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Abstract 

Background Connecting the composition and function of industrial microbiomes is a major aspiration in microbial 
biotechnology. Here, we address this question in wine fermentation, a model system where the diversity and func-
tioning of fermenting yeast species are determinant of the flavor and quality of the resulting wines.

Results First, we surveyed yeast communities associated with grape musts collected across wine appellations, 
revealing the importance of environmental (i.e., biogeography) and anthropic factors (i.e., farming system) in shap-
ing community composition and structure. Then, we assayed the fermenting yeast communities in synthetic grape 
must under common winemaking conditions. The dominating yeast species defines the fermentation performance 
and metabolite profile of the resulting wines, and it is determined by the initial fungal community composition rather 
than the imposed fermentation conditions. Yeast dominance also had a more pronounced impact on wine meta-
transcriptome than fermentation conditions. We unveiled yeast-specific transcriptomic profiles, leveraging different 
molecular functioning strategies in wine fermentation environments. We further studied the orthologs responsible 
for metabolite production, revealing modules associated with the dominance of specific yeast species. This empha-
sizes the unique contributions of yeast species to wine flavor, here summarized in an array of orthologs that defines 
the individual contribution of yeast species to wine ecosystem functioning.

Conclusions Our study bridges the gap between yeast community composition and wine metabolite production, 
providing insights to harness diverse yeast functionalities with the final aim to producing tailored high-quality wines.
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Background
Originally, wine fermentations were spontaneous, and 
the native yeast communities present on the grape sur-
face were responsible for completing the fermentation 
of grape musts. The grape surface constitutes a complex 
microbial ecosystem with yeasts, filamentous fungi, and 
bacteria, each influencing wine production differently [1]. 
Yeast communities play crucial roles in determining the 
chemical and sensory properties of the resulting wines 
[2–4]. A diverse yeast microbiome in grape musts can 
enhance the aromatic complexity of final wines [5–8]. The 
inherent microbial diversity in grape musts, coupled with 
the spontaneous nature of fermentations, implies limited 
control over population dynamics during wine fermenta-
tion, influencing its kinetics and final sensory output. In 
contrast to the spontaneity of natural fermentations, the 
wine industry introduced the standardization of wine fer-
mentations through the inoculation of commercial yeast 
strains or consortia with predefined traits [9]. Regardless 
of the fermentation strategy followed, deciphering the 
molecular determinants of the individual contribution of 
wine yeast species to wine flavor is essential to advance in 
the targeted improvement of wine quality.

Several factors influence yeast communities associated 
with grape berries, subsequently shaping the diversity 
of fermenting yeast species in grape musts. Edaphocli-
matic factors and vineyard management practices con-
tribute to the complexity of these communities [10, 11]. 
After crushing grapes, these microbial populations have 
to cope with various environmental challenges during 
the fermentation of grape musts, such as high osmotic 
pressure, low pH, suboptimal temperatures for growth, 
increasing ethanol concentrations, and anaerobic con-
ditions [12, 13]. This leads to a rapid succession of yeast 
populations where the initially wide fungal diversity is 
wiped out by the ethanol toxicity and is replaced by eth-
anol-tolerant fermentative yeasts, mainly Saccharomyces 
cerevisiae [14, 15]. By changing temperature, or adding 
sulfur dioxide  (SO2) or nitrogen nutrients, winemakers 
have the possibility to modify the fermentation kinet-
ics and alter the performance of yeast species [16–18]. 
Understanding the influence of these conditions on yeast 
growth and fermentation processes will enhance future 
achievements in the oenological industry, facilitating a 
more rational use of yeast cultures, food additives, and 
nutrients in wine fermentations. However, to gain con-
trol and predict the metabolite profile of final wines, it is 
necessary to first comprehend the functional potential of 
wild yeast communities subjected to varying fermenta-
tion conditions.

In this study, we combined observational studies with 
laboratory fermentations to assess factors shaping yeast 

community composition associated with grape berries 
and to identify functional yeasts associated with wine 
metabolite production under different fermentation con-
ditions. We integrated multi-omics data to understand 
the connection between the composition and function of 
fermenting yeast communities with the final metabolite 
profile of wines. In doing so, we aim to contribute to the 
ecological understanding of wine ecosystems and high-
light the importance of preserving the complex dynam-
ics even in controlled fermentation processes. To do 
so, we surveyed five distinct Spanish wine appellations, 
sampling grapes from vineyards under conventional and 
organic management. We also sampled at lower geo-
graphic scales to finely disentangle whether grape must 
and fungal variability were distance dependent (Sup-
plementary Figure S1). We analyzed the metabolite and 
fungal community profiles of fresh grape musts, defining 
their initial variability, and subject them to spontaneous 
fermentations in four different fermentation conditions. 
Then, we inoculated the fermenting yeast communities 
in synthetic grape must, and studied the associations 
between their functional profiles, through meta-tran-
scriptomic analysis and the final metabolite composition 
of the resulting wines.

Methods
Observational study design
A total of nine different locations were sampled from five 
different Spanish wine appellations (Supplementary Fig-
ure S1). The wine appellations were Ribera del Guadiana 
(RdG), Valdepeñas (VLP), La Mancha (LM), Madrid (M), 
and La Rioja (R). Within La Rioja, we sampled three loca-
tions (R1, R2, and R3; the later per triplicate, in three dif-
ferent rows within the same plot: R3A, R3B, R3C). This 
spatial survey was applied in parallel, sampling two vine-
yards within each location, under conventional and under 
organic farming. Contrary to conventional management, 
organic vineyards are restrictive with the use of inorganic 
fertilizers as well as phytosanitary products. The regula-
tory specifications outlining the criteria for conventional 
and organic classifications are established according to 
the European Union Regulation (EC) No. 1234/2007 
(Official Journal of the European Union, 2007). The dif-
ferent patterns of fungal community and metabolite pro-
duction during fermentation are largely dependent on 
grape variety [10]. Therefore, we only sampled grapes of 
Tempranillo variety, when possible, that is, in all cases 
except in conventional farming in RdG, where we could 
only sample grapes of Red Garnacha variety. Since the 
physical–chemical composition of Garnacha grape must 
differed significantly from that of Tempranillo grapes 
(Supplementary Figure S2), we removed it from the 
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analysis shown in Fig. 1A to better assess the impact of 
sampling location and farming practices.

