
Jochheim et al. Microbiome          (2024) 12:187  
https://doi.org/10.1186/s40168-024-01904-y

SOFTWARE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

Strain‑resolved de‑novo metagenomic 
assembly of viral genomes and microbial 16S 
rRNAs
Annika Jochheim1,2, Florian A. Jochheim2,3, Alexandra Kolodyazhnaya1, Étienne Morice1,2, 
Martin Steinegger4,5,6* and Johannes Söding1,2,7* 

Abstract 

Background  Metagenomics is a powerful approach to study environmental and human-associated microbial 
communities and, in particular, the role of viruses in shaping them. Viral genomes are challenging to assemble 
from metagenomic samples due to their genomic diversity caused by high mutation rates. In the standard de 
Bruijn graph assemblers, this genomic diversity leads to complex k-mer assembly graphs with a plethora of loops 
and bulges that are challenging to resolve into strains or haplotypes because variants more than the k-mer size apart 
cannot be phased. In contrast, overlap assemblers can phase variants as long as they are covered by a single read.

Results  Here, we present PenguiN, a software for strain resolved assembly of viral DNA and RNA genomes and bac-
terial 16S rRNA from shotgun metagenomics. Its exhaustive detection of all read overlaps in linear time combined 
with a Bayesian model to select strain-resolved extensions allow it to assemble longer viral contigs, less fragmented 
genomes, and more strains than existing assembly tools, on both real and simulated datasets. We show a 3–40-fold 
increase in complete viral genomes and a 6-fold increase in bacterial 16S rRNA genes.

Conclusion  PenguiN is the first overlap-based assembler for viral genome and 16S rRNA assembly from large 
and complex metagenomic datasets, which we hope will facilitate studying the key roles of viruses in microbial 
communities.
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Background
In shotgun metagenomics, DNA from environmental 
samples is directly sequenced, usually with short-read 
sequencing techniques. Millions to billions of short reads 
per sample are assembled into contigs, which are then 
binned into hundreds of different metagenome-assem-
bled genomes. This approach circumvents the need to 
cultivate microbes in the lab, which requires to painstak-
ingly search for suitable cultivation conditions for each 
microbial species. The ease of accessing the composition 
and gene-encoded functions of microbes with these cul-
tivation-independent techniques have therefore greatly 
propelled progress in environmental microbiology [1] 
and particularly in medical research, where ever tighter 
links are being discovered between our gut-associated 
microbiomes and the development and homeostasis of 
our immune system, our metabolic health, and the nor-
mal functioning of our brains [2–4].

Viruses infecting bacteria or archaea (called phages) 
have recently moved into the limelight, as their central 
roles in shaping environmental and gut microbiomes 
are becoming clearer. Phages are particularly difficult to 
study in the lab because their prokaryotic hosts are often 
difficult to cultivate themselves and, on top, propagating 
viruses in the lab requires finding conditions that may 
well be distinct from those used to cultivate their hosts 
[5]. Therefore, viral metagenomics has greatly accelerated 
the study of phages and their roles in shaping environ-
mental, animal- and plant-associated microbial ecosys-
tems, such as soil [6–8], aquatic environments [9–14], or 
the human gut [15–18]. These and other studies indicate 
that phages have a huge impact on their host communi-
ties, by shaping their compositions and dynamics and 
driving bacterial diversity [19, 20]. However, only a min-
ute sliver of the world’s virome has so far been discovered 
[21].

Virus genomes can be retrieved from datasets enriched 
for virus particles (viral metagenomes) or from bulk 
metagenomes, including both virus particles and 
microbial cells [5, 22]. Assembling viral genomes from 
metagenomic data is challenging. Viruses have small sizes 
and therefore often represent only a minor fraction of the 
reads, whereas the background contamination from bac-
terial or eukaryotic hosts can be high [23, 24]. The chief 
difficulty stems from the high microdiversity and strain 
heterogeneity resulting from an error prone replication 
process, the lack of repair mechanisms, and the frequent 
exchange of genomic segments [25, 26].

Genomic assembly follows one of two approaches 
[27]: In overlap assembly, one computes the overlap 
alignments between all reads, links reads with sufficient 
overlap and similarity in their overlapping regions, and 

constructs contiguous assembled sequences (contigs) 
from chains of linked reads. This approach dominated 
until short read sequencers producing millions of reads 
became popular and the quadratic runtime for comput-
ing all-versus-all alignments became prohibitive. In de 
Bruijn graph assembly, one constructs a graph in which 
each node represents a k-nucleotide subsequence (k-
mer) and edges are drawn between successive k-mers in 
a read. Contigs are constructed from paths through this 
de Bruijn graph. Because no all-versus-all alignment of 
reads is required, the runtime scales only linearly in the 
number of input reads. For this reason, modern metagen-
omics assemblers (except Plass [28]) employ de Bruijn 
graphs [29–31].

However, this efficiency gain comes with the down-
side that genomes of closely related strains cannot be 
resolved. Beyond the distance of the maximum k-mer 
size, which is typically around 55, the information 
whether two variants occurred in the same read is lost 
when reducing the reads to a de Bruijn graph (Fig.  1B). 
Genomes with average nucleotide identity (ANI) ≥ 95% 
have many identical stretches longer than the typical k-
mer size. The k-mer size is limited by the quickly explod-
ing complexity of the de Bruijn graph for increasing k due 
to intra-strain microdiversity in microbial populations 
and sequencing errors. Therefore, most de Bruijn graph 
assemblers only attempt to assemble consensus genomes 
instead of strain-resolved genomes.

Viral populations with their high microdiversity and 
strain heterogeneity pose formidable challenges to 
assembly of viral genomes from metagenomic data. The 
resulting complex graph structures lead to fragmented 
assemblies and make the reconstruction of strain-
resolved genomes even harder [32]. State-of-the-art 
metagenomic viral assemblers as metaviralSPAdes [33], 
rnaviralSPAdes [34], and Phables [35] employ various 
heuristics to simplify the graph structure, for example by 
removing tips, bubbles, and bulges with low coverage. To 
resolve strains, Phables, rnaviralSPAdes, and Haploflow 
[36] employ flow decomposition: They find a set of paths 
and read coverages that would add up to approximately 
the read coverages observed in the de Bruijn graph. 
Unfortunately, flow decomposition has less utility for 
virus genomes due to their uneven read coverage, par-
ticularly for RNA phages, for which the reverse transcrip-
tion step introduces strong sequence biases [37].

