HMP
DACC (see Table 1 for summary statistics). All samples
were processed using QIIME version 1.8.0 [36]. Se-
quences were clustered into OTUs at 97 % similarity
through UCLUST version 1.2.22q [37], using a closed-
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Table 1 Details of human oral cavity samples from HMP, with associated abbreviations
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Sub-sites Acronym Samples OTUs Segs/sample (mean + sd) OTUs/sample (mean =+ sd)
Saliva SAL 281 6166 8596 + 6034 521+183
Attached keratinized gingiva GING 304 3741 8998 + 5756 3134105
Buccal mucosa BUCC 301 5370 9465 + 10,268 447 + 166
Hard palate HPAL 300 5848 8935+ 6575 441 £ 154
Palatine tonsils PTON 304 5339 9586 + 7247 448 + 146
Throat THRO 301 6278 9053 +7233 422 +147
Tongue dorsum TONG 305 4400 10,351 £10,450 398+129
Subgingival plague SUB 301 5782 9877 £ 5926 495+ 147
Supragingival plaque SUPRA 305 5277 10413 £ 6564 497 +£152

reference  OTU-picking strategy with GreenGenes
(gg_13_08) as our reference database [38]. The resulting
table contained the counts of each identified OTU in
each sample. To account for disparities in OTU counts
in different samples, we converted raw counts to propor-
tions for each sample. Each of the nine oral cavity sites
was used as the attribute label to be predicted, with rela-
tive OTU abundance as the potential predictors or fea-
tures. The relative abundance was scaled such that the
largest value in each sample was set to 1.0.

Phylogenetic beta diversity

Sequences were aligned using QIIME’s default alignment
method PyNAST version 1.2.2q [39], which implements
the NAST alignment algorithm in Python. Sequences
with alignment length <150 nucleotides or <75 % iden-
tity with the reference dataset were removed. A phylo-
genetic tree of OTUs was generated from the sequence
alignment using FastTree version 2.1.3q [40]. Trees were
visualized with ETE version 2.1 [41].

We used 14 non-phylogenetic and phylogenetic beta-
diversity metrics to calculate the distance between each
pair of samples with QIIME. To visualize the dissimi-
larity of the samples, PCoA was performed to visualize
clusters of samples in a low-dimensional space. We also
used the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) approach to build hierarchical clusters
that the group samples by their similarity.

Feature representation and selection

OTUs can be useful entities for classifying microbial
communities, but a strict OTU-based approach cannot
directly use phylogenetically cohesive subsets of lineages
within an OTU, or groups of OTUs, as predictors. To
address this limitation, we developed a clade-based ap-
proach to feature generation (Fig. 1). In the original
phylogenetic tree, which was rooted on the branch from
Archaea to Bacteria, each of the leaves is a single OTU.
Any set of two or more OTUs that constitutes a clade in
the tree can also be represented as a feature, with the

relative abundance of this group expressed as the sum of
the frequencies of its constituent OTUs. The script to
produce clade-abundance features can be found in
Additional file 3. Since the number of non-leaf clades is
equal to the number of internal nodes in the phylo-
genetic tree, this clade-based approach can generate a
total of /-2 features, where / is the number of leaves in
the tree, if the uninformative root clade that includes all
OTUs is ignored.

In addition to phylogenetic features such as taxon and
clade abundance, we also generated functional predic-
tions to use as input features. PICRUSt is a tool that can
predict the functional repertoire of genomes associated
with environmental sequences by mapping the content
of closely related sequenced genomes. We used PICRUSt
1.0.0 to predict functions based on the previously con-
structed OTU tree to predict the functional trait abun-
dance. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology group descriptions [42] were used as
the basis for functional predictions. As we did with
OTUs, function counts were set to a maximum of 1.0 in
each sample. We used the nearest sequenced taxon
index (NSTI) of PICRUSt to estimate the reliability of
functional predictions. NSTI sums all the branch lengths
separating each OTU and its respective nearest sequenced

G H

Fig. 1 Generation of clade-based features. Each clade in the tree
corresponds to a feature in the data set; for example, the darkest

box encompasses OTUs A and B
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genome, weighting for the relative abundance of each
OTU in the community. Community members that have
no close sequenced relatives will make a larger contribu-
tion to the NSTI score and have predictions that are in
general less reliable.

