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Abstract

Background: Recent work indicates that the airways of persons with cystic fibrosis (CF) typically harbor complex
bacterial communities. However, the day-to-day stability of these communities is unknown. Further, airway community
dynamics during the days corresponding to the onset of symptoms of respiratory exacerbation have not been studied.

Results: Using 16S rRNA amplicon sequencing of 95 daily sputum specimens collected from four adults with CF,
we observed varying degrees of day-to-day stability in airway bacterial community structures during periods of
clinical stability. Differences were observed between study subjects with respect to the degree of community
changes at the onset of exacerbation. Decreases in the relative abundance of dominant taxa were observed in
three subjects at exacerbation. We observed no relationship between total bacterial load and clinical status and
detected no viruses by multiplex PCR.

Conclusion: CF airway microbial communities are relatively stable during periods of clinical stability. Changes in
microbial community structure are associated with some, but not all, pulmonary exacerbations, supporting previous
observations suggesting that distinct types of exacerbations occur in CF. Decreased abundance of species that are
dominant at baseline suggests a role for less abundant taxa in some exacerbations. Daily sampling revealed
patterns of change in microbial community structures that may prove useful in the prediction and management
of CF pulmonary exacerbations.
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Background
Chronic pulmonary infection and inflammation culmin-
ating in respiratory failure is the primary cause of death
in people with cystic fibrosis (CF). Studies employing
culture-independent analyses have shown that CF air-
ways typically harbor complex microbial communities
comprised of numerous bacterial species, particularly
during the early and intermediate stages of lung disease
[1-9]. While these studies have made important contri-
butions toward understanding the dynamics of these
communities, they have been limited by cross-sectional
design and/or their reliance on analysis of a very small
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number (often only one or a few) of respiratory samples
taken during periods of interest. Samples representing
the periodic exacerbations of respiratory symptoms that
characterize CF most often have been obtained after the
initiation of antibiotics for exacerbation treatment. A
more complete understanding of the dynamics of airway
microbiota, in particular with respect to changes occur-
ring at the time of pulmonary exacerbation, would bene-
fit from an analysis of serial samples obtained in the
days preceding and coincident with exacerbation onset,
but prior to the initiation of antibiotic therapy for ex-
acerbation. A meaningful assessment of airway microbial
community changes during this crucial period can only
be made, however, in the context of an understanding of
the day-to-day variability of airway communities during
periods of clinical stability. Rigorous analyses of the daily
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dynamics of the airway microbiota around these critical
periods are lacking.
We obtained daily sputum samples from persons with

CF in order to characterize changes in the bacterial and
viral airway community during periods of clinical stability
and during the onset of exacerbation of clinical symptoms,
but prior to the initiation of antibiotics for exacerbation.
We quantified community stability to assess the day-to-
day variation in community structures and examine the
degree of inter-individual variation in microbiome stabil-
ity. We also describe the changes in community structure
at the onset of symptoms of exacerbation in these four
individuals.

Results
We analyzed the bacterial microbiota in sputum samples
obtained daily from four individuals, referred to as sub-
jects A, B, C, and D (Table 1), during approximately 25-
day intervals that included a period of clinical stability
(‘baseline’) followed by the onset of symptoms that even-
tually led to the prescription of antibiotics for treatment
of pulmonary exacerbation. In total, 95 samples from
these four subjects were analyzed, plus six control sam-
ples (see Methods), which were sequenced in duplicate
(‘replicate controls’) to assess the degree of variability in-
herent in the methodology.