Several tools have been developed for the assembly of 
viral genomes in patient samples, which typically con-
tain a small number of highly similar strains. Haplotype 
assemblers like Haploflow, SAVAGE [38], and ViPRA-
Haplo [39] aim to reconstruct strain-resolved genomes, 
while IVA [40] and VICUNA [41] reconstruct consensus 
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genomes. All except Haploflow are overlap assemblers, 
which make use of the co-occurrence of mutations within 
reads. However, they were not designed to analyze com-
plex metagenomic dataset and also tend to be much 
slower than de Bruijn graph assemblers.

Assembly of 16S rRNA genes from metagenomic data is 
of particular interest because of their use as marker genes 
in the identification, quantification, and phylogenetic 

analysis of prokaryotes. Assembling 16S rRNA genes 
is a problem analogous to strain-resolved viral genome 
assembly. Like genomes of related viral strains, 16S rRNA 
genes have highly conserved regions interspersed with 
regions of higher variation. The highly conserved regions 
are longer than the typical k-mer length, and hence de 
Bruijn graph assemblers cannot know how to connect 
these variable regions across the conserved ones. This 

Fig. 1  PenguiN overview. A PenguiN proceeds in two stages. During stage I, PenguiN assembles six-frame translated reads (blue). All sequences 
sharing a k-mer are grouped together. In each k-mer group, all sequences are aligned to the longest one (red), and the best-matching sequences 
are used to extend the red sequence. Penguin keeps track of the underlying nucleotide sequences, resulting in assembled coding sequences 
(dark green). During stage II, the coding sequences are combined with nucleotide reads (light green). In both stages, sequences are iteratively 
extended by computing overlap alignments (black dotted lines) in linear time, ranking possible extensions by their quality, and extending 
upstream and downstream with the best sequence. B De Bruijn graph assemblers cannot resolve strains across conserved regions longer than their 
k-mer length (black bar). In contrast, overlap assemblers like PenguiN can link strain assemblies correctly across all conserved regions shorter 
than the (paired) read length
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results in highly branched de Bruijn graphs, making the 
reconstruction of individual 16S rRNA gene sequences 
hard [42, 43]. Usually, either 16S sequences of several 
species are merged into consensus sequences or assem-
blies remain very fragmented [44].

Here, we present PenguiN, a de-novo metagenomic 
overlap assembler for viral genomes and 16S rRNA 
genes. PenguiN iteratively extends reads and growing 
contigs by computing all overlap alignments between 
them and selecting the extensions that are most likely 
to be from the same strain, based on a novel Bayesian 
statistical model. Similar to Plass [28], our protein-level 
assembler, PenguiN achieves fast speeds and a linear run 
time complexity by applying Linclust [45], the first algo-
rithm to cluster protein and nucleotide sequences in lin-
ear time. To gain robustness with respect to the high level 
of microdiversity in viral genomes, PenguiN guides its 
nucleotide assembly by evaluating the protein sequences 
when merging coding sequences. On simulated and real 
complex metagenomic short read datasets, PenguiN 
assembled several times more viral genomes and 16S 
RNAs at similar error rates than nine state-of-the-art 
metagenomic or viral assemblers.

Results
Overview of PenguiN
PenguiN is an overlap assembler that uses two largely 
analogous stages. In stage I (Fig. 1A left), it assembles six-
frame translated reads into proteins, while also co-assem-
bling the corresponding nucleotide coding sequences. 
In stage II (Fig.  1A right), it links the contigs covering 
coding regions obtained from stage I across non-coding 
regions. PenguiN follows a greedy iterative assembly 
scheme. Like our protein-level assembler Plass [28], it 
uses the Linclust algorithm [45] to find statistically sig-
nificant overlaps in linear time and extends the sequences 
iteratively. To avoid chimeric extensions, for each center 
sequence, we select from several possible extensions the 
one with the highest Bayesian posterior probability to 
belong to the same genome (see the “Methods” section). 
When overlap lengths differ, this scheme improves upon 
the Plass extension strategy of choosing the overlap with 
the highest sequence identity. Both stages perform mul-
tiple iterations of overlap computation and extension. In 
addition, in stage II we detect circular sequences after 
each extension (see the “Methods” section), because 
plasmids and many viral genomes are circular. In con-
trast to the graph-based assemblers that can detect cycles 
directly using their graph structure, such detection is not 
possible in our graph-free assembler. To prevent over-
extension for circular genomes or those with long ter-
minal repeats, PenguiN terminates the extension when 

it detects a cyclic structure, excludes them from further 
iterations and marks them for the final results. Finally, 
the resulting contigs are clustered and one representative 
per cluster is selected to reduce redundancy.

Using full-read overlaps to find the best extensions 
enables PenguiN to perform strain-level assemblies, a 
task that standard k-mer-based de Bruijn graph assem-
blers struggle with (Fig.  1B). Many perfectly conserved 
regions between two strains will be longer than their k-
mer length, since strains typically have sequence identi-
ties between 90 and 99%. De Bruijn graph assemblers 
have no way of telling which contig upstream of such a 
conserved region should be joined to which contig down-
stream. Therefore, these assemblers either fragment the 
assembly at the conserved regions to avoid generating 
chimeric contigs, or they resort to assembling the con-
sensus genome. In contrast, PenguiN can use the full 
overlap alignment and information about co-occurring 
mutations to select the best extension and assemble the 
genomes of strains (Fig. 1B).

We tested PenguiN on synthetic and real datasets and 
compared it to state-of-the-art assembly tools, both de 
Bruijn graph and overlap-based.

Assembly of an in silico mixture of HRV genomes
We first generated a very simple synthetic dataset com-
prised of only three human rhinovirus strains (see the 
“Methods” section). We simulated 2× 150   bp error-
free reads from the three genomes using randomreads.
sh from the BBMAP software suite in proportions 4:2:1 
with coverages of 200, 100, and 50, respectively. The 
genomes have average nucleotide identities (ANI) rang-
ing from 92 to 95%, with mismatches mainly due to sin-
gle-nucleotide polymorphisms (SNPs). We assembled 
them using PenguiN and nine other assemblers: Mega-
hit [29], metaSPAdes [30], metaviralSPAdes [33], rnaS-
PAdes [31], rnaviralSPAdes [34], SAVAGE [38], IVA [40], 
VICUNA [41], and Haploflow [36]. MetaviralSPAdes 
did not produce any assemblies and was excluded from 
the subsequent analysis. Assembly quality was assessed 
using MetaQUAST [46]. The results are shown in Fig. 2 
and the MetaQUAST report is available in Additional 
File 1: Fig. S1.