Taxonomic and functional mapping generated thou-
sands of features, many of which are likely to be unin-
formative, and in aggregate, can reduce the speed and
accuracy of SVM training. Although some species ap-
pear in only a small number of samples, rare features
may nonetheless be useful for classification and should
not be removed by default. We used feature selection to
accelerate learning by removing uninformative OTUs.
Among the multitude of available feature selection tech-
niques, we used two types of approach: filter methods,
which consider the usefulness of features (often one at a
time) based on their apparent relevance to the classifica-
tion problem, and wrapper methods, which assess fea-
tures by quantifying their effect on the accuracy of a
trained model. The filter methods used were information
gain, which ranks the features based on the amount of
predictive information obtained from the presence or
absence of a term [43] and the chi-square (X?) statistic,
which quantifies the extent of correspondence between a
feature and the class label [44]. Filter methods are fast
and suitable for problems of high dimensionality but are
independent from classifiers and often ignore interac-
tions between features. We also considered random for-
est (RF) feature permutation [45] as a wrapper method.
In this approach, variables were ranked based on the ef-
fect of randomizing their values between the categories
to be predicted. In the context of a trained RF classifier,
randomizing a useful variable would lead to a significant
drop in accuracy, whereas a similar procedure on an un-
informative variable would have no effect. Although
OTUs with strong marginal effects (i.e., those that have
good predictive power independent of any other vari-
ables) should be identified by all three approaches, useful
combinations of variables might be highlighted by the
RF approach.

Classification using SVMs

SVMs have been widely used in various applications
since their introduction by Cortes and Vapnik in 1995
[46]. SVMs are model-based classification methods that
try to maximize the width of a decision boundary be-
tween categories. This decision boundary or hyperplane
is typically defined by a small number of boundary cases
(the support vectors) with relatively small distances to
cases of the other type. A key attribute of SVMs is their
ability to accept any similarity values that satisfy a set of
constraints; the “kernel trick” allows mapping of cases
into a higher-dimensional space where the linear SVM
classifier can perform well.
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Classification was performed using the LIBSVM
package [47]. We chose the generic one-parameter ra-
dial basis function (RBF) kernel for classification. To
pick the best combination of kernel width y and error
penalty parameter C, a grid search using every combin-
ation of C and y was done (finite sets of attempt values
for C = [log, -5 log, 15 y = [log, -15 log, 3. A fivefold
cross-validation approach was adopted to evaluate the
classification models. This cross-validation procedure was
repeated 100 times for each trial, each time using a dif-
ferent random number seed, in order to generate distribu-
tions of accuracy scores.

Generic polynomial and radial basis function kernels
are widely used, but custom kernels that incorporate
biological insights can be useful as well. For example,
alignment-based kernels improved SVM performance in
subcellular protein localization prediction [48, 49]. Since
phylogenetic distance is an effective measure in the
comparison of microbial communities, we developed a
custom kernel based on the weighted and unweighted
UniFrac distances. We also constructed several non-
phylogenetic beta-diversity kernels including Bray-Curtis
and Euclidean distance (Additional file 4). Since beta-
diversity expresses the dissimilarity between each pair of
samples, we subtracted each such value from 1.0 in
order to generate similarity values for the SVM classifier.
These similarity scores were combined with several dif-
ferent OTU table preprocessing approaches, including
raw OTU count, relative abundance, rarified counts
from 500 to 3000 per samples, and cumulative sum scal-
ing (CSS) normalization [50].