Day-to-day community variation when clinically stable
The baseline samples from each subject separated into
clusters in a Bray-Curtis (BC)-based nonmetric multidi-
mensional scaling (NMDS) ordination plot (Figure 1).
Samples separated by dominant genera with samples
from subjects B and D occupying a similar space on the
ordination plot since their communities were both domi-
nated by Burkholderia. Samples from subject A (Staphylo-
coccus dominant) and subject C (Streptococcus dominant)
clustered into different spaces. The replicate control sam-
ples analyzed on the same DNA sequencing run clustered
tightly, reflecting the low degree of variability in commu-
nity measures among these samples.
For each subject, the average pairwise BC dissimilarity

observed between baseline samples was greater than that
found between the replicate control samples (red line in
Figure 2). Each subject had higher median BC dissimilarity
Table 1 Demographic and sample collection information for f

Subject Age Gender CFTR mutation %FEV

A 46 F ΔF508/N1303K 68

B 31 F ΔF508/not identified 75

C 37 F ΔF508/ΔF508 88

D 20 F ΔF508/ΔF508 55
aMost recent measurement of percent predicted forced expiratory volume in 1 s. Pa
7 days prior to sample day 1; patient D, sample day 14.
among all pairwise baseline samples compared to the rep-
licate control samples, indicating that the community vari-
ability between baseline samples exceeded what would be
expected due to background methodological ‘noise’.
We next asked whether the degree of day-to-day

change in baseline bacterial community structure varied
between subjects and/or within subjects over time. The
mean BC dissimilarity among day-to-day pairwise com-
parisons of all baseline samples varied between the four
subjects, with subject A having the highest mean (0.255)
and subject D having the lowest (0.144) (Figure 2). The
mean BC dissimilarity during the second week of base-
line samples from subject A was greater than that observed
during the prior week (0.388 vs. 0.057, respectively).
Further, a very strong negative correlation was observed
between day-to-day BC dissimilarity and days to start
of symptoms for subject A, indicating that the commu-
nity became more variable as this subject approached
exacerbation (P = −0.842). In contrast, strong correla-
tions between day-to-day BC dissimilarity and days to
the start of symptoms were not observed for the other
three subjects (P < 0.6).
Homogeneity of molecular variance (HOMOVA), a

nonparametric analog to Bartlett's test for homogeneity of
variance, was used to determine if subjects differed signifi-
cantly from each other with respect to overall variability
in community structure at baseline. Significantly greater
variation in community structure was observed in subject
A, compared to either subject C or subject D (P = 0.002
and 0.003, respectively), but not in comparison to subject
B (P = 0.452). In contrast, no statistically significant differ-
ences were observed in the degree of variation in commu-
nity structure at baseline between subjects B, C, and D.

Community movement during exacerbation
Similar analyses of day-to-day changes in community
structure during onset of exacerbation symptoms (prior to
antibiotic treatment) revealed different patterns of change
between subjects as clinical symptoms developed, sug-
gesting different types of exacerbations, some of which
were correlated with substantial shifts in airway bac-
terial communities. Communities in subject A showed
marked changes in the week prior to the onset of ex-
acerbation symptoms (Figures 2, 3, and 4 and Additional
our study subjects

1
a Most abundant OTU at baseline Number of samples

Staphylococcus 20

Burkholderia 27

Streptococcus 26

Burkholderia 22

tient A, 26 days prior to sample day 1; patient B, sample day 27; patient C,



Figure 1 Baseline community structure. Bray-Curtis-based nonmetric multidimensional scaling plot showing daily sputum samples from four
study subjects (subject A is red; subject B is green; subject C is black; subject D is blue), collected during clinically stable periods. Pairs of other
symbols in gray are same sample replicate controls from subject A as described in Methods.
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file 1: Table S1). Communities in subject B showed marked
change just after the onset of symptoms. The communities
in subject C and subject D remained relatively unchanged
with onset of exacerbation symptoms.
Study subjects recorded symptoms on a daily ques-

tionnaire based on the Respiratory Symptoms Domain
of the Cystic Fibrosis Questionnaire-Revised [10,11], and
a symptom score was calculated by summing the total
number of positive symptoms each day. We observed no
strong correlations between day-to-day BC dissimilarity
and either symptom score or change in symptom score
from the previous day (P < 0.6). When grouped into base-
line and exacerbation categories, the average day-to-day
BC dissimilarity was higher for exacerbation samples com-
pared to baseline samples for subject B (0.361 and 0.213,
respectively), and lower for exacerbation samples com-
pared to baseline samples for subject D (0.047 and 0.144,
respectively). (It should be noted, however, that only three
exacerbation samples were available for subject D prior to
the initiation of antibiotics). No large differences in
average day-to-day BC dissimilarity were observed when
comparing day-to-day BC dissimilarity of exacerbation
samples to baseline samples for subject A (0.246 and
0.255, respectively) and subject C (0.177 and 0.196,
respectively).
While the communities in subject A's samples showed