PenguiN performed well in all metrics. It assembled 
three contigs, covering almost 100% of all three strain 
genomes with a single contig each (Fig. 2A, B). Two fur-
ther assemblers assembled all three strain genomes to 
a high degree of completeness: Haploflow (97.98%) and 
SAVAGE (97.39%). All other assemblers only assembled 
the most frequent strain completely, while either frag-
menting or missing parts of the other two. For example, 
Megahit recovered only 80% of the strain with the low-
est abundance (MN749156.1), metaSPAdes recovered 
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merely 20%, and rnaviralSPAdes only 15%. IVA and 
VICUNA, which were designed to assemble viral qua-
sispecies, both assembled a consensus genome, that 
could only be aligned to the most abundant genome by 
MetaQUAST.

MetaQUAST reported no misassemblies for any of 
the tools, but half of them generated assemblies with 
a considerable number of mismatches or indel errors 
(Fig.  2C, Additional File 1: Fig.  S1), probably due to 
inter-strain chimeric contigs.

Fig. 2  Assembly quality on an in-silico mixture of three HRV genomes. A Comparison of three genomes assembled by the nine assemblers aligned 
to the reference. Black bars indicate fragmentation where contigs overlap. B Fraction of the three genomes covered and C number of mismatches, 
computed by MetaQUAST [46]
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Performance on highly diverse strain mixtures
Next, to test the ability of assemblers to reconstruct 
genomes of viral strains from extremely diverse sam-
ples, we downloaded 2550 HIV-1 genomes from the 
NCBI database (see Methods). The HIV-1 genome is 
approximately 9.7  kbp and has long terminal repeats 
(LTRs) at both ends, due to which the genome can be 
both in linear and circular form [47, 48]. We used the 
circularized forms of all genomes as the ground-truth 
reference (see Methods), since all linear assemblies can 
be perfectly mapped to them. The pairwise nucleotide 
identities among the 2550 genomes are mostly in the 
range of 85% to 95% (Fig. 3A). We generated synthetic 
datasets with 2 ×  150 bp error-free reads with over-
lap lengths uniformly distributed between 40 and 60 
nucleotides. To analyze the dependence of the assem-
bly quality on genomic coverage, we generated in total 
three datasets of reads with mean coverage of each 
genome set to 1× , 10× , and 100× . Due to the high num-
ber and similarity of the genomes, this dataset was par-
ticularly challenging to assemble.

SAVAGE de novo and Haploflow did not finish within 
10 days at 10× and 100× coverage and could not be 
evaluated. MetaviralSPAdes, IVA, and VICUNA pro-
duced only very few or no contigs. We again evaluated 
the assembly quality using MetaQUAST [46]. PenguiN 
performed best in most metrics (Fig.  3B–D). The dis-
tribution of the fractions of assembled genomes shows 
that PenguiN assembled several times higher genome 
fractions across all coverage values than the next best 
tool, rnaSPAdes (Fig.  3B). The median assembled 
genome fractions for PenguiN at 10 and 100 times cov-
erage were 86% and 97%, respectively, compared to 28% 
and 34% for rnaSPAdes (Fig. 3C). On the low coverage 
set, PenguiN was the only tool able to recover genomes 
with a fraction of more than 90%. The analysis was 
performed using the MetaQUAST default threshold 
of 95% sequence identity. In total, PenguiN recovered 
27 genomes by more than 90% on the 1× coverage set, 
1136 on the 10× coverage set, and 1550 genomes on the 
100× coverage set, whereas the next best tools rnaS-
PAdes and Megahit recovered 0, 24, and 36 and 0, 3, 
and 11, respectively, corresponding to an approximately 
40-fold increase. Further, we also saw that introduc-
ing sequencing errors in the simulated reads (see the 
“Methods” section) does not change this picture (see 
Fig. S2).

PenguiN’s genome assemblies also consist of much 
longer contigs, as measured by NGA50 (Fig. 3D). While 
almost all assemblers can gain from more coverage, most 
assemblers except for PenguiN either have fragmented 
assemblies or do not cover the reference genomes with 
≥ 50% (counted as NGA50 = 0). At 10 and 100 times 

coverage, 50% of the 2550 genomes assembled by Pen-
guiN had NGA50 values above 3.6  kbp and 5.7  kbp, 
respectively, while the next best tool in this regard, rnaS-
PAdes, had only 22 and 12 genomes with NGA50 values 
above these lengths.

Also, PenguiN’s number of misassemblies per contig 
was the second best on the 1× and 10× coverage dataset, 
and the third best on 100× coverage dataset. Especially, it 
was markedly lower than rnaSPAdes, the assembler with 
the second best completeness. On the flip side, the high 
completeness of PenguiN assemblies resulted in a higher 
duplication ratio (between 1.3 and 1.6) than for other 
tools except rnaSPAdes (Fig. 3B).

To analyze at what level of sequence similarity vari-
ous assemblers still distinguish between genomes and 
assemble them separately without producing chime-
ras, we assessed how assembled genome fraction (sen-
sitivity) and assembly quality (precision) depend on 
the stringency of the mapping of contigs to reference 
genomes. We mapped the contigs assembled by each 
tool with MMseqs2 [49] to the 2550 reference genomes. 
We recorded the per-base sensitivity of the assembled 
contigs, requiring a minimum sequence identity of x% 
for the alignment between the contig and the mapped 
reference sequence (Fig.  4A). The sensitivity measures 
which fraction of the reference genomes are covered by 
the assemblies. At a very low stringency of 90% sequence 
identity, all tools achieve close to 100% sensitivity on 
the 100x coverage dataset. This means that for any ref-
erence genome, all tools are able to assemble contigs 
that together cover each of the 2550 genomes with con-
tigs that have at least 90% sequence identity. The same 
contig can be mapped to multiple references. However, 
PenguiN’s sensitivity decreases much more slowly with 
increasing stringency than the other tools, demonstrating 
that it was able to assemble much more of the strain vari-
ation in this dataset. At the highest stringency (sequence 
identity cutoff X = 99%), PenguiN correctly assembled 
approximately 3–6 times more nucleotides than the next 
best tool rnaSPAdes ( 1× coverage: 9.6% vs. 1.9%; 10× cov-
erage: 71.6% vs. 11.5%) or Megahit ( 100× coverage: 83.9% 
vs. 27.4%). This is in accord with the analysis by MetaQ-
UAST in Fig. 3B.