Although our focus was on SVMs, we also considered
two other supervised classification methods, SourceTracker
[23] and RF. SourceTracker is a Bayesian approach that as-
signs probabilities that a given sample is derived from each
of a set of environment types. By calculating the posterior
probability of each source environment assignment with
Gibbs sampling, SourceTracker gives probabilities of where
a sink sample came from. We used SourceTracker version
0.9.5 software as implemented in QIIME with default set-
tings. Analogous to fivefold cross-validation, the set of
samples was divided into five subsets: one subset was used
as sink samples while the other four are source samples.
We repeated this process five times with different cross-
validation subsampling. RFs, first introduced in 2001 [51],
are an ensemble method merging decision trees with
voting schemes. Each decision tree is constructed based on
M (mtry) randomly chosen features from the input dataset.
The prediction of every sample is determined by the ma-
jority vote of all these decision trees. RF classifiers are
popular both for feature selection and classification and
were found by Knights et al. [22] to perform well on
several test datasets. RF classification was implemented
with scikit-learn 0.15 [52].
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Results and discussion

OTU diversity across nine oral cavity sites

A total of 2706 human oral cavity samples from nine
oral sites were collected from the HMP database. The
samples covered the V3-V5 region of the 16S rRNA
gene (Table 1, Additional file 2). All sites had at least
281 associated samples. The total OTU richness across
all samples of a given site varied from a minimum of
3741 (attached keratinized gingiva) to over 6000 (saliva
and throat). The average number of sequences per
sample ranged from approximately 8500 to 11,500,
although the variation within each site was high.

Classification of all oral cavity sites

We generated PCoA plots based on unweighted UniFrac
distances between samples to visualize the separation of
points between the nine sample types (Fig. 2a). The first
two principal coordinates explain 15.07 % of the total
variance in the data set and do not provide clear separ-
ation of any of the nine sample types. Clustering pat-
terns are nonetheless visible in the figure; in particular,
the supragingival and subgingival plaque samples consti-
tute a group that is largely separate from the other
sample types. The other seven sample types occupy one
large cluster, but none of these is uniformly distributed
throughout the cluster: for example, the attached kerati-
nized gingival samples tend to have negative values in
principal coordinate one and near-zero values in princi-
pal coordinate two.

We performed SVM classification using an RBF kernel
on all 2702 oral cavity samples. The cross-validated clas-
sification accuracy with respect to the sample type label
was 69.73 %. The confusion matrix (Fig. 3a), which
shows the frequency with which samples of a given type
were correctly classified or misclassified to another cat-
egory, shows a non-random pattern of misclassification.
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Of the nine oral cavity sites, saliva and tongue dorsum
were classified with the highest accuracy (87.2 and
84.4 %, respectively), while samples from the palatine
tonsils and throat were correctly classified less than
45 % of the time. We identified four natural groupings
of the sites based on these patterns. Ninety percent of
the samples from the attached keratinized gingiva, buc-
cal mucosa, and hard palate group were most often
classified within the same group, which we define as
“back of the mouth”; the misclassification of 12.5 % of
hard palate samples to the throat represents the only
major confusion between this group and any other. Con-
sistent with the separation seen in Fig. 2a, 98.6 % of the
subgingival and supragingival plaque samples are classi-
fied as one of these two sites. The samples from the
throat, palatine tonsils, and tongue dorsum constitute
another group responsible for 85.4 % of all classifica-
tions, although the throat and tonsils are also conflated
with the hard palate and buccal mucosa. Finally, the
salivary samples are not misclassified as any other site at
a rate higher than 3.6 %. In general, these four groups
consist of sites that are proximal in the mouth, corre-
sponding roughly to gums (attached keratinized gingiva,
buccal mucosa, and hard palate), plaque (supragingival
and subgingival plaque), back of the mouth (throat,
palatine tonsils, and tongue dorsum), and saliva. Because
of the gag reflex, collecting samples from throat is the
most difficult work among the nine sites. Samples are
easy to be contaminated during the depressor getting
back from throat, so throat samples may be mixed with
hard palate microbes [53].