an increase in both Shannon diversity (P = 0.614) and
evenness (P = 0.653) as this subject approached antibiotic
therapy, no strong trends in alpha diversity over time were
observed in the other three subjects (P < 0.6) (Additional
file 2: Figure S1). Changes in community structures at ex-
acerbation were visualized on BC-based NMDS plots
(Figure 5).
After exploring global community changes, we looked

for patterns of change in specific genera at exacerbation
onset. A strong negative correlation was observed between
collection day and the relative abundance of Staphy-
lococcus for subject A (P = −0.659), while a moderate
correlation was observed between collection day and
the relative abundance of Streptococcus for subject C
(P = −0.426). The average relative abundance of these op-
erational taxonomic units (OTUs) was lower in exacerba-
tion samples compared to baseline samples in both
subjects (A 0.607 vs. 0.788, respectively; C 0.290 vs. 0.342,
respectively). The relative abundance of the dominant
OTU for subject B (Burkholderia) also decreased at ex-
acerbation compared to baseline (average relative abun-
dance 0.525 vs. 0.387, respectively), although we observed
only a weak negative correlation between collection day
and Burkholderia relative abundance (P = −0.253). During
exacerbation, the community structure of subject B's sam-
ples was quite variable; large day-to-day shifts in relative
abundances of the top OTUs were observed (Figure 3,
Additional file 1: Table S1). No large changes in relative
abundance of subject D's dominant OTU were observed
at exacerbation, nor were strong correlations observed
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Figure 2 Daily change in community structure from baseline into exacerbation. Day-to-day changes in airway bacterial community
structure in four persons with CF. Bray-Curtis dissimilarity between consecutive daily samples is shown during periods of clinical stability (blue)
that ended with the onset of symptoms of exacerbation (pink). Dashed lines indicate more than one day between samples. Red horizontal line
indicates the maximum Bray-Curtis dissimilarity between replicate control samples. Each plot ends on the day preceding the prescription of
antibiotics for treatment of exacerbation.
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between absolute abundance of the dominant OTUs (cal-
culated as the product of total bacterial load and the rela-
tive abundance of the OTU) and collection day for any
subject.
Total bacterial load was not markedly different between

baseline and exacerbation samples for any of the four sub-
jects, nor were strong correlations observed between bac-
terial load and symptom score (P < 0.6). While total
bacterial load for subjects B, C, and D fluctuated within a
2-log range over the entire period of observation, the total
load for subject A was more variable, fluctuating over a
greater than 3-log range (Additional file 3: Figure S2).
None of the 31 samples assessed for the presence of re-
spiratory viruses tested positive by the FilmArray Respira-
tory Panel.

Defining airway community stability
Bacterial community stability was quantified across the
entire period of observation by defining, for each sub-
ject, a zone for changes in community structure, within
which variations in community composition could be
explained by stochastic events (‘stable’) as described in
Methods (Figure 4). When communities move outside
this zone, we interpret this to be due to a perturbation
that changes the community structure (‘unstable’). Com-
munities in subject A moved outside the stability zone
7 days prior to symptom onset, before becoming rela-
tively stable again after 4 days of symptoms. Communi-
ties in subject B also moved outside the stability zone,
but unlike subject A, this occurred after the onset of
symptoms and continued until at least the beginning of
antibiotic treatment. Communities in subject C remained
within the stability zone for the entire period of observa-
tion, indicating relatively stable communities before and
during exacerbation onset, while subject D moved outside
the stability zone briefly in the week prior to the onset of
symptoms.