When only considering the longest alignment per ref-
erence genome instead of all alignments, the difference 
in sensitivity between PenguiN and the other assemblers 
becomes even more pronounced across all sequence 
identity cutoffs (Fig.  4B). Consistent with the NGA50 
analysis, this result reflects the much lower level of frag-
mentation within PenguiN’s assemblies.

To analyze whether the much longer contigs assem-
bled by PenguiN would lead to a higher fraction of chi-
meric contigs or misassemblies, we also calculated the 
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Fig. 3  Assembly quality on an in-silico mixture of 2550 HIV-1 genomes on three datasets with an average coverage of each genome of 1× , 
10× , and 100× . A Distribution of pairwise sequence identities among the 2550 HIV-1 genomes. B Average assembled genome fraction, number 
of misassemblies per contig, and duplication ratio. C Distribution of the fractions of each of the 2550 genomes covered by the assemblies. D 
Distribution of the NGA50 values. The NGA50 value of a genome assembly is the length for which contigs of that size and longer cover 50% 
of the genome. The larger the NGA50 value is, the less fragmented is the assembly



Page 8 of 19Jochheim et al. Microbiome          (2024) 12:187 

per-base precision of the assembled contigs at differ-
ent stringencies of sequence identity mapping (Fig. 4C). 
Precision is the fraction of correctly assembled nucleo-
tides, and one minus precision estimates the error rate, 
the fraction of assembled nucleotides that cannot be 
mapped to any reference genome. For all three cover-
age sets ( 1× , 10× , 100× ) and over the entire range of 

sequence identities, PenguiN’s precision is close to the 
second best tool or second best itself, except at cover-
age 1 and sequence identity ≥ 98% , where Megahit and 
rnaviralSPAdes are much more precise but assemble 34 
and 50 times fewer nucleotides than PenguiN, respec-
tively. Only rnaviralSPAdes has markedly better preci-
sion everywhere, but this comes at the cost of very low 

Fig. 4  Per-base sensitivity and precision of assemblies generated for the 2550 HIV1 genomes dataset. A Assembly sensitivity, defined as the fraction 
of nucleotides in the reference genomes that are aligned to an assembled contig with a sequence identity at least the value on the x-axis. B Fraction 
of nucleotides of the reference genomes that are aligned to the longest contigs in the assembly that has a sequence identity of at least the value 
on the x-axis. C Assembly precision is the fraction of assembled nucleotides contained in alignments to a reference genome with sequence identity 
at least the value on the x-axis
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sensitivities. At X = 99% sequence identity, 21.2%, 59.3%, 
and 69% of PenguiN’s contigs could still be aligned to a 
reference genome sequence in the 1× , 10× , and 100× 
coverage datasets, respectively. These results show that 
although PenguiN assembles much longer contigs than 
the other tools, it does not systematically produce more 
misassemblies.

Assembly of ssRNA phages from metatranscriptomic 
samples from activated sludge and aquatic environments
Next, we tested the assemblers on 82 metatranscriptom-
ics samples from activated sludge and aquatic environ-
ments, which were recently presented in a study to detect 
ssRNA phages from these two environments [50]. The 
challenge in comparing assemblers on real metagenomic 
data is the lack of a ground truth. Single-stranded RNA 
(ssRNA) bacteriophages offer a solution, as they occur 
only in two relatively narrow families, Leviviridae and 
Levi-like viruses [51]. All of them have a short, positive-
stranded genome of 3.5 kbp-4.5 kbp that contains three 
core proteins, a maturation protein (MP), a coat protein 
(CP) and an RNA-dependent RNA polymerase (RdRp), 
as well as a few other facultative, short and much less 
conserved hypothetical proteins [50, 52, 53]. Since the 
three core proteins are always present, we could assess 
the completeness of assembled ssRNA phage genomes 
by whether they contain full-length versions of the three 
core proteins.

We assembled the 82 metatranscriptomic samples with 
PenguiN and the nine other tools and searched the con-
tigs for matches to the profile Hidden Markov Model 
(HMM) that Callanan et  al. [50] constructed by com-
bining HMMs of the three core proteins. Assembly runs 
were performed on single nodes with two Intel Xeon 
E5-2640v3 2.6 GHz processors with a total of 16 cores 
and 128 GB of RAM. As before, the size and complexity 
of the data set posed problems for multiple assemblers. 
SAVAGE and IVA did not finish on any sample within 10 
days. MetaviralSPAdes assembled only very few contigs 
with only one hit to the HMM profiles across samples. 
Haploflow and VICUNA did not finish within 10 days on 
5 and 33 samples, respectively, and hence could not be 
evaluated on these. The runtimes of the assemblers that 
finished on all samples summed up to 3.7 days for Pen-
guiN, 1.2 days for Megahit, 1.3 days for rnaviralSPAdes, 
1.4 days for rnaSPAdes, and 27.8 days for metaSPAdes.

Using the same ssRNA phage detection pipeline and 
redundancy clustering at 100% as in [50], we identified 29 
106 non-redundant ssRNA phage sequences in the Pen-
guiN assemblies across all samples, 4045 of which con-
tain three complete core proteins (“complete genomes”). 
This number was four times higher than the 1015 com-
plete ssRNA phage genomes previously assembled with 

rnaSPAdes in [50]. To compare with the other assem-
blers, we filtered out redundant contig sequences with 
a stricter sequence identity threshold to avoid count-
ing genome versions differing by only a few mismatches 
due to sequencing errors or intra-population diversity. 
We clustered all contigs using MMseqs2 with a maxi-
mum sequence identity of 99% and counted only the 
non-redundant cluster representatives. This reduced 
the number of sequences containing at least one ssRNA 
phage protein by a factor of ∼ 2 for all assemblers. In 
total, this resulted in 1398 “complete genomes” for Pen-
guiN, three times more than for rnaSPAdes and Megahit. 
Figure 5A–D compares the number of contigs assembled 
by PenguiN and the other assemblers at four levels of 
genome completeness: contigs with a match to a single, 
two or all three core proteins, and with full-length ver-
sions of the three core proteins. At all four completeness 
levels, PenguiN assembled at least twice as many contigs 
as the next best tools, Megahit and rnaSPAdes.