Grape processing and grape must fermentations
We collected 3  kg of grapes (Vitis vinifera L.) in 5 
bunches of grapes from 5 different grapevine plants, 
making a composite sample from each of the 18 sampling 
points. Upon arrival at the laboratory, and after ensuring 

that there was not visible damage or fungal rot on the 
berries, grapes were pressed under sterile conditions and 
macerated with the skins and pomace for 2 h. The result-
ing grape must, after removing the solid parts (skins 
and pomace), was dispensed into four sterile glass bot-
tles, 200-mL grape must in 250-mL bottles. Immediately 
after filling the bottles, an initial sample was collected 
for DNA extraction and sequencing to assess the initial 

Fig. 1 Grape must composition and fungal community description of initial samples. A Principal component analysis (PCA) representing 
grape must composition diversity across wine appellations (WA) (upper panel, n = 4) and within the WA of La Rioja (bottom panel, n = 4). Raw 
data is detailed in Additional File 1. B Beta diversity of fungal communities based on a nonmetric multidimensional scaling analysis (NMDS, 
stress parameter indicated in the plot) from Bray–Curtis dissimilarity matrix calculated from genus abundance table. Colors represent the origin 
of the samples, whereas shapes represent farming practices. C Relative abundance of fungal genus shown for each replicate from each grape 
sample. “Other” include genus with relative abundance < 5%. D Alpha-diversity comparison between farming practices (n = 36). The analysis 
was performed using Hill-based indices with different diversity orders (q). We selected Richness (q = 0), Hill-Shannon (q = 1), and Hill-Simpson (q = 2) 
to account for the complexity of such communities. We performed Wilcoxon test to evaluate the differences between organic and conventional 
practices; asterisks denote the significance levels (***p < 0.001, **p < 0.01, and *p < 0.05)
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fungal community composition. Then, these bottles were 
subjected to fermentation under different conditions: (i) 
control condition, fermented at 25  °C without supple-
mental addition of  NH4 or  SO2; (ii) low temperature con-
dition, fermented at 18 °C without supplemental addition 
of  NH4 or  SO2; (iii)  NH4 condition, supplemented with 
300 mg/L diammonium sulfate ((NH4)2SO4); and (iv)  SO2 
condition, adding 100  mg/L of potassium metabisulfite 
 (K2S2O5). Conditions iii  (NH4) and iv  (SO2) were fer-
mented as 25  °C, the same as the control condition. We 
defined the end of wine fermentations as the point when 
the weight loss remained consistently below 0.01  g per 
day for two consecutive days. At this point, we collected 
samples for DNA extraction and sequencing to assess the 
final fungal community composition.

Experimental fermentations in synthetic grape must
To finely assess the impact of fermentation conditions 
on the transcriptional and metabolite patterns of wine 
yeasts, we replicated the fermentations using synthetic 
grape must (SGM), prepared as described by Ruiz et al. 
[19]. To assay the highest possible variety of ferment-
ing yeast communities under experimental conditions, 
we extracted 2  mL of fermenting grape musts at the 
tumultuous stage (between 23 and 45% of total sugars 
consumed, Supplementary Table  S1) from each con-
trol fermentation assay performed in the natural grape 
musts (Supplementary Figure S1). The fermenting yeast 
communities obtained were subsequently transferred as 
inoculum for the SGM assays. Specifically, the 18 sam-
ples collected from control grape must fermentations 
were frozen at − 80  °C, and then after thawing, centrifu-
gation, resuspension, and standardization of the opti-
cal density  (OD600nm) of the resulting pellet, they were 
used as seed communities to inoculate the experimen-
tal fermentations in 100-mL bottles containing 80  mL 
of SGM, in quadruplicate. These bottles were then sub-
jected to the same fermentative conditions previously 
defined for grape must fermentations: (i) control, (ii) low 
temperature, (iii)  NH4, and (iv)  SO2 conditions (Supple-
mentary Figure S1). In these experimental fermentations, 
we collected samples at the tumultuous stage of fermen-
tations for DNA and RNA extraction for assessing the 
composition and transcriptional profile of fermenting 
yeast populations across samples and conditions assayed 
(see Supplementary Table  S1 for details on the sugars 
consumed and yeast cells concentration at the time of 
sampling). As previously stated for the spontaneous fer-
mentations, we defined the end of wine fermentations 
as the point when the weight loss remained consistently 
below 0.01 g per day for two consecutive days.

Fungal community assessment
We collected samples from grape musts and SGM fer-
mentations for DNA extraction and ITS sequencing 
(Supplementary Figure S1). Grape musts were sampled 
immediately after starting the experiment (fresh grape 
must; n = 72), and when fermentations stopped, even 
though sugars remained (fermented grape must; n = 70), 
with the aim of studying the diversity patterns in fresh 
grape musts and the population dynamics of yeast com-
munities from the initial to the final stages of wine fer-
mentations. SGM fermentations were sampled at the 
tumultuous stage of fermentations (n = 59), correspond-
ing with the time of sampling for RNA-Seq analysis, to 
identify the dominant populations driving these experi-
mental fermentations and to validate the latter taxo-
nomic assignment of transcripts from RNA-Seq data.

Amplicon sequencing
We used the DNeasy PowerSoil Pro Kit (Qiagen) for 
DNA extraction following manufacturer’s instructions. 
We checked DNA quality and quantity using a NanoDrop 
2000 (Thermo Fisher Scientific, USA) and Qubit Fluo-
rometer (Thermo Fisher Scientific, USA), respectively. 
Then, the diversity and composition of the fungal com-
munity were determined by amplicon sequencing. DNA 
sequencing was performed at the “López-Neyra” Insti-
tute of Parasitology and Biomedicine. For library prepa-
ration, we used ITS2_fITS7 forward (TCC TCC GCT TAT 
TGA TAT GC) and ITS4 reverse (GTG ART CAT CGA ATC 
TTT G) primers. Libraries were subsequently sequenced 
on Illumina® MiSeq instrument using 2 × 300 paired-end 
reads as per the manufacturer’s instructions.

We obtained a total of 17098692 good quality 
sequences, averaging 62863 ± 20796 per sample (further 
quality analysis at https:// github. com/ Migue ldc1/ Winet 
eract ions/). Sequence analysis was performed with dada2 
v1.24.0 [20] R package, after FastQC v0.12.1 [21] and 
MultiQC v1.18 quality assessment [22]. Dada2 identifies 
amplicon sequence variants (ASVs), allowing us to dis-
tinguish true biological variation from sequencing errors 
and PCR artifacts, and changes of one nucleotide can be 
detected [20]. This allows for more accurate and precise 
identification of unique microbial taxa and quantification 
of their abundances. Primers were removed using cuta-
dapt v4.0 [23] and Biostrings v2.66.0 [24] R package to 
assess their orientation in the reads. After quality assess-
ment, low-quality ends were deleted, and no mismatches 
were allowed when merging paired reads. Once chimeras 
were removed, we finally assigned taxonomy to our ITS 
reads using the UNITE v9.0 database [25].

https://github.com/Migueldc1/Wineteractions/
https://github.com/Migueldc1/Wineteractions/
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Yeast community assessment and statistical analysis
We first addressed whether there were differences in 
alpha diversity among the different geographical origins 
and between farming practices. To do so, we used Hill-
based diversity index in which the importance given to 
the relative abundance of each ASV can be varied [26]. 
This importance is determined by the diversity order (q). 
For instance, when q = 0, the relative abundance is not 
considered, and hence, the value equals the richness. 
When q = 1, each ASV is weighted according to their rel-
ative abundance (Hill-Shannon, equivalent to the expo-
nential Shannon index), and when q = 2, more weight is 
given to abundant ASVs (Hill-Simpson, reciprocal Simp-
son index) [27]. We calculated the Hill-based alpha diver-
sity using the hillR v0.5.2 R package [28]. To disentangle 
differences in alpha diversity caused by different farming 
practices and geographical origin, we used linear mixed 
models with the origin as a random factor and the farm-
ing practices as fixed factors, using the nlme v3.1–160 R 
package [29].