Discussion
Repeated exacerbations of pulmonary symptoms in per-
sons with CF are associated with a progressive decline in
lung function. Although clinical management based on
antibiotic treatment and intensified airway clearance is
usually at least partially effective [10-12], patients fail to
return to 100% of baseline lung function in greater than
40% of exacerbations treated with intravenous antibiotics
[13]. Unfortunately, relatively little is known about the
pathophysiologic basis of exacerbations. The identification
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Figure 3 Relative abundance of top OTUs in daily samples. Relative abundance of the top OTUs in consecutive daily sputum samples
collected from four subjects during periods of clinical stability (white horizontal bars) and onset of exacerbation (black horizontal bars). Symbols
below plots indicate days when maintenance antibiotics were taken. Each plot ends on the day preceding the prescription of antibiotics for
treatment of exacerbation.
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of microbial signals that correlate with exacerbation would
aid efforts to prevent or mitigate the effects of these
events and would inform studies investigating the mecha-
nisms by which these factors may drive exacerbation. A
prerequisite to understanding how CF airway communi-
ties change at exacerbation, however, is a better appreci-
ation of the day-to-day variability in these communities
during periods of clinical stability. Unfortunately, no previ-
ous studies have investigated CF airway microbial commu-
nity variability with this level of granularity. To this end,
we analyzed the daily dynamics of the airway bacterial
communities in persons with CF during periods of clinical
stability and at the onset of pulmonary exacerbations, prior
to the initiation of antibiotic therapy for exacerbation.
In the absence of clinical symptoms, bacterial airway

communities remained relatively stable. Subject A had
overall greater variability at baseline than subjects C or D,
due to destabilization of subject A's community during
the week immediately preceding the onset of exacerbation
symptoms. The airway community in subject D showed
more subtle instability during this time. Because the base-
line samples from all four subjects were obtained 1 to
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3 weeks immediately preceding the onset of symptoms, it
is possible that community variability was already influ-
enced by impending exacerbation even in the absence of
clinical symptoms. Analyses of daily samples obtained
during periods of clinical stability further removed from
exacerbation are warranted to better ascertain the degree
of day-to-day variability in bacterial airway communities
in CF in general. For the purposes of our study, however,
we believed it is important to assess changes in commu-
nity structure during the period of clinical stability imme-
diately preceding the onset of exacerbation symptoms.
The consistency in these subject's airway communities

over the course of several days has bearing on questions
pertaining to bacterial biogeography within diseased lungs
and on how well sputum samples represent airway com-
munities in microbiome studies in CF. Recent studies have
demonstrated that microbial communities vary over the
spatial landscape of the diseased lung [14-17]. The re-
markable level of community stability observed in our
study subjects, particularly subject D over the first 10 days
of observation (Figures 2 and 4), would not be expected if
serial sputum specimens were sampling distinct regions of
diseased lungs from 1 day to the next. This consistency
also suggests that measures of lung microbial community
structure derived from expectorated sputum are not sub-
stantially impacted by ‘contamination’ from oropharyngeal
microbiota. In a recent comparison of multiple body sites,
the temporal variability in oral cavity microbiomes was
found to be significantly greater than those in vaginal, gut,
skin, and anterior nares sites [18]. If sputum samples were
significantly contaminated with oral microbiota during ex-
pectoration, we would expect to see variability reflecting
that observed in serial oral cavity samples. Finer scale
sampling of oral sites, analyzed alongside paired sputum
samples from the same subject, would further illuminate
this issue.
With the onset of symptoms of exacerbation, we ob-

served distinct patterns of bacterial community change
among the four subjects. The community in subject A
showed considerable movement several days before the
onset of symptoms, then shifted to an alternate stable
state different in structure from the previous week. This
change can be visualized by NMDS (Figure 5), wherein
subject A's baseline samples occupy a different space in
the ordination plot than the exacerbation samples, the
result, in part, of a decrease in the relative abundance of
Staphylococcus and increases in the relative abundances
of Pseudomonas and Prevotella (Figure 3, Table S1).
The airway bacterial community in subject B destabi-