Recoloring sample points in the original PCoA plot to
reflect the four groups (Fig. 2b) shows the clearer dis-
tinction among sites, albeit still with a substantial
amount of overlap among all but the plaque group. The
nine sites were recoded into their four constituent

PC2-6.47%

PTON o SUB
o THRO SUPRA
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Fig. 2 Principal coordinates analysis of nine oral cavity sites. The same data set is shown with all nine oral cavity sites (a) and four clustered
groups (b) as labels. Distances were computed using the unweighted UniFrac distance
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PC1-8.62%
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Predicted Class

Actual
Class

A SUPRA PTON THRO TONG
0.007

0.014 0.008 0.011 0.009

0.007 0.006 0.020 0.125 0.037

0.008

0.213

0.183

THRO

0.011

0.029

0.167

TONG _ 0.013
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Predicted Class

Actual
Class

Saliva

Saliva

Plaque

B-mouth

0.029

0.101

Plaque

0.025

B-mouth

0.052

0.229

Fig. 3 Confusion matrix of nine-way oral site classification. Rows indicate the correct label for each sample, while columns indicate the label predicted
by the classifier. Each cell indicates the number of samples of a given type classified to each sample type. The classification pattemns of all nine classes

(@) and a recoding into four classes (b) are shown

categories and once again classified using an SVM with
the RBF kernel (Fig. 3b). The classification accuracy of
plaque samples is 96.9 %, as compared with 73.2 % ac-
curacy for saliva, 87.0 % for gums, and 92.3 % for the
back of the mouth. Since the plaque samples were well
separated from the other groups, but difficult to distin-
guish based on the confusion matrix in Fig. 3a, we chose
to focus on this two-class problem in order to try and
improve the classification accuracy for a challenging
subset of sites.

Distinguishing plaque samples using taxonomic
information

Studies culturing the microbial communities in hard
plaque detected taxonomic differences between these
two sites [12]; one key observation was that aerobic bac-
teria were more abundant in the supragingival than the
subgingival plaque [54]. PICRUSt demonstrated similar
results by predicting more metabolic citrate cycle genes
in the supragingival plaque [31]. However, these re-
ported trends do not completely distinguish the two
sites, and although plaque samples are clearly isolated
from other sites in the PCoA plot, the similar flora
within plaque makes it difficult to distinguish the supra-
gingival from the subgingival samples [55, 56]. A binary
classification of the subgingival and supragingival sam-
ples without any feature selection was performed using

an SVM trained with an RBF kernel. A total of 7048
OTUs was included in the model (Additional file 5),
which achieved a cross-validated accuracy of 76.2 %
(Table 2). All three feature-selection methods yielded
higher classification accuracy, with information gain and
chi-square yielding maximum accuracy scores of 77.9 %
with 60 features and 77.7 % with 50 features, res-
pectively, and RF feature permutation showing the best
performance with an accuracy of 79.8 % on only 20 fea-
tures. It appears that the feature permutation-based
wrapper approach is able to identify features that are
complementary, while a straight ranking of features
using the filter approaches miss many of these com-
plementary features that may have lower marginal per-
formance. The performance of RF feature permutation is
highest with 10-20 features, and performance drops off
to a level more consistent with the filter methods as
more features are added.

SVM with custom beta-diversity kernels

We developed custom kernels based on 14 different
beta-diversity measures that express the similarity be-
tween all pairs of samples. The hypothesis underlying
the use of these kernels is that similarity scores based on
ecological similarity measures will outperform a naive
RBF kernel, especially when these measures are based
on information not available to the classifier (for
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Table 2 Accuracy of SVM classifiers trained with different combinations of input features

Cross-validation accuracy (number of features)

Type of input features Without feature selection

With feature selection

Info_Gain Chi-square Feat_Perm
(i) OTU 0.762 (7048) 0.779 (60) 0.777 (50) 0.798 (20)
(i) Clade 0.738 (14,402) 0.802 (110) 0.800 (170) 0.802 (100)
(iii) Function 0.761 (6191) 0.762 (120) 0.754 (100) 0.761 (60)
(iv) Hybrid 0.777 (1556/1518) 0.804 (92/78) 0.805 (68/62) 0.805 (28/22)