Differences in community composition across the 
studied geographical origin and farming practices 
(β-diversity) were evaluated with the vegan v2.6–6.1 
R package [30]. We first calculated Bray–Curtis dis-
similarity matrices from the ASV table collapsed at the 
genus level, to consider relative abundance of genera in 
our samples. Then, we performed multivariate permuta-
tional multivariate analysis of variance (PERMANOVA) 
to assess the effect of origin and farming on community 
composition and nonmetric multidimensional scaling 
(NMDS) to compress dimensionality into two dimen-
sional plots. Code for statistical analyses is available at 
https:// github. com/ Migue ldc1/ Winet eract ions.

Metabolite profiling
For initial fresh grape musts, we measured pH and con-
centration of nonvolatile compounds: sugar (glucose and 
fructose), organic (amino acid related) and inorganic 
(ammonium) nitrogen, and L-malic acid. Due to the 
increased metabolite complexity of wines after fermen-
tation [31], we performed a wider metabolite profiling 
at the end of the fermentations, in both natural grapes 
and SGM assays, by analyzing the same nonvolatile com-
pounds as in the fresh must, but also including ethanol, 
acetic acid, L-lactic acid, tartaric acid, citric acid, succinic 
acid, and glycerol, and the following volatile compounds: 
ethyl acetate, fusel alcohols (isopropanol, 1-propanol, 
2-methyl-propanol, 1-butanol, 2-methyl-1-butanol, 
1-hexanol, 2-ethyl-1-hexanol, 2-butanol, and 2-pheny-
lethanol), fusel alcohol acetates (isobutyl acetate, isoa-
myl acetate, hexyl acetate, and 2-phenylethanol acetate), 
ethyl esters of fatty acids (EEFA: ethyl butanoate, ethyl 
octanoate, and ethyl dodecanoate), short-chain fatty 

acids (SCFA: propionic acid, isobutyric acid, butyric acid, 
valeric acid, and 2-methylbutanoic acid), and medium-
chain fatty acids (MCFA: hexanoic acid, octanoic acid, 
and decanoic acid). The pH was measured using a pH 
meter (Crison pH Meter Basic 20, Crison, Spain), and the 
concentrations of nonvolatile compounds were measured 
using specialized enzymatic kits and the analyzer Y15 
(Biosystems, Spain) following manufacturer’s instruc-
tions. Gas chromatography-mass spectrometry (GC-FID) 
was used to measure the concentration of volatile com-
pounds as previously described [32]. Raw data is detailed 
in Additional File 1.

Metatranscriptomic analysis
RNA extraction and sequencing
We collected SGM samples during the vigorous fermen-
tation stage (see Supplementary Table  S1 for details), 
and each 10-mL sample of the fermenting must was cen-
trifuged at 7000  rpm and 4  °C for 5  min. Biomass was 
quickly frozen with liquid nitrogen and stored at − 80 °C 
until RNA extraction. RNA extraction protocol was car-
ried out according to the specifications provided in the 
Quick-RNA Fungal/Bacterial MicroPrep kit (Zymo 
Research). RNA quality analysis, library preparation, 
RNA sequencing, and bioinformatics analyses were car-
ried out at the Bioinformatics and Genomics Unit of 
The López-Neyra Institute of Parasitology and Biomedi-
cine (IPBLN-CSIC, Granada, Spain). The quality of the 
RNAs was evaluated using Bioanalyzer (Agilent Tech-
nologies), and samples with RNA Integrity Number 
(RIN) ≥ 8.2 were selected for further analysis. Libraries 
were constructed using TruSeq™ Stranded mRNA sam-
ple preparation kit, according to Illumina’s instructions. 
In addition, libraries quality was validated by Qubit 
dsDNA HS Assay Kit (Thermo Fisher) and 2100 Bioana-
lyzer (Agilent Technologies). Afterwards, these libraries 
were sequenced on an Illumina NextSeq High Output, 
producing 75-bp paired-end reads. We obtained a total 
of 15,720,876 ± 1,906,845 for further bioinformatic analy-
sis (quality assessment can be found in the “RNA qual-
ity” file at https:// github. com/ migue ldc1/ Winet eract ions/ 
tree/ main/ Quali ty_ Asess ment/ RNA).

Bioinformatic analysis
The quality assessment of the raw reads from RNA 
sequencing was performed with FastQC [21] and Mul-
tiQC software [22]. Overrepresented rRNA fragments 
were removed using sortmeRNA v4.3.6 software [33], 
retaining a total of 10,281,527 ± 3,618,915 non-rRNA 
reads for further analysis. The clean meta-transcriptom-
ics sequence reads were used to assess the taxonomic 
composition of the SGM fermentations using Kraken 2 
v2.1.3 [34] and Bracken v2.9 [35] and a custom database 