By far the most complete genomes per sample were 
assembled from activated sludge (samples from Japan, 
Austria, Illinois), as already reported by [50]. Here, Pen-
guiN assembled 32% more complete genomes than the 
next best tool, while on the freshwater samples (Missis-
sippi River, and freshwater aquatic samples from Singa-
pore) it yielded a comparable number (Fig. 6A). On the 
samples from Lake Mendota, none of the assemblers 
could reconstruct a complete phage sequence. We then 
analyzed the intersections between each of the assem-
bled sets of complete phage genomes. We aligned the 
complete contigs of each assembly with the other assem-
blies and determined for each pair of assemblers (A, B) 
the contigs from A for which a contig from B exists that 
has ≥ 99% identity and covers ≥ 99% of its residues. We 
then computed the fraction of assembly A contained in 
B according to this definition (Methods). The genomes of 
the three next best assemblers each covered only about 
one third of the genomes assembled by PenguiN, whereas 
Penguin covered about two thirds of their genomes 
(Fig.  6B). This fraction was quite high considering that 
PenguiN is an overlap assembler and the other tools are 
de Bruijn graph assemblers which, among them, also 
attain fractions around 2/3 despite the similarity of their 
assembly approaches. The assemblies of Haploflow and 
VICUNA were even covered by PenguiN with 93.5% and 
87.6%, respectively.

We asked whether the increased diversity observed in 
the genomes assembled by PenguiN was due to a higher 
number of genera, species, or strains. We extracted the 
RdRp genes from the complete genomes and clustered 
the RdRp protein sequences at various levels of sequence 
identity. Using cutoffs for species ( 80% sequence identity) 
and genera ( 50% ) found in [50], we saw a similar number 
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Fig. 5  Number of contigs of non-redundant ssRNA phage genomes assembled from 82 environmental metatranscriptomic samples. Profile 
HMM searches identified contigs containing matches to at least one of the three core proteins of ssRNA phages (MP, CP, RdRp). Contigs were 
redundancy-filtered at 99% pairwise sequence identity. A Contigs containing a match to at least one of the three core proteins. B Contigs 
containing matches to at least two core proteins. C Contigs containing matches to all three core proteins. D Contigs containing full-length matches 
to all three core proteins (“complete genomes”)

Fig. 6  Analysis of assemblies of ssRNA phage genomes from 82 metagenomic samples. A Distributions of the numbers of complete ssRNA phage 
genomes for the three sampling locations for activated sludge (AS) and the two environmental freshwater samples that yielded ssRNA genomes 
(AQ). B Venn diagrams showing the fractions of contigs of PenguiN covered by contigs of one of the six other tools and contigs of these six tools 
covered by contigs of PenguiN. For a contig to be covered, at least 99% of its nucleotides must be contained in an alignment with at least 99% 
sequence identity. C Number of redundancy-filtered, complete RdRp proteins encoded in the assemblies as a function of stringency of redundancy 
filtering, the pairwise amino acid sequence identity cut-off
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of clusters for all assemblies (except VICUNA and Hap-
loflow). However, at higher cutoffs, PenguiN’s assembly 
showed many more clusters than the other tools, indicat-
ing increased strain-level diversity (Fig. 6C). This was in 
accordance with our observation on the simulated data-
sets that Penguin resolved strains where other assemblers 
merged their genomes.

To check for chimeric assemblies, we considered the 
genome architecture within PenguiN’s contigs classi-
fied as complete ssRNA phage genomes. A simple way 
to identify chimeric genome assemblies is to count how 
many of the RNA genomes contain proteins with dis-
cordant phylogenies, that is, the co-occurrence of dif-
ferent subgroups of the core genes found in study [50]. 
Indeed, none of the 1398 complete genomes contained 
proteins with discordant phylogenies, and all contained 
exactly one copy of each core gene, except for one con-
tig that contains a second RdRp gene after the first copy 
(RdRp B) that matches more closely to the other clade 
(RdRp A) (Additional File 1: Fig.  S3). Additionally, the 
contig lengths of all tools are comparable, with Pen-
guiN producing a somewhat higher fraction of genomes 
longer than 6 kbp than the other tools (Additional File 1: 
Fig. S4).

Assembly of 16S rRNA genes from metatranscriptomes
Amplicon sequencing of 16S rRNA genes is a very popu-
lar and cost-effective method to measure the taxonomic 

composition of prokaryotes in environmental samples 
[54]. 16S rRNA sequences consist of nine hypervariable 
regions (V1-V9) connected by eight highly conserved 
regions. Several of these are nearly perfectly conserved 
across phyla and longer than typical k-mer lengths used 
in de Bruijn graph assemblers, which makes them chal-
lenging to assemble [44]. We therefore used 16S rRNA 
assembly from metatranscriptomes as another test case 
for PenguiN. Reference databases for hundreds of thou-
sands of 16S rRNA sequences allow us to verify the cor-
rectness of assembled 16S rRNAs. For the assembly of 
16S rRNA, we run PenguiN with the same default set-
tings as for viral assembly.

We tested the ability of the assemblers to recover the 
diverse 16S rRNA genes in metatranscriptomic data. 
We detected 16S rRNA genes in the assemblies of the 82 
metatranscriptomic samples described in the previous 
section using Barrnap to perform HMM searches using 
a HMM derived from Rfam (https://​github.​com/​tseem​
ann/​barrn​ap).

PenguiN was able to reconstruct 113,196 non-redun-
dant 16S rRNAs gene fragments that aligned to at least 
50% of the Rfam database’s 16S profile HMM model 
(Fig.  7A). The second best tool in this category, rnaS-
PAdes, assembled 18,933 gene fragments at this coverage 
threshold, ∼ 6 times fewer than PenguiN.