The initial numbers show the accuracy score, with numbers in parentheses indicating the total number of features used to train and test the classifier. The four
types of input features used were (i) OTUs only, (i) OTUs and clades comprising related sets of OTUs, (jii) functional predictions made using PICRUSt, and (iv) a
dataset comprising all generated features. Feature selection techniques used were the filter methods, information gain and chi-square, and the feature permutation

wrapper method

example, phylogenetic information in the case of
UniFrac). The performance of SVMs with different custom
kernels and OTU table preprocessing approaches is given
in Additional file 4. Colors are consistent with [5], which
identified subsets of beta-diversity measures that gave
highly correlated predictions. Phylogenetic measures did
not yield improved accuracy relative to non-phylogenetic
measures: for example, the widely used unweighted and
weighted UniFrac measures yielded 74.4 and 73.7 % accur-
acy. The Canberra distance, recommended by Kuczinski et
al. [57], yielded an accuracy score of 76.5 %, an improve-
ment on UniFrac but still worse than using OTU abun-
dance with an RBF kernel. For the OTU tables used in
calculating distance, we pre-processed them with four dif-
ferent methods. CSS normalization was able to separate
different samples well, especially for Euclidean distance.
OTU table rarefaction produced the lowest score and
largest deviation. Although many types of microbial sam-
ples cluster well based on beta-diversity measures such as
Bray-Curtis or UniFrac, this is clearly not the case with
the two types of plaque. A possible reason for the dis-
crepancy between RBF and our custom kernels is the
optimization of the gamma parameter of the radial basis
function in the SVM grid search, whereas none of the 14
beta-diversity measures have a free parameter that can
similarly be optimized.

Classification with clade-abundance features

Since the beta-diversity custom kernels did not improve
the classification accuracy, we used the generic RBF
kernel in all subsequent trials. We next augmented the
OTU table with relative abundance information about
clades that contain multiple OTUs, to determine whe-
ther explicit specification of relationships among OTUs
might lead to better prediction accuracy. Fifty-two OTUs
were lost because their corresponding sequences failed
the PyNast quality control filters, leaving a total of 6996
OTUs. To this set, we added 6994 clades, corresponding
to all internal nodes in the reference tree, minus the
uninformative root node which always has a relative
abundance of 1.0. The classification accuracy obtained

without feature selection was less than that obtained
from the OTU table without clade information (73.8 vs.
76.2 %). While the OTU + clade table has almost twice
as many features than the OTU abundance table alone
and includes over 99 % of the original OTUs (Additional
file 6), it appears that the higher dimensionality of the
data confounds the SVM classifier, making it more dif-
ficult to build an accurate model. However, applying
feature selection as above gave at least 80 % accuracy
(Table 2). As was observed previously with the OTU
table, the filter methods required more features to
achieve their maximum classification accuracy (110 and
170 for information gain and chi-square versus 100 fea-
tures for RF approach). Figure 4 shows the performance
of classifiers with different numbers of features. Informa-
tion gain (Fig. 4a) and chi-square (Fig. 4b) had similar
performance: the accuracy of OTU abundance varied be-
tween 76 and 78 % with different numbers of features.
However, clade abundance gave accuracy scores that
were often in excess of 80 %. Both OTU and clade abun-
dance can classify samples well with a small number of
RF-ranked features (Fig. 4c), but with the number of fea-
tures increasing, the performance of OTU abundance
worsened whereas clade abundance kept working well. It
appears that explicitly modeling the phylogenetic cor-
relations between OTUs allows the filter methods to
exploit the interactions that were previously accessible
only to the wrapper method.