https://github.com/Migueldc1/Wineteractions
https://github.com/migueldc1/Wineteractions/tree/main/Quality_Asessment/RNA
https://github.com/migueldc1/Wineteractions/tree/main/Quality_Asessment/RNA
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built with the fungal genomes deposited in RefSeq and 
Hanseniaspora genomes from GenBank (including 
Hanseniaspora guilliermondii, Hanseniaspora opuntiae, 
Hanseniaspora osmophila, Hanseniaspora uvarum, and 
Hanseniaspora vineae). Besides, non-rRNA reads were 
assembled into contigs/transcripts with Trans-ABySS 
v2.0.1 [36] using 21, 29, 39, and 59 k-mers. We then qual-
ity checked the assemblies with assembly stats v1.0.1 and 
BUSCO v5.7.1 [37], using the fungi_odb10 database, to 
assess how well represented is the functional composi-
tion of the active fungal community (all assembly statis-
tics can be found in the “assembly-stats” file at https:// 
github. com/ migue ldc1/ Winet eract ions/ tree/ main/ Quali 
ty_ Asess ment/ RNA). Functional annotation of tran-
scripts was carried using the eggNOG-mapper v2.1.3 
[38] with the DIAMOND aligner [39] against the egg-
NOG database obtaining ortholog annotation. We used 
the Burrows-Wheeler aligner with BWA v0.7.17-r1188 
software to align the reads to the transcripts [40], as we 
are not performing the alignment against a reference 
genome. Finally, we used FeatureCounts v2.0.1 [41] to 
obtain the number of read counts per ortholog. Differ-
ently expressed (DE) orthologs among dominant yeasts 
were calculated accounting for different fermentative 
conditions and origins, using DESeq2 package v1.26.0 
[42]. Here, we considered a yeast species as dominant 
when its relative abundance exceeded 90%, and for fur-
ther differential expression analysis, we focused on 
samples dominated by Hanseniaspora, Lachancea, and 
Saccharomyces. An ortholog is considered DE when the 
false discovery rate (FDR) value is < 0.05 and the abso-
lute log2 fold change > 1. After that, we used the GOseq 
v1.48.0 R package [43] to perform Gene Ontology enrich-
ment analysis on the DE orthologs. Specifically, it focuses 
on the biological process category of GO terms. The 
resulting enriched GO terms were filtered to include only 
those with FDR < 0.05. Code for bioinformatics and sta-
tistical analyses is available at https:// github. com/ Migue 
ldc1/ Winet eract ions.

Results and discussion
Composition and structure of fungal communities in fresh 
grape musts
First, we conducted an observational study to identify the 
variability of yeast communities associated with grape 
berries across wine appellations, identifying the main 
factors influencing their composition. Climate is consid-
ered a pivotal determinant, influencing grape matura-
tion and quality and, consequently, the associated yeast 
communities [44, 45]. Additionally, viticultural practices, 
such as conventional or organic farming managements, 
play crucial roles, with conventional farming support-
ing higher grape berry yields due to nutrient inputs and 

phytosanitary products [46]. Indeed, we observed that 
sample location, encompassing the environmental dif-
ferences among localities, was the main factor defining 
the metabolite composition (Fig.  1A, Supplementary 
Table  S2) and fungal diversity (Fig.  1B, Supplementary 
Table  S3) of grape musts. We also observed differences 
in grape must physical–chemical and fungal composi-
tion between conventionally and organically managed 
samples, which were especially relevant at the local scale, 
which is within La Rioja appellation (Fig. 1, Supplemen-
tary Table  S2, Supplementary Table  S3), in agreement 
with previous findings [47]. These findings underscore 
the complexity of the grapevine ecosystem and the need 
for a nuanced understanding of both regional and local 
factors influencing yeast communities.

Concerning fungal community composition, the 
genus Aureobasidium dominated all communities, often 
accompanied by Cladosporium and Lachancea (Fig. 1C), 
consistent with their prevalence in vineyard ecosystems 
[15, 48]. We also identified a high prevalence of Alter-
naria, ubiquitous and predominant filamentous fungi in 
vineyards worldwide [49]. Samples from vineyards under 
organic management presented higher fungal diversity, 
considering phylotype richness and dominant phylo-
types (Fig.  1D). This finding aligns with previous stud-
ies attributing the reduced diversity of grape-associated 
microorganisms in conventional managed vineyards to 
the adverse impact of phytosanitary products [47]. In this 
context, Aureobasidium could present higher resistance 
to these products and greater propensity to dominate the 
fungal communities of grapes from conventional farming 
regimes, as evidenced by its higher abundance in conven-
tional vineyards (Wilcoxon, p < 0.001). The relative abun-
dance of Cladosporium and Lachancea, on their part, 
increased in organic vineyards (Wilcoxon, p < 0.001). As 
previously described, Saccharomyces is rarely found in 
fresh grape musts [50]; in our case, it was only detected 
at relatively high abundances in conventional vineyards 
from Valdepeñas. Understanding the diversity of fungal 
species associated with grape berries is of great interest 
to infer the range of expectable fermenting communities 
across wine appellations.

Manipulating the fermentation environment had no effect 
on yeast population dynamics
We subjected the obtained fresh grape musts to spon-
taneous fermentation under four different conditions 
widely used in wine production (control condition, low 
temperature, high doses of nitrogen, and sulfite addi-
tion; see the “ Methods” for further details). At the end of 
the fermentation (here defined as either when the com-
munity ceased sugar consumption or when all sugars 
were depleted), we characterized the fungal community 

https://github.com/migueldc1/Wineteractions/tree/main/Quality_Asessment/RNA
https://github.com/migueldc1/Wineteractions/tree/main/Quality_Asessment/RNA
https://github.com/migueldc1/Wineteractions/tree/main/Quality_Asessment/RNA
https://github.com/Migueldc1/Wineteractions
https://github.com/Migueldc1/Wineteractions
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composition and the metabolite profile of the resulting 
wines. The contrasting fermentation conditions applied 
had no major effect on the yeast dynamics during the 
process, since we found no distinct trend in the domi-
nance of yeast species across conditions (Supplementary 
Figure S3A). Kluyveromyces, Lachancea, and Saccharo-
myces dominated most fermentations, with the initial 
community variability within sampling location seem-
ingly determining which yeast dominated the fermenting 
communities. Interestingly, Kluyveromyces dominated 
only in the location where Garnacha, rather than Tem-
pranillo grapes, were sampled. This observation prompts 
questions and suggests the need for future research to 
understand how grape variety (i.e., the physicochemical 
composition of grape musts) influences the structure and 
dynamics of wine yeast populations.

The sampling location, a multifaceted factor encom-
passing the different physical–chemical composition of 
fresh grape musts and the subsequent dominant yeast 
population, showed the greatest explanatory power on 
the metabolite profile of the resulting wines, while the 
fermentation conditions showed a much lower but sig-
nificant effect on it (Supplementary Figure S3B, Supple-
mentary Table S4). The farming practices applied in the 
vineyard lost most of the already low explanatory power 
that it had on the metabolite profile of fresh grape musts 
(Supplementary Table  S2, Supplementary Table  S4), 
raising the question of whether or not the direct effect 
of farming practice on microbial diversity has any indi-
rect effect on wine quality. Here, it is important to note 
that different assays showed significantly different fer-
mentation kinetics, with only a fraction of them (those 
dominated by Saccharomyces) achieving complete con-
sumption of fermentable sugars. This discrepancy should 
be considered when comparing the metabolite profiles 
of final wines, as the extent of sugar consumption affects 
the community’s ability to produce and metabolize other 
compounds. Therefore, the interpretation of data focuses 
on whether distinct communities excelled in produc-
ing or consuming specific metabolites (e.g., lactic acid 
production when Lachancea dominates; malic acid con-
sumption when Kluyveromyces dominates) or in ferment-
ing sugars (Additional file 1). In addition, the significant 
differences in the initial chemical composition across 
fresh grape musts (Supplementary Table  S2) prevented 
us from considering the fungal diversity or the fermenta-
tion condition as truly isolated variables in our study.