lized coincident with the onset of exacerbation symp-
toms (Figure 4). However, in contrast to subject A, the
community did not shift to a new structure (that is, the
centroid of subject B's exacerbation samples in the
NMDS plot remained near that of the baseline samples,
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(See figure on previous page.)
Figure 5 Community movement before and during exacerbation. Bray-Curtis-based nonmetric multidimensional scaling plots showing daily
sputum samples from four subjects (subject A is red; subject B is green; subject C is black; subject D is blue) collected during periods of clinical
stability (open circles) and at onset of symptoms of exacerbation (closed circles). A Arrows indicate relative influence of the specified OTUs on the
position of samples in the ordination space. B Each subject's plot is shown separately with lines connecting samples from first (open triangle) to
last (star) collected (stress = 0.151). Each subject's plot is magnified to fill the ordination space and highlight movement between that subject's
samples. Baseline samples are enclosed by a dashed ellipse; exacerbation samples are enclosed by a solid ellipse.
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Figure 5). However, approximately 1 week after the onset
of symptoms, the community shifted intermittently from
one dominated by Burkholderia to one dominated by
Pseudomonas.
The communities in subjects C and D were relatively

stable through the onset of symptoms (Figure 4). This
result was unexpected for subject C, who had the great-
est baseline community diversity among the subjects.
Previous work suggested that a high degree of baseline
community diversity predisposes to greater change at ex-
acerbation [7]. Subject D was prescribed antibiotic ther-
apy very soon (3 days) after the onset of exacerbation
symptoms. The three daily samples immediately prior to
antibiotic administration showed exceptionally stable
communities, with a maximum BC dissimilarity between
communities of only 0.032, which is within the range of
the replicate controls. Whether more movement of this
subject's airway community would have been observed
in a larger set of samples before the initiation of treat-
ment is unknown.
Despite the inter-subject differences in community dy-

namics with exacerbation onset in these four subjects,
common features are also apparent. In three of four sub-
jects, the dominant taxon (Staphylococcus, Burkholderia,
and Streptococcus in subjects A, B, and C, respectively)
decreased in relative abundance around the time of ex-
acerbation. Although this change did not reflect a de-
crease in the absolute density of these species, due to
day-to-day variability in total bacterial density, this find-
ing is consistent with previous work that demonstrated
decreases in the relative abundance of the dominant taxa
at the time of exacerbation in another set of subjects [7].
The pathophysiologic implications of this intriguing find-
ing require further elucidation, but suggest a role for less
abundant taxa in some pulmonary exacerbations.
In all four subjects, despite subtle day-to-day variability

in total bacterial load, we observed no overall changes in
total bacterial density between baseline and exacerbation
samples. This finding supports studies that similarly failed
to show significant changes in overall bacterial density
with exacerbation [3,7,9]. These findings suggest that
shifts in the relative abundance of bacterial community
members, rather than changes in total bacterial density,
are more likely associated with alterations in clinical state.
Although respiratory viral infection is associated with

a significant minority of pulmonary exacerbations in CF
[19-21], we detected no respiratory viruses in samples
obtained around the time of exacerbation onset in any
of the four subjects. This analysis was limited to the 17
respiratory viruses included in the commercial viral de-
tection system we employed. Nevertheless, this panel
would be expected to detect the great majority of viruses
responsible for viral respiratory infection in CF based on
recent epidemiologic surveys [19,20].
Our study design allowed us to assess the correlation

between subject-reported symptoms and airway commu-
nity structure. In this regard, we observed no strong cor-
relations between daily symptom scores and day-to-day
community variability. However, it is possible that a lar-
ger scale study and/or a more refined symptom scoring
system might detect such relationships, if they indeed
exist. Weighting of symptoms, rather than merely sum-
ming the number of symptoms on each day, could reveal
correlations with airway community movement that were
not detected in this study. Similarly, consideration of other
patient-specific features (for example, disease stage) and/
or analysis of the temporal relationship between specific
symptoms and microbiomic measures may prove worth-
while. Our study was limited to four subjects at a single
center. Although samples from three of four subjects con-
tained Pseudomonas, none were dominated by this taxon
as is often seen in CF samples. The applicability of these
findings to the larger CF population is thus unclear. Fi-
nally, we restricted our analyses to predominantly descrip-
tive reports of trends within and between subjects, given
the small sample size and correlated nature of the data.
Our results indicate the potential for significance given in-
creased power from an expanded pool of subjects.
Rapid advances in technical capability for microbiome

analyses will provide opportunities to study larger sample
sets to more completely characterize the spectrum of
microbiome changes associated with pulmonary exacerba-
tion. Transcriptomic and/or metabolomic analyses would
complement these efforts in enhancing our understanding
of how changes in the activity of airway microbiota relate
to changes in the host's clinical state.