The phylogenetic mappings and corresponding Green-
Genes taxonomic classifications of OTUs are shown in
Fig. 5a (Additional file 7). The subgingival plaque samples
tended to have higher proportions of Bacteroidetes (sub:
0.254 vs supra: 0.191), Fusobacteria (0.172 vs 0.118), and
Spirochaetes (0.029 vs 0.006), whereas Actinobacteria
(0.175 vs 0.247) and Proteobacteria (0.151 vs 0.215) are
more abundant in the supragingival plaque. Firmicutes
had similar abundance in both types of site (0.213 vs
0.220); however, at the class level, Bacilli (0.110 vs 0.148)
and Clostridia (0.103 vs 0.071) showed larger deviations.

We then highlighted the optimal features that were
selected by each method in the phylogenetic tree. The
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filter methods, information gain (Fig. 5b), and chi-square  and Clostridia clades that were not chosen by the infor-
(Fig. 5¢) chose similar clades including a large clade mation gain criterion. By contrast, the RF feature permu-
within Bacteroidetes and smaller groupings within tation approach, which included the fewest features in its
Firmicutes and Fusobacteria. The chi-square approach optimal set, selected a greater diversity of features (Fig. 5d).
chose the largest number of features, including Spirochaetes  This set of features included unique clades of Firmicutes
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Fig. 5 Phylogenetic mapping of top-ranked clade and OTU features. a Reference tree comprising all observed oral site OTUs, with branch lengths
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and Actinobacteria that were not identified by the infor-
mation gain or chi-square approaches. For all three feature
selection methods, near-optimal classification accuracy
was obtained for many different numbers of selected fea-
tures, suggesting that some of the highlighted clades in
Fig. 5 may not be important for classification purposes.
Nonetheless, the higher variety of features selected by the
RF feature permutation approach shows the value of test-
ing combinations of features during the selection process.

Classification based on predicted functional profiles

The PICRUSt software allows the prediction of func-
tional gene complements in microbial samples that have
been characterized with marker genes such as 16S. We
used these predictions as the basis for classification: if
the functional capacity of microbes in a system is more
important than their specific taxonomic affiliations, then
a function-based approach to classification may yield
higher accuracy. PICRUSt uses phylogenetic information
to make its predictions, and thus functional information
will be highly correlated with the OTU and clade data.
However, since phylogenetically distant lineages can
share common functional features, the predictions made
by PICRUSt may identify functional similarities between
OTUs that belong to different high-level taxonomic
groups such as classes and phyla. Thus, the predictions
made by PICRUSt are not completely redundant with
the OTU and clade features considered in this work.

To measure the reliability of the functional predictions,
we calculated the NSTI values for each sample (mean
NSTI=0.04+0.01 sd). This is similar to the values re-
ported for HMP samples (mean NSTI=0.03+0.02 sd),
which were generally well predicted by PICRUSt, as com-
pared with 0.23 + 0.07 for a less well-predicted hypersaline
community. A total of 6191 KEGG orthologs, which in-
corporate functional predictions in addition to homology
information, were used as input features to an SVM with
an RBF kernel as performed above (Additional file 8). The
cross-validated accuracy of the model trained with all fea-
tures was 76.1 %, very similar to the value obtained with
the corresponding OTU abundance model. These ob-
servations are consistent with those of Xu et al. [58],
who found that taxonomy alone was sufficient to
model microbial community structure. Functional fea-
tures are still useful for predictive purposes, but their
failure to improve classification accuracy may be at-
tributable to several factors. It may be that the crucial
functions are not well annotated by KEGG, because
of misannotations or a failure to assign to any mean-
ingful functional category. The granularity of KEGG
functional attributions and the presence of irrelevant
features may also impede the discovery of important
predictive attributes.
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Since both function and taxonomy yield similar classi-
fication accuracy, combinations of the two types of fea-
ture may further improve accuracy if they contain
complementary information. To assess the performance
of classifiers based on combined clade and functional in-
formation, we performed feature selection on a hybrid
data set containing features of both types. The results of
feature selection and classification are shown in Table 2.
The accuracy obtained from all three types of feature se-
lection was 80.4—80.5 %, and the RF feature permutation
approach yielded a maximum accuracy score with only
28 clade-based and 22 functional features. The small im-
provement in accuracy of the hybrid approach relative to
clade-based classification alone (Table 2, Fig. 4) suggests
that the functional features do not provide much useful
complementary information to taxonomy: the increase
of 0.3 % relative to previous wrapper-based results corre-
sponds to only a few additional correctly classified cases.
However, the small number of selected clade-based and
functional features that yield these accuracy scores allow us
to focus on the key attributes that distinguish the two types
of plaque. To focus on a smaller set of features, we defined
groups of features with high correlations (Spearman r > 0.5)
and chose only the highest-ranking or primary feature
from each group, thus preserving relevance while reducing
feature redundancy. SVMs built from the top ten features
showed slightly reduced accuracy in comparison with the
overall performance of clade and hybrid features but dem-
onstrated the central importance of a very small number
of features (Fig. 6). Intriguingly, a number of samples were
correctly classified when the single best feature (a clade of
Streptococcus) was used but incorrectly classified when
one or more additional features were included.