Metabolite production by different fermentative yeasts
To better assess the associations between the composi-
tion and function of fermenting yeast communities, and 
the impact of different fermentation conditions on it, we 
moved to a fully controlled experimental setup, which 

allow us to remove the masking effect of the different 
physical–chemical environment resulting from using dif-
ferent fresh grape musts. Thus, we recreated our previous 
spontaneous fermentations, transferring the fermenting 
yeast communities obtained at the tumultuous stage of 
the control grape must fermentations as seed communi-
ties to inoculate synthetic grape musts (SGM) (Supple-
mentary Figure S1).

We investigated the composition and function of those 
fermenting yeast communities at the tumultuous stage of 
experimental SGM fermentations using RNA sequenc-
ing (RNA-Seq). To validate the taxonomic identification 
of transcripts from RNA-Seq data, we also conducted 
an ITS-amplicon sequencing on the same samples. We 
observed discrepancies in the abundance of certain taxa 
between ITS-amplicon sequencing and RNA-seq taxo-
nomic assignment, particularly regarding the detection 
of Hanseniaspora (Supplementary Figure S4). DNA-
based amplicon methods are subject to biases such as 
preferential primer binding (which can lead to biases 
for or against certain taxa) or an inability to differenti-
ate between living and dead cells [51, 52], while RNA-Seq 
captures actively expressed genes, revealing the relative 
abundance of active community members. Based on 
these advantages and supported by certain metabolite 
features observed in samples where the dominant pres-
ence of Hanseniaspora was revealed by RNA-Seq data 
(e.g., higher concentrations of acetic acid and residual 
sugars), we considered the information provided by 
RNA-Seq as the most reliable method to define the tax-
onomy of active yeast populations and used it to catego-
rize samples for further analysis (Fig. 2).

Our experimental fermentations (control, 18  °C,  NH4, 
and  SO2) were dominated by a handful of yeast gen-
era frequently detected in wine yeast communities [15, 
53], highlighting Hanseniaspora, Lachancea, and Sac-
charomyces (Fig.  2A). Performing our assays at labora-
tory scales and without the typical contamination of 
winery facilities likely reduced our chances of detecting 
native Saccharomyces strains, which are usually absent 
or present in very low abundances on grape surfaces but 
dominate the resident communities within wineries. As 
a result, this may have led to a greater number of fermen-
tations dominated by non-Saccharomyces species in our 
study. Indeed, Hanseniaspora and Lachancea are fre-
quently found in grape surface and initial phases of wine 
fermentation, contributing to the complexity of wine 
aroma [54, 55]. It is remarkable that about half of  SO2 
treatments did not even start the fermentation, mostly 
in samples whose seed community were dominated by 
Lachancea or Hanseniaspora (Fig.  2A); so, this experi-
mental condition could not be further assayed for these 
communities. In this sense, different yeast species exhibit 
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Fig. 2 Yeast community composition of synthetic grape musts during the most active fermentation stage and the resulting metabolite 
composition associated with the dominant yeast populations. A Relative abundance of yeast genus during fermentations assessed via RNA 
sequencing. “Other” include genus with relative abundance < 2.5%. The absence of bars for the conventional R3C samples indicates that they were 
inadvertently missed due to unforeseen factors unrelated to the experiment. Meanwhile, missing bars for certain  SO2 condition samples correspond 
to those that were discarded due to a lack of fermentation activity, indicated by no increase in turbidity (yeast cell proliferation) or weight loss 
for 5 days following inoculation. B Boxplot representing the metabolite composition of fermented synthetic grape must samples. Sugars, glucose, 
and fructose represent the remaining concentration after fermentation, whereas the rest of metabolites are produced during this process. Vertical 
axis indicates metabolite concentration. Raw data is detailed in Additional File 1. An ANOVA (analysis of variance) test and LSD (least square 
difference) test were conducted (a, b, c indicate significance groups, no marks if no significative differences are found). Saccharomyces, Lachancea, 
Hanseniaspora, and Other presented n = 10, n = 21, n = 13, and n = 15, respectively
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varying sensitivity to this antimicrobial, commonly used 
in wines, with Saccharomyces usually displaying higher 
tolerances [56]. In the rest of fermentation conditions, 
communities dominated by Hanseniaspora and Lachan-
cea left 47.37% ± 16.98% and 16.65% ± 6.54%, respec-
tively, of residual sugars upon the natural cessation of 
fermentations (Fig. 2B, Additional File 1). This could be 
explained by their limited fermentative capacity and eth-
anol tolerance, preventing them to complete the wine fer-
mentation process [57–59]. Apart from that, we did not 
observe a conserved metabolite pattern associated with 
the fermentation conditions imposed across samples 
(Supplementary Figure S5A, PERMANOVA: R2 = 0.062, 
p = 0.421). We only found a general decrease in the final 
concentration of tartaric and succinic acids when adding 
diammonium sulfate as a nitrogen nutrient,  NH4 condi-
tion (Supplementary Figure S6, further discussion can be 
found in Additional File 2).

On the contrary, we found distinctive metabolite pro-
files associated with the dominant yeast carrying the 
fermentation process (Supplementary Figure S5B, PER-
MANOVA: R2 = 0.298, p < 0.001). The substantial differ-
ences in the sugar consumption of fermentations, and 
hence ethanol production, in samples dominated by dif-
ferent yeast species would justify a lower concentration 
of aromatic compounds in fermentations dominated by 
non-Saccharomyces species (Fig.  2B, detailed descrip-
tion of differences in metabolite production at different 
fermentation conditions can be found in Additional File 
2). Specific differences such as the higher L-lactic acid 
production by Lachancea yeasts or the increased concen-
trations of acetic acid production in presence of Hanse-
niaspora have made them especially relevant in wine 
sciences [60–62]. When studying the molecular basis 
of the individual contribution of yeasts to the chemi-
cal composition of wines, most works studied individual 
strains in the form of pure inoculum or in co-inoculation 
with S. cerevisiae, always leading to completed fermen-
tations [63–65]. Here, we aim to investigate the impact 
of different fermenting yeast populations emerged from 
wild complex communities, which is closer to the reality 
found in spontaneous wine fermentations.