To ensure that the assembled contigs represent correct, 
non-chimeric 16S rRNA sequences, we validated the 

Fig. 7  Number of assembled 16S rRNA contigs matching RFAM and SILVA entries. A Non-redundant, assembled 16S rRNAs matching the RFAM 16S 
HMM model with at least 50% of coverage. B–D Non-redundant, assembled 16S rRNAs additionally validated by matching a 16S rRNA sequence 
in the SILVA database with at least 99% sequence identity and covering at least 50% (B), 80% (C), and 95% (D) of the SILVA reference sequence. 
E Number of representative, assembled 16S rRNA sequences matching the RFAM 16S HMM model with > 80% of coverage after removing 
redundancy by clustering at different levels of sequence identity

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
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assembled contigs by MMseqs2 searches [49] through 
the SILVA database, a comprehensive database con-
taining 510,495 full-length, quality-checked 16S/18S 
rRNA sequences [54]. We counted how many contigs in 
each assembly could be mapped to a SILVA 16S rRNA 
sequence with at least 99% sequence identity and a cover-
age of the SILVA sequence of at least 50%, 80%, and 95% 
(Fig.  7B, C, D). The analysis using only these validated 
sequences reveal the same pattern: At each coverage 
threshold, PenguiN assembles around 6 to 8 times more 
16S rRNA genes than the next best tool. For example, 
PenguiN assembled 2284 16S rRNAs covering ≥ 95% of 
the full length reference in SILVA, while the next best 
tool, Megahit, assembled 269, or 8.5 times less (Fig. 7D).

The diversity of the 16S rRNA genes reconstructed by 
PenguiN was several times higher over a large range of 
sequence identities (Fig.  7E). For example, filtering rep-
resentative sequences using 97% maximum pairwise 
identity, PenguiN’s assembly contained 12,616,16S rRNA 
genes while the next best tool, rnaSPAdes, assembled 
only 3068. At 99% clustering threshold, corresponding 
roughly to the species level [55], PenguiN reconstructed 
∼ 6 times more species-level 16S rRNAs than rnaSPAdes 
(32,169 versus 5132). Remarkably, PenguiN assembled at 
least twice more 16S rRNA sequences than the next best 
tool even down to 50% clustering threshold.

Run time and memory usage
Previous overlap-based approaches are computation-
ally expensive due to the quadratic complexity of all-
versus-all alignments and were therefore superseded by 
de Bruijn graph assembler in metagenomics. For each 
assembler and dataset, we measured the run time and 
peak memory usage for the assembly processes (see 

Tables 1 and 2) on a 16-core server with two Intel Xeon 
E5-2640v3 CPUs and 128 GB memory. Assemblies were 
performed individually for each sample with multi-
threading options set to utilize all 16 cores. Runtime was 
limited to 10 days per sample.

All assembly tools were able to assemble the small HRV 
dataset in very short time. On the HIV1 dataset, we see 
the trend that the de Bruijn graph assemblers are much 
faster than all overlap-based tools except PenguiN. As 
expected, these overlap-based approaches showed severe 
limitations on the large and complex metatranscriptomic 
samples. SAVAGE and IVA did not produce any results 
within 10 days for these datasets and VICUNA could 
only process 33 of the 82 samples within 10 days. Pen-
guiN was the only overlap-based assembler that could 
process this dataset completely. Overall, the de Bruijn 
graph assemblers Megahit and rna(viral)SPAdes were 
the fastest assemblers. PenguiN was 3 times slower, but 
5–7 times faster than metaSPAdes and much faster than 
VICUNA ( > 55 times).

PenguiN’s memory usage was larger than that of Mega-
hit and rna(viral)SPAdes, but still not limiting on our 
large and complex datasets, and smaller than that of 
metaSPAdes, VICUNA, and Haploflow.

Discussion and conclusion
PenguiN is the first overlap-based tool for strain-resolved 
viral genome assembly from metagenomic data. We com-
pared it to nine state-of-the-art metagenomic and viral 
genome assemblers. On a simulated dataset with reads 
from 2550 HIV-1 genomes, PenguiN assembled a fraction 
of the HIV-1 genomes—matched at 99% sequence iden-
tity—that was many times higher and with much lower 
fragmentation than the next best assembler rnaSPAdes. 

Table 1  Comparison of runtimes (wall times) for all datasets used in the assembly benchmark. All tools were run with 16 threads, 
except for Haploflow, which did not support multi-threading. Values are given in [hh]:mm:ss. “-”: assemblers did not produce any 
results. Values marked with a are lower bounds because the tools did not finish on all samples

Dataset/tool HRV in
silico mixture

HIV1 in silico mixture Metatranscriptomic
dataset

1× 10× 100×

PenguiN 00:08 00:18 00:03:34 00:25:40 89:17:51

Megahit 00:03 00:33 00:03:14 00:08:36 28:39:21

metaSPAdes 00:19 02:14 01:02:34 02:12:02 668:47:30

metaviralSPAdes 00:23 01:02 00:04:03 00:13:39 -

rnaSPAdes 00:08 00:27 00:02:14 00:08:06 34:28:50

rnaviralSPAdes 00:11 00:37 00:03:32 00:10:08 31:31:44

SAVAGE 01:41 25:27 - - -

IVA 03:04 04:31 00:51:31 29:17:30 -

VICUNA 00:02 00:33 03:28:33 29:31:19 a4989:38:20

Haploflow 00:02 00:47 00:03:41 - a568:57:30
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Further, PenguiN assembled around three times more 
complete ssRNA phage genomes from 82 samples from 
activated sludge and aquatic environments. PenguiN also 
assembled around six times more full-length, bona-fide 
16S rRNA sequences from the 82 metagenomic samples 
than the next best tool, rnaSPAdes.

Despite PenguiN’s high sensitivity, its precision (the 
fraction of assembled contigs that could be matched 
to one of the reference genomes) was similar to the 
state-of-the-art tools. These results also suggests 
that the fraction of chimeric contigs is similar to the 
other assemblers because chimeric assemblies should 
result in lower precision. Indeed, on the metagenomic 
ssRNA phage genome data, none of the 1398 com-
plete phage genomes assembled by PenguiN contained 
genes with discordant phylogenies, indicating that no 
chimeric genomes were assembled. Furthermore, com-
parison of the number of assembled 16S rRNA contigs 
before and after validation using mapping to SILVA 
reference sequences (Fig.  7A vs. B) demonstrates that 
the fraction of contigs that could be validated—and 
therefore are not chimeric—is very similar for Pen-
guiN ( 14% ) and Megahit ( 19% ) and higher than for 
rnaSPAdes ( 9% ). We conclude that, despite or perhaps 
rather because of its greedy extension approach, Pen-
guiN produces a similar fraction of chimeric contigs as 
its best competitors.