Three of the top ten groups of features included only
functional features (KOs), while the other seven included
at least one taxonomic and one functional feature
(Additional file 9). Two groups, including the group
ranked first in feature selection, were restricted to
Streptococcus, with several clades in this group restricted
to the opportunistic pathogen Streptococcus anginosus.
Two additional groups included other clades of Strepto-
coccus, underscoring the importance of different members
of this genus in the oral cavity. Although Streptococcus is
typically a more significant component of supragingival
plaque, consistent with its facultative anaerobic lifestyle,
three of the Streptococcus-containing groups were over-
represented in subgingival plaque, while the fourth was
50 % more abundant in supragingival plaque. This finding
suggests that the most common types of Streptococcus
may not be the best discriminators between the two types
of plaque. Other selected groups of features were broader
in their taxonomic distributions, although some of these
groups included genera such as Prevotella, Fusobacterium,
and Dialister. The second-ranked group included eight
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genera (including Streptococcus) as well as a number of
higher clades, which suggests a set of co-occurring and
possibly interacting bacteria that are characteristic of sub-
gingival plaque.

The best feature group included a single functional
class, sagA, which encodes the basic structural unit of
Streptolysin S (SLS). Bacteria such as Streptococcus pyo-
genes use SLS to lyse host cells and acquire iron [59, 60].
By its strong correlation with the primary feature in
group 1 (Spearman r = 0.97, p < 10~>*°), this function ap-
pears to be strongly associated with subgingival plaque.
Functions that were either the primary feature for their
group or had the best correlation with the primary fea-
ture of their group included a beta-lactam resistance
protein, overrepresented in subgingival plaque: strepto-
kinase, which can aid the spread of Streptococcus infec-
tion through cleavage of fibrils [61]; proteins involved in
resistance to tellurium and vancomycin; and a type IV
secretion system component. Although many of the im-
plicated functions relate to host-microbial interactions,
we found no clear, strong connections to aerobic or
anaerobic lifestyles.

Comparison with other supervised learning methods

RFs were also implemented with sets of 10 to 200
features ranked highly by the three feature selection
methods. The running time of SourceTracker was much
higher, and we considered only the entire set of features
when testing its performance. For the RF model, the
lowest and highest accuracies were respectively achieved
by functional abundance and hybridization features, con-
sistent with the SVM results (Additional file 10). OTU
and clade representations had similar performance when
features were ranked by information gain (Additional
file 10A) and chi-square (Additional file 10B), but clade

abundance had improved accuracy when RF feature
permutation (Additional file 10C) was used to rank fea-
tures. SourceTracker is able to estimate the proportion
of possible sources for each sample; the source with the
largest associated probability was used as the final pre-
diction. SourceTracker models trained on OTU features
outperformed all other representations, suggesting that re-
dundant features impeded the accuracy of the classifier.