Transcriptomic profiles of fermenting yeast communities
We evaluated the transcriptomic profiles of the ferment-
ing communities during the most active phase (tumul-
tuous stage) of wine fermentation. The dominant yeast 
species also defined the meta-transcriptome of wine 
fermentations (Fig.  3A, PERMANOVA: R2 = 0.498, 
p < 0.001), while fermentation conditions had a much 
lesser impact (Supplementary Figure S7, PERMANOVA: 
R2 = 0.037, p = 0.097). Distinctive profiles emerged for 
samples dominated by Saccharomyces, Lachancea, or 
Hanseniaspora. We used the transcriptomic profiles of 
samples dominated by Saccharomyces (Saccharomyces 
from now on) as a control for comparative analysis, as 
it is the reference yeast in wine science [31]. Hansenias-
pora-dominated samples (from now, Hanseniaspora) pre-
sented more differentially expressed orthologs (DEO) and 
higher accumulated log fold change (LFC) than fermen-
tations dominated by Lachancea (hereafter referred to as 
Lachancea) (Fig. 3BC), 1019/7023.811 (DEO/LFC) com-
pared to the 705/4094.062 of Lachancea (with 382 com-
mon DEO). Biological processes significantly enriched in 
Hanseniaspora samples were related with cell cycle and 
division (Fig. 3D). This altered cell cycle consists mainly 
of a decrease in the transcription of orthologs related 
with cell division accompanied by some transcriptomic 
response to the stressful environment, compared with 
Saccharomyces transcriptome (Supplementary Figure 
S8), which we attributed to fermentation conditions 
being suboptimal for community growth. The increasing 
ethanol conditions could be hindering the growth of this 
community, without provoking a strong stress response 
when compared with Saccharomyces. Lachancea, on its 
hand, showed significative enrichment in biological pro-
cesses related with secondary metabolism and the pro-
duction of alcohols and organic acids. These findings 
confirm the ability of Lachancea to promote the forma-
tion of higher alcohol esters, succinic acid, and reduced 
volatile phenols, and most importantly, L-lactic acid 
which represent a differential trait for this genus [54, 66], 
as demonstrated in this work in both natural grape must 
(Additional file  1) and SGM fermentations (Additional 
File 1; Fig. 2).

Saccharomyces showed significative differences in 
transcriptomic profiles under the different fermentation 

Fig. 3 Differential expression analysis of Hanseniaspora- and Lachancea-dominated samples, with respect to Saccharomyces (Saccharomyces, 
Lachancea, Hanseniaspora, and Other presented n = 10, n = 21, n = 13, and n = 15, respectively). A Principal component analysis (PCA) representing 
and showing the different transcriptomic profiles colored by dominant yeast. B Venn diagram comparing differently expressed orthologs (DEO) 
between communities dominated by Hanseniaspora or Lachancea and Saccharomyces. C Histogram of absolute fold change (log2) expression. D 
GO enrichment analysis of the differentially expressed orthologs. Raw results from biological enrichment analyses can be found at https:// github. 
com/ migue ldc1/ Winet eract ions/ blob/ main/ Data/ Meta- trans cript omics/

(See figure on next page.)

https://github.com/migueldc1/Wineteractions/blob/main/Data/Meta-transcriptomics/
https://github.com/migueldc1/Wineteractions/blob/main/Data/Meta-transcriptomics/
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Fig. 3 (See legend on previous page.)
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conditions assayed. These conditions were selected 
because they are part of common practices in wine pro-
duction [67], so it seems reasonable that winemakers 
have designed different enological strategies that directly 
shape the performance of Saccharomyces, the main wine 
yeast. However, in a moment where spontaneous fermen-
tations and the use of complex multispecies consortia are 
gaining importance in the wine industry, a deeper under-
standing of the ecological context in which non-Saccha-
romyces species thrive and their associated metabolic 
traits is needed [19].

Within the Saccharomyces-dominated samples, we 
observed significative effects of fermentative conditions 
on transcriptional profiles (Fig.  4). Low-temperature 
conditions caused the highest changes in transcriptomic 
profiles, presenting 147/329.17 DEOs and absolute accu-
mulated log fold change, compared to 99/212.73 and 
18/56.62 of  NH4 and  SO2, respectively (Fig.  4AB). Low 
temperature mainly affected metabolic processes related 
to amino acids and sulfur. Cold stress would slow growth 
and metabolic activity, and Saccharomyces is shown to 
respond by upregulating genes involved in sulfur assimi-
lation and glutathione biosynthesis [68]. The biologi-
cal enrichment obtained was linked to cold resistance 
and did not reveal any trend in metabolite production 
(Fig.  4C). The addition of  NH4 resulted in a significant 
modulation of the metabolism of organic nitrogen com-
pounds and organic acids (Supplementary Figure S9). 
This translates in seemingly decreased concentrations of 
tartaric and succinic acids, as measured at the end of the 
fermentations. The presence of increased concentrations 
of ammonia could induce nitrogen catabolite repres-
sion, inhibiting the expression of genes related with the 
transport of amino acids [65]. Interestingly, metabisulfite 
addition  (SO2 treatments) presented little differences in 
transcriptomic profiles compared with control condi-
tions, not revealing any enriched biological process. This 
response emerges as the result of the great tolerance 
of S. cerevisiae wine strains to metabisulfite, one of the 
best studied hallmarks of domestication in this species 
[69]. Metabisulfite addition and fermentation at lower 
temperatures help in avoiding microbial contaminations 
during wine fermentation [70–73], while the addition of 
ammonia prevents nitrogen limitation and premature 
fermentation stops [74, 75]. These practices are designed 
to ensure the safety and quality of final wines, while they 
seem to have a limited influence in the aroma of sponta-
neously fermented wines, even though they impact yeast 
metabolic activity.

Orthologs responsible for metabolite production
We further aimed to understand the connection 
between community functional potential and metabolite 