Conclusion
Daily airway bacterial community structures in CF are
relatively stable during periods of clinical stability. The
onset of symptoms of exacerbation may be heralded by
marked shifts in these communities, even in the absence
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of viral infection or antibiotic therapy for the treatment of
exacerbation. Whether such shifts only occur in a minor-
ity of exacerbations, as observed here, is unclear. Monitor-
ing of airway microbial community structures therefore
has the potential to identify signatures that could be useful
in predicting CF respiratory exacerbations, which, in turn,
may enable more prompt and/or appropriate therapy of
exacerbation. A better understanding of the changes in
airway communities around the time of exacerbations will
also inform studies to elucidate the pathophysiologic
mechanisms of exacerbation in CF.

Methods
Sputum specimens and metadata
With approval of the Institutional Review Board of the
University of Michigan Medical School, sputum speci-
mens were collected daily by four persons with CF and
stored at 4°C for up to 27 days before being sent on ice
to the investigator's laboratory for processing and stor-
age at −80°C. Subjects were part of a larger cohort of CF
patients participating in long-term daily collection of
sputum for microbiome analysis. The first four exacerba-
tions captured from this cohort were chosen for analysis
in this study. Study subjects recorded symptoms and anti-
biotic use on a daily questionnaire based on the Respiratory
Symptoms Domain of the Cystic Fibrosis Questionnaire-
Revised [22,23]. Symptoms recorded included increased
cough, change in sputum, shortness of breath, fever, de-
creased energy, decreased appetite, and missed work/
activities. Evidence of hemoptysis in the specimen was
recorded by the laboratory. A symptom score was cal-
culated by summing the total number of positive symp-
toms, plus hemoptysis, each day. Baseline samples were
defined as those obtained during a period of consecu-
tive symptom-free days that culminated in the onset of
symptoms of exacerbation. ‘Exacerbation’ samples were
defined as those obtained from the start of consistent
symptoms to the day prior to the start of antibiotic treat-
ment for exacerbation [7]. Six consecutive daily sputum
samples obtained from subject A served as technical con-
trol samples. DNA was prepared from each of these six
samples and each DNA samples was sequenced in dupli-
cate on the same sequencing run. These six pairs of repli-
cate control samples served to assess the degree of
background variability between and within DNA sequen-
cing runs (Figure 1).

Molecular methods
DNA was prepared from frozen sputum as previously
described [24]. Briefly, samples were treated with Sputo-
lysin (EMD Chemicals, Gibbstown, NJ, USA) and sub-
jected to mechanical disruption by bead beating before
DNA extraction by the MagNA Pure nucleic acid purifi-
cation platform (Roche Diagnostics Corp., Indianapolis,
IN, USA). Total bacterial load was measured by quan-
titative PCR using the universal primer/probe set of
Nadkarni et al. [25] targeting the bacterial 16S rRNA
gene as previously described [24].

Virus detection
Samples were selected for viral testing whenever a sub-
ject's clinical state changed (that is, from no symptoms
to having symptoms or vice versa) or at least weekly
when clinical state was unchanged for more than 7 days.
The FilmArray Respiratory Panel (BioFire Diagnostics,
Salt Lake City, UT, USA) was used to test sputum sam-
ples for the presence of 17 respiratory viruses [26,27].
Briefly, 1 ml of sputum was liquefied with SnotBuster SL
Solution (Copan Diagnostics Inc., Murrieta, GA, USA)
by mixing for 30 s at 2,000 rpm. After incubating at
room temperature for 15 min, 300 μl of the solution was
transferred to sample buffer and inoculated into the
FilmArray pouch, which was loaded onto the FilmArray
instrument according to the manufacturer's instructions.