Both SourceTracker and RF had a similar performance
on the plaque datasets, with a classification accuracy
between 75 and 78 % when OTU abundance features
were used. However, the three methods correctly classi-
fied overlapping but non-identical subsets of all plaque
samples. Additional file 11 compares the classification of
all samples for each pairwise combination of methods.
The plots show all three methods had consistent pre-
dictions for most of the samples, but a small subset of
samples were consistently correctly predicted by one ap-
proach and incorrectly predicted by the other. This pat-
tern suggests that “ensemble” methods which combine
the predictions of multiple classifiers may be able to out-
perform individual classifiers.

Conclusions

A primary objective of machine learning is to train
models that can distinguish classes of entities, in this
case, microbial samples encoded as OTU tables, with a
high accuracy. In our examination of oral cavity samples,
the best test set accuracy scores we have obtained are on
the order of 80-81 %, which demonstrates useful learn-
ing but is of little value for diagnostic applications and is
probably not suitable as a reference model for compari-
son with diseased states, for example, unless it is satis-
factory to use both plaque types as a single reference
group. Previous authors have tested many different
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machine-learning algorithms on reference data sets
[22, 24-26, 58]; our exclusive focus here on SVMs
allowed us to consider different encodings of the input
data and biologically inspired kernels in detail. Of the
modifications we tried, clade-based representations gave
the largest increase in performance. Although the combi-
nations of OTUs that constituted clades could in principle
be discovered by the classifier, it is clear that explicit clade
representations yielded some advantage in both feature se-
lection and classification. Selected clades contained genera
known to be important in the human oral cavity, in par-
ticular Streptococcus. Our predictive approach to function
did not improve the accuracy of our classifiers, in spite of
the potential for PICRUS to identify functional as well as
phylogenetic connections between OTUs and clades. It
may be that shotgun metagenome sequencing, which gen-
erates accurate information about even those genes that
are frequently transferred, may yield a higher predictive
accuracy.

Why did we not obtain higher accuracy scores? Previ-
ous work suggests that a different choice of classifier or
data encoding may yield higher classification accuracy;
clearly, further work is needed to explore this question,
and there is a multitude of different approaches that can
be applied to the data. Changing the definition and infer-
ence of OTUs may improve performance as well: in par-
ticular, changing the OTU threshold from 97 to 99 %
would highlight finer-scale differences in abundance, for
example, differences that may manifest only at or below
the species level. In this work, we used closed-reference
OTU picking because it maps sampled sequences to
reference groups that are defined prior to the analysis.
However, closed-reference picking discards any sequen-
ces that do not map to existing OTUs at the required
level of sequence similarity, a phenomenon that is espe-
cially acute at higher thresholds such as 99 %. An ap-
proach that combines closed-reference and de novo
OTU generation would likely be ideal but requires that
new OTUs be comparable between samples and across
studies. An alternative would be to use methods that
modify the OTU definition or dispense with it altogether
such as SWARM [62] or approaches that compare ob-
served sequences across multiple samples [63].

In the case of oral samples, and gingival samples in
particular, complete separation (i.e., 100 % classification
accuracy) may not be achievable, for several reasons.
Chief among these is the physical proximity of the
supragingival and subgingival plaque. Although the two
sites are different in terms of nutrient and oxygen avail-
ability, among other factors, some amount of mixing is
inevitable due to mass effects, even if microbes from one
site are not viable in the other. Sample misidentification
may also contribute to diminished classification; indeed,
this was one identified use of SourceTracker. However,
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we expect the impact of misidentified samples to be very
low, for two reasons: first, the HMP followed very strict
protocols regarding the collection and handling of sam-
ples; second, the overlapping of sample types we see in
Fig. 2 suggests a gradient of diversity from one sample
type to the others, rather than a few scattered outliers
that might be indicative of misclassified samples. It is
also unlikely that there is a single type of “healthy” sub-
gingival and supragingival microbial community, which
would impede the ability of a classifier to learn a single,
general model of classification.
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