production by associating the transcriptomic and metab-
olite profiles of the experimental fermentations. Even 
though both profiles were assessed at different stages, 
we argue that at the tumultuous stage, the community is 
on its activity peak, revealing the most informative tran-
scriptomic trends, whereas cumulative metabolite pro-
duction was assessed at the end of fermentations in an 
attempt to exaggerate possible differences. To visualize 
the associations between ortholog expression and metab-
olite production, we used bipartite networks (Fig.  5A). 
Orthologs clustered into modules, each significantly 
associated with specific metabolites (Additional File 3). 
Interestingly, the accumulated expression levels within 
each module were influenced by the dominant yeast spe-
cies, reflecting distinct transcriptional profiles associated 
with the diverse metabolite compositions of final wines. 
For instance, modules 1 and 2 showed higher accumu-
lated expression in samples dominated by Hanseniaspora 
(Fig.  5B). These samples were characterized by higher 
residual sugars, acetic acid, and, seemingly, fusel alco-
hol acetates production (Fig. 2). The seemingly subopti-
mal fermentation conditions for Hanseniaspora, latter 
leading to a rapid fermentation halt, might be linked to 
increased ester production, such as fusel alcohol acetates 
[76]. In addition, Hanseniaspora species are also shown 
to produce high concentrations of acetic acid during 
wine fermentations [77]. Interestingly, although Hanse-
niaspora was not initially detected as a dominant yeast at 
the end of the natural grape must fermentations (Supple-
mentary Figure S3), samples that later proved to contain 
large and active populations of Hanseniaspora by RNA-
Seq (especially M-CONV and M-ORG; Supplementary 
Figure S4) actually produced high concentrations of ace-
tic acid during those fermentations (Additional File 1). 
This reinforces our previous observations on the biases 
of ITS-amplicon sequencing in detecting Hanseniaspora 
and confirms acetic acid production as a specific trait 
of this yeast. The linear relationship found between the 
accumulated expression of module 2 and acetic acid pro-
duction across species (Fig. 5B) suggests that the expres-
sion of this subset of orthologs is crucial for acetic acid 
production during wine fermentation. Module 3 was 
mainly related with Saccharomyces-dominated samples, 
only correlating with ethanol content, which is highest in 
these samples (Fig. 2, Fig. 5B). Module 4 was related with 
Lachancea-dominated samples and correlated with the 
production of L-lactic and succinic acids, as well as fusel 
alcohols (Fig. 5B). Consistently, the production of L-lactic 
and succinic acids was also significantly increased in nat-
ural grape must fermentations dominated by Lachancea 
(Fig. 2), and the expression of these orthologs may play a 
crucial role on their release.
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Fig. 4 Differential expression analysis of Saccharomyces-dominated samples comparing transcriptional profiles at different fermentative 
conditions (n = 2). A Venn diagram comparing differently expressed (DE) orthologs across conditions. B Histogram of absolute fold change (log2) 
expression between the experimental and control groups. C GO biological process enrichment analysis of the differentially expressed orthologs. 
Blue represents samples fermented at low temperature (18 °C), yellow samples with ammonia added  (NH4), and green samples supplemented 
with metabisulfite  (SO2). Raw results from biological enrichment analyses can be found at https:// github. com/ migue ldc1/ Winet eract ions/ blob/ 
main/ Data/ Meta- trans cript omics/

https://github.com/migueldc1/Wineteractions/blob/main/Data/Meta-transcriptomics/
https://github.com/migueldc1/Wineteractions/blob/main/Data/Meta-transcriptomics/
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Fig. 5 Relationship between ortholog expression and metabolite production (Saccharomyces, Lachancea, Hanseniaspora, and Other presented 
n = 10, n = 21, n = 13, and n = 15, respectively). A Bipartite network showing the significant positive correlations between normalized ortholog 
expression and metabolite concentration. Circles represent orthologs and squares metabolites. Circle colors are indicative of module membership, 
i.e., orthologs associated with the same metabolites. Square colors represent the metabolite family. B Relationships between the total expression 
of ortholog belonging to a given module and metabolite concentration (raw data detailed in Additional File 3). Spearman’s rank correlation 
coefficient is shown (p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001)
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We only found significant differences across fer-
mentative conditions in the accumulated expression of 
module 3 (Supplementary Figure S10). This module is 
mainly expressed by Saccharomyces, which is prevalent 
in  SO2-treated fermentations, explaining this result 
and reinforcing the idea that most traditional enologi-
cal interventions have been developed with the aim 
of modifying the performance of S. cerevisiae. The 
patterns described here highlight differences in tran-
scriptomic profiles among species, ultimately shaping 
the unique contribution of each yeast in the metabolic 
complexity of wine. In this sense, Belda et al. [78] pro-
posed the adoption of synthetic biology to encapsu-
late the functional complexity of wine communities 
into a single cell. Our results offer crucial insights into 
identifying the specific set of orthologs that define the 
individual contributions of yeast species to the metab-
olite and sensory profiles of wines. However, fur-
ther studies on the specific gene sequences and their 
transcriptional regulation in each species are neces-
sary to address the limitations of working solely at the 
ortholog level.

Our study evaluating the fermentation process from 
an ecological point of view aims to escape from the 
classical enological approach. While this perspective 
offers valuable insights, it is not without limitations. 
Our fundamental goal was to assess the relationship 
between yeast community composition and function 
during fermentation with the final metabolite com-
position. Perhaps the major limitation we found is 
that several communities — those dominated by non-
Saccharomyces species — were not able to consume 
all fermentable sugars, classically referred to as unfin-
ished fermentations. In those cases, we focused on 
identifying specific functions provided by the domi-
nant community members, as they can inform about 
the molecular mechanisms of yeasts contribution to 
wine flavor in multispecies fermentations. In this work, 
we focused on the consistent patterns found relating 
dominant yeast species with final metabolite produc-
tion, representing a meaningful baseline to understand 
the intricate interplay between yeast communities and 
wine metabolite profile. Specific research questions 
need to be addressed to further investigate best prac-
tical applications of complex yeast communities in 
the wine industry. Our results contribute to the open 
debate about the actual possibilities of manipulating 
spontaneous fermentations through traditional enolog-
ical interventions and to consider whether the exclusive 
avenue for crafting customizable wines lies in two alter-
native approaches: developing new precision methods 
to manipulate the composition and function of native 
wine yeast communities [79] or meticulously designing 

synthetic microbial consortia from the bottom up [19], 
which takes into account not only the best combina-
tion of species but also their inoculum ratio to ensure 
a perceivable contribution from non-Saccharomyces 
yeasts without compromising fermentation kinetics. In 
this context, prospective studies are needed to identify 
yeast species and strains that excel in specific functions 
such as producing specific wine metabolites, also con-
sidering the potential role of less prevalent and minor 
species isolated from grape musts [32].

Conclusions
In summary, our initial survey of fungal communities 
in fresh grape musts across diverse Spanish wine appel-
lations revealed significant influences of biogeography 
and, at a lesser extent, viticultural practices on yeast 
community composition. We found higher fungal diver-
sity in vineyards under organic management. Ferment-
ing grape must under various contrasting winemaking 
conditions revealed minimal effects on population 
dynamics and metabolite production, as the location 
factor differentiated initial yeast communities and must 
composition. The transition to an experimental setup 
involved the inoculation of the obtained yeast communi-
ties in synthetic grape must, revealing that variations in 
metabolite profiles were associated with the dominant 
fermenting yeast rather than fermentation conditions. 
Transcriptomic analyses highlighted the different pro-
files across yeast species, surpassing the influence of fer-
mentation conditions. Distinctive molecular responses 
were observed in samples dominated by Saccharomyces, 
Lachancea, and Hanseniaspora, emphasizing their roles 
in shaping wine metabolite composition. Fermentative 
conditions did, however, influence the performance of 
Saccharomyces-dominated samples, which are shown to 
be easily conditioned by oenological standard practices. 
Furthermore, specific orthologs were linked to metabo-
lite production associated with different yeast-dominated 
community, offering valuable insights into the functional 
potential of diverse yeast communities. Our findings 
contribute to a nuanced understanding of the intricate 
interplay between yeast communities, environmen-
tal conditions, and fermentation dynamics, crucial for 
advancing both scientific knowledge and practical appli-
cations in the wine industry.
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 Additional File 3. List of correlated metabolites and orthologs, indicating 
the ortholog module membership and KEGG annotation