When dealing with viral metagenomic data, the choice 
is between de Bruijn graph based metagenomic assem-
blers and virus-specific assemblers for low-complexity 
samples that mostly use overlap graphs. Our benchmark-
ing results agree with results described in other stud-
ies [32, 56]: Due to the limitation of sequence context 

to the k-mer length, de Bruijn graph-based assemblers 
cannot phase highly similar genomes, while overlap-
based assemblers often cannot handle large and complex 
metagenomic samples.

PenguiN’s use of the Linclust algorithm allows it to 
overcome the quadratic runtime complexity that plagued 
earlier overlap-based assemblers. Our results show that 
PenguiN can process large and complex datasets in rea-
sonable time, albeit thrice slower than the fastest de 
Bruijn graph assemblers. In contrast, the other overlap 
assemblers we tested needed either inordinate amounts 
of time or failed on the dataset of 82 metagenomics 
samples.

Due to utilizing overlap alignments, PenguiN can 
make use of a much longer sequence context, the 
length of merged read pairs, in contrast to de Bruijn 
graph assemblers, whose sequence context length it 
limited to the k-mer length. Due to its Bayesian model 
to select the best sequences, PenguiN can exploit this 
longer context efficiently. The trend to increasing short 
read lengths—Illumina’s current high-throughput 
sequencers NovaSeq 1000/2000 and 6000 can gener-
ate paired reads up to 2× 300 and 2× 250 base pairs, 
respectively—will further increase the length of Pen-
guiN’s sequence context and thus further improve its 
strain resolution compared to our benchmarks based 
on 2× 150 paired reads.

In the same vein, PenguiN should profit a lot from 
long-read sequencing platforms such as Oxford Nano-
pore. The important caveat is that, due to its gapless 
alignment procedure during extension, it is only suitable 
for reads with indel rates similar to those for Illumina 
machines. Two recent approaches reach sufficiently low 

Table 2  Comparison of Max RAM usage for all datasets used in the assembly benchmark. Values are given in GB. “-”: the assembler did 
not produce any results. aHaploflow had one sample in the metatranscriptomic dataset where the 128GB were not sufficient for the 
assembly, resulting in an “out-of-memory error”

Dataset/tool HRV in
silico mixture

HIV1 in silico mixture Metatranscriptomic
dataset

1× 10× 100×

PenguiN 0.10 0.56 2.69 15.08 91.01

Megahit 0.25 0.27 0.29 1.81 10.96

metaSPAdes 5.11 5.15 22.16 46.97 116.66

metaviralSPAdes 5.11 5.26 5.67 11.59 -

rnaSPAdes 5.11 5.21 5.49 11.55 24.58

rnaviralSPAdes 5.11 5.21 5.47 11.55 17.64

SAVAGE 1.28 10.94 - - -

IVA 1.25 1.24 1.24 1.25 -

VICUNA 0.06 0.35 3.23 31.03 116.38

Haploflow 0.01 1.06 1.79 - a119.00
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indel errors: In read polishing, Illumina short reads are 
mapped to long reads to correct errors [57], and Nanop-
ore duplex sequencing reads both strands of a DNA sev-
eral times [58].

Due to PenguiN’s Bayesian selection and contig exten-
sion strategy, strain resolution is optimal when the cov-
erage for a strain genome is 10 or more, as in that case 
a read from the correct strain with good overlap to the 
contig is likely to be present in the dataset. When the 
coverage drops much below 10, the greedy extension 
strategy automatically falls back to reconstructing con-
sensus sequences like other metagenomic assemblers do 
[44]. Our results show that, at low, medium and high read 
coverage, PenguiN produces similar amounts of assembly 
errors as the state of the art.

PenguiN has two main drawbacks. First, as shown in 
Fig. 3b, its assemblies are slightly redundant, to a simi-
lar degree as the next best assembler in our benchmarks, 
rnaSPAdes. Second, and most importantly, PenguiN 
does not stop with its greedy extension when exten-
sions are ambiguous. Therefore, it performs poorly when 
identical repeats or 100% conserved regions longer 
than the paired-read length are present in the metage-
nomes, since in this case PenguiN will randomly con-
nect sequences upstream with sequences downstream. 
This seems to be no limitation for viral assembly, but in 
preliminary experiments, this limitation led to subop-
timal assemblies of some prokaryotic genomes. We are 
planning to address this limitation in the future by ter-
minating the extension process when PenguiN detects 
a bifurcation. This might be done by combining Pen-
guiN’s linear-time overlap determination with an over-
lap graph-based approach. As a future improvement for 
assembling strand-specific metatranscriptomic librar-
ies, an option could be added to perform strand-specific 
assembly in which reverse complements of reads during 
extension are not allowed.

In conclusion, PenguiN is the first overlap-based 
assembler for viral genome and 16S rRNA assembly 
from large and complex metagenomic datasets. Due to 
analyzing all overlap alignments and a Bayesian strategy 
to select optimal extensions, it is able to assemble sev-
eral fold more strain-resolved genomes than the state of 
the art. The last decade has brought fascinating discov-
eries of a huge and often unexpected diversity of viruses 
in many different environments [6–18], and a large part 
of these successes were driven by progress in viral bio-
informatics and computational tool development [22, 
59–61]. We hope that PenguiN will make an important 
contribution to studying the roles of viruses in earth’s 
microbiomes and to uncovering the molecular machin-
eries evolved by these most diverse and inventive of all 
biological entities.