DNA sequencing and community ecological metrics
Bar-coded pyrosequencing of a portion of the 16S rRNA
V3-V5 hypervariable region was performed by the Hu-
man Genome Sequencing Center at Baylor College of
Medicine using protocols developed for the Human
Microbiome Project (http://www.hmpdacc.org/resources/
tools_protocols.php) as previously described [7], with the
following modifications. The software package mothur
v1.29 [28] was used to process sequences, which were
assigned to OTUs using an average neighbor algorithm
with a 0.03 dissimilarity cutoff as previously described
[24]. The total number of reads for each community was
rarefied to 1,807, the smallest number of reads obtained in
the sample set, to control for differences in sequencing
depth before alpha (nonparametric Shannon index [29])
and community dissimilarity measures were calculated.
BC dissimilarity was used to measure the difference in
community structures between paired samples [30]. Dom-
inant OTU was defined as the most abundant OTU in the
majority of baseline samples.

Measure of community stability
Community structure stability was quantified by defining,
for each subject, a ‘stability zone’ within which variations
in community composition can be explained by stochastic
events (stable). Movement of the community outside of
this zone is likely due to a perturbation that overrides
these stochastic events (unstable) [31]. For each time
point, the similarity in community composition was cal-
culated between that time point and the next time point
as [1 − Bray-Curtis dissimilarity]. This similarity score,
used as a proxy for stability, ranges from 0 to 1. A value of
0 indicates no similarity between communities (implying

http://www.hmpdacc.org/resources/tools_protocols.php
http://www.hmpdacc.org/resources/tools_protocols.php
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maximum instability), while a value of 1 indicates no
differences between communities (implying perfect sta-
bility). We calculated the expected variability in this score
due to stochastic processes by randomly permuting counts
across the OTU-by-time point matrix for each patient
1,000 times. This generated 1,000 random matrices with
neither sample nor temporal selection, while controlling
for subject specificity, sampling depth, and global taxon
abundance. For each permutation, the stability score [1 −
Bray-Curtis dissimilarity] was calculated at all time points.
Finally, 95% confidence intervals based on these 1,000
simulated values at each time point was used to create the
stability zone.

Data analysis
Spearman's rank correlation coefficient P was calculated
to study the associations between community measures,
patient metadata, and time. A correlation coefficient P ≥
0.8 was considered a very strong correlation, P = 0.60 to
0.79 a strong correlation, P = 0.4 to 0.59 a moderate cor-
relation, P = 0.20 to 0.39 a weak correlation, and P ≤ 0.19
a negligible correlation. HOMOVA [32,33] analysis was
used to test whether groups of baseline samples from
each subject had equal variances in community struc-
ture. BC-based NMDS was used to visualize changes in
community composition over time.

Availability of supporting data
Sequences have been deposited at NCBI SRA (SRA:
SRP051730; BioProject: PRNJA271691).

Additional files

Additional file 1: Table S1. Relative abundance of top OTUs in daily
samples. Relative abundance of all OTUs in daily sputum samples from
fours subjects.

Additional file 2: Figure S1. Diversity in daily samples. Shannon
diversity (A) and evenness (B) over time in daily sputum samples from
four subjects. Dashed vertical lines indicate transition between baseline
and exacerbation. Each plot ends on the day preceding prescription of
antibiotics for treatment of exacerbation.

Additional file 3: Figure S2. Total 16S rRNA copies per ml of sputum
measured by qPCR. Bacterial load is shown during periods of clinical
stability (blue) that ended with the onset of exacerbation symptoms
(pink). Dashed lines indicate more than one day between samples. Each
plot ends on the day preceding prescription of antibiotics for treatment
of exacerbation.

Abbreviations
CF: cystic fibrosis; NMDS: nonmetric multidimensional scaling; BC: Bray Curtis;
OTU: operational taxonomic unit; HOMOVA: homogeneity of molecular
variance.
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