 Additional File 4: Supplementary material: Supplementary Figure S1. 
Schematic representation of the observational study and inoculated 
laboratory fermentations designs. A) Sampling map of the wine appel-
lations surveyed and the sampling within La Rioja wine appellation. 
Colors represent different sampling locations: RdG (Ribera del Guadiana), 
VLP (Valdepeñas), LM (La Mancha), M (Madrid), R1-R3C (La Rioja). Shape 
indicates conventional (circle) and organic (diamond) farming manage-
ments. B) Observational study carried in fresh grape musts (GM). We first 
pressed grape samples and divided the grape must in bottles, per quad-
ruplicate. Then, each replicate was fermented under different condition 
until they reached the tumultuous stage, consuming between 23-45% 
of sugars (Supplementary Table S1). C) We repeated the fermentations 
in laboratory conditions by inoculating synthetic grape must (SGM) with 
the fermenting yeast communities obtained from control replicates. The 
weight loss schematic graphic represents the fermentation stage sampled 
for numerous analyses, such as amplicon sequencing from DNA extrac-
tion, or RNAseq experiment from RNA extraction. In addition, the seed 
community indicates that control fermentations were used to inoculate 
the synthetic grape musts. A complete description of the sampling effort 
and data analysis can be found at https:// github. com/ migue ldc1/ Winet 
eract ions/. Supplementary Figure S2. Grape must composition of initial 
samples. Principal Component Analysis (PCA) representing grape must 
composition diversity across wine appellations, including conventional 
RdG samples, i.e., Red Garnacha grapes (n= 4). Raw data detailed in 
Additional File 1. Supplementary Figure S3. Metabolite and yeast com-
munity profiles of fermented grape musts. A) Relative abundance of yeast 
genera at the final stage of grape must fermentations, as detected by ITS-
amplicon sequencing. “Other” include genus with relative abundance < 
2.5%. The missing bars indicates the loss of samples during fermentation, 
which occurred due to unforeseen factors unrelated to the experiment. 
B) Metabolite profile, including non-volatile and volatile compounds, at 
the end of the fermentation of fresh grape musts. Principal Component 
Analysis (PCA) representing metabolite profiles (n = 4). Raw data used 
for metabolite profiling can be found in Additional File 1. Supplemen-
tary Figure S4. Comparison of the taxonomic assignation achieved via 
ITS amplicon sequencing and meta-transcriptomics analysis. Relative 
abundance of fungal genus shown for each replicate from each grape 
sample. “Other” include genus with relative abundance. Supplementary 
Figure S5. Metabolite profile at the end of the fermentation of synthetic 
grape musts. Principal Component Analysis (PCA) representing metabolite 
profiles. Samples are colored based on A) fermentative conditions and 
(Control, 18°C, NH4, and SO2 conditions presented n= 17, n = 17, n = 17, 
and n = 8, respectively) B) dominant yeast (Saccharomyces, Lachancea, 
Hanseniaspora, and Other presented n = 10, n = 21, n= 13, and n = 
15, respectively). Raw data detailed in Additional File 1. Supplementary 
Figure S6. Boxplot representing the metabolite composition of fermented 
synthetic grape must samples (n = 18). Sugars, glucose and fructose, 
represent the remaining concentration after fermentation, whereas 
the rest of metabolites are produced during this process. Vertical axis 
indicates metabolite concentration. An ANOVA test and LSD (Least Square 
Difference) test were conducted (a–c indicate significance groups). Raw 
data detailed in Additional File 1. Supplementary Figure S7. Principal 
Component Analysis (PCA) showing the different transcriptomic profiles 
colored by fermentative conditions (Control, 18°C, NH4, and SO2 condi-
tions presented n = 17, n = 17, n = 17, and n = 8, respectively). Supple-
mentary Figure S8. Transcriptomic analysis of Hanseniaspora dominated 
samples at the tumultuous stage of fermentation. Upper panel represent 
the accumulated expression change of selected differentially expressed 
orthologs (DEO) from enriched biological processes. Raw results from 
biological enrichment analyses can be found at https:// github. com/ migue 
ldc1/ Winet eract ions/ blob/ main/ Data/ Meta- trans cript omics/. The lower 
panel represent the accumulated expression change of DEO related to 
different responses to stress (detailed in Supplementary Table S5). Expres-
sion fold change is calculated against Saccharomyces dominated samples. 
Supplementary Figure S9. Metabolite composition of fermented synthetic 
grape musts dominated by Saccharomyces (n = 2). Glucose and fructose 
represent the remaining concentration after fermentation, whereas the 

rest of metabolites are produced during this process. Vertical axis indicates 
metabolite concentration. Raw data detailed in Additional File 1. Supple-
mentary Figure S10. Accumulated expression of the modules formed by 
orthologs in Figure 5 (Control, 18°C, NH4, and SO2 conditions presented n 
= 17, n = 17, n = 17, and n = 8, respectively). Analysis of Variance (ANOVA) 
test was carried out to test for different expression levels among fermenta-
tive conditions, and further Tukey post hoc test. (a-b indicate significance 
levels). Supplementary Table S1. Proportion of sugars consumed (%) and 
yeast cells concentration (CFU/mL; showed in brackets) in the sampling 
of yeasts communities at the tumultuous fermentation stage. Samples 
from Grape musts (only from the control condition assays) were used for 
collecting the seed communities lately used to inoculate the experimental 
fermentations in SGM. Samples collected from SGM were collected to 
extract DNA and RNA for ITS-amplicon sequencing and RNA-Seq analysis, 
respectively. Missing values correspond to samples that were unable to 
initiate the experimental fermentations in SGM. Supplementary Table S2. 
PERMANOVA results of fresh grape must physical-chemical composition 
comparing different origins and farming managements across and within 
wine appellations (WA). Supplementary Table S3. PERMANOVA results 
comparing initial fungal communities, present in fresh grape must, com-
paring different origins and farming managements across and within wine 
appellations (WA). Supplementary Table S4. PERMANOVA results compar-
ing fermented grape must composition comparing across different 
origins, farming managements across and within wine appellations and 
fermentation conditions. Supplementary Table S5. Differently expressed 
orthologs related with stress response.
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