Methods
The protein‑guided nucleotide assembly approach
PenguiN proceeds in two stages (Fig.  1): In the protein-
guided stage, it assembles six-frame translated protein 
sequences and co-assembles the corresponding nucleo-
tide sequences. The resulting coding sequence-containing 
contigs are added to the original nucleotide reads and fur-
ther assembled in the second stage. Each of the two stages 
consists of iterating the following two steps: (1) Find the 
overlaps among the working set of sequences that satisfy 
the specified criteria for extensions (maximum E-value, 
minimum sequence identity, and number of aligned resi-
dues), and (2) find the best upstream and downstream 
extensions to merge, and add the merged sequences into 
the working set. The two stages are now described in 
more detail (Additional File 1: Fig. S5).

In stage I, paired-end reads are first merged, then six-
frame translation is performed by traversing each read 
linearly and using a standard codon table. Subsequently, 
potential ORFs with ≥ 45 codons are extracted from 
the translated sequences. Additionally, we extract ORFs 
with at least 20 codons starting with a putative ATG start 
codon, i.e. the first ATG codon after a stop codon in the 
same frame. Then five iterations of overlap identification 
and extension are performed. First, protein overlaps are 
found in a time proportional to the number of sequences 
using the following Linclust algorithm [45]: A fixed 
number of k-mers (default: 60) are extracted from each 
sequence and stored in a reverse index table via a hash 
function value. This table is used to group sequences that 
share an identical k-mer substring ( k = 14 ). The longest 
sequence per group, called center sequence, is selected, 
and groups with the same center sequence are merged 
together. Each center sequence is then aligned to each 
of the member sequences in its group. Because group 
member sequences are not aligned with each other, the 
algorithm achieves linear rather than quadratic time 
complexity. As in the protein-level assembler Plass [28], 
the alignments that satisfy the specified criteria of maxi-
mum E-value, minimum amino acid sequence identity, 
and minimum nucleotide sequence identity, are further 
considered as sequence extensions. Since we want to 
minimize the risk of chimeric proteins that would lead to 
falsely connected nucleotide sequences, we chose strict 
default filter criteria of E-value < 10−5 , amino acid iden-
tity > 97% , and a nucleotide identity of > 99% . We select 
the best upstream extensions and the best downstream 
extensions according to a Bayesian posterior probability 
(see below). Each time two protein sequences are merged 
for extension, the corresponding nucleotide sequences 
are also extended in parallel. This stage ends after five 
iterations with pre-assembled contigs containing coding 
sequences. As in Plass, sequences translated in wrong 
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frames tend to result in short protein contigs due to fre-
quent stop codons. Their presence does not help, but also 
does not hurt, as the resulting short contigs are elimi-
nated during the length and subsequent redundancy fil-
tering at the end.

In stage II, PenguiN links these pre-assembled contigs 
across intergenic regions. The coding sequence contigs 
are added to the original reads, and five iterations using 
the same greedy assembly procedure as in stage I are 
applied to the nucleotide sequences. To keep the speci-
ficity sufficiently high, a nucleotide k-mer size k = 22 is 
used in this stage. PenguiN again searches for overlaps 
in linear time and decides on the best sequence exten-
sions based on the full alignments of the overlapping 
sequences. Again, the center sequences to be extended 
are the longest sequences in each group of sequences 
sharing a k-mer seed. In this way, we primarily extend 
contigs with other contigs and with non-coding reads, 
and, if there are no more pre-assembled contigs within 
the group, we also extend non-coding reads with non-
coding reads. Since sequences and their reverse com-
plements code for the same double-stranded DNA, we 
identify each k-mer with its reverse complement. We 
replace group member sequences with their reverse com-
plement if their k-mer is the reverse complement of the 
matching k-mer in the center sequence. To maintain high 
sensitivity for identifying the overlaps, we scale the num-
ber of extracted seeds with the length of the sequences, 
by default we extract 0.1× the number of residues in the 
sequence. In addition, we check for circular contigs after 
each iteration in stage II, because plasmids and many 
viral genomes are circular (see below). Since we can-
not distinguish between circular genomes and perfect 
repeats, PenguiN will also stop extending contigs framed 
by two perfect repeats. Only the non-circular contigs are 
added to the working set to be further extended, while 
the circular ones are excluded from subsequent iterations 
and added directly to the output contigs.

For the final output, circular contigs collected over 
all iterations and linear contigs from the last iteration 

are combined. Since PenguiN is able to use reads more 
than once, the set of final contigs may be quite redun-
dant. Therefore, in the last step, we perform a clustering 
of all final contigs using an extended version of Linclust 
[45] that takes circular contigs into account (option-
wrapped-scoring), using a default maximum sequence 
identity of 99% and minimum coverage of 99% to obtain 

strain-resolved contigs. The longest sequence in each 
cluster is returned as result.

Choosing extensions
PenguiN uses a Bayesian model to decide with which of 
several alternative choices of overlapping sequences to 
extend a center sequence. When overlap alignments dif-
fer in length, this model improves upon the method used 
in Plass [28], which simply picks the extension with the 
highest sequence identity. We can calculate the probabil-
ity that the genome from which one extending sequence 
was sampled has a higher sequence similarity with the 
genome from which the center sequence was sampled 
than the other extending sequence.

Suppose we have a possible extension with L overlap-
ping, aligned nucleotides, of which m are matches and 
L−m are mismatches. The probability to observe m 
matches among L aligned residues is given by a binomial 
probability,

where q is the unobserved, unknown average nucleotide 
identity (ANI) between the strains from which the two 
sequences originate. As prior for q we use a Beta distri-
bution p(q) = Beta(q|a, b) with pseudocounts a and b, 
since it is the conjugate prior to the Binomial distribu-
tion and the simplest smooth distribution on the inter-
val [0, 1] that can model any possible mean and variance. 
Using Bayes’ theorem, we can calculate the posterior 
probability distribution of the ANI q (see Additional File 
1: Supp. Note 1),

Now suppose we have to decide which of two possi-
ble extending sequences to choose, one with m1 matches 
out of L1 aligned, overlapping residues and one with m2 
matches out of L2 aligned residues. The probability that 
the ANI q1 between the contig and the first extending 
sequence is lower than the ANI q2 between the contig 
and the second extending sequence is

The Supplemental Material shows how to analytically 
solve this integral and compute it efficiently.

To decide if we want to preferably extend with 
an alignment (m1, L1) rather than (m2, L2) , we pro-
ceed as follows: If p(q1 > q2|m1, L1,m2, L2) > 0.55 , 
the first sequence is preferred for the extension; if 
p(q1 > q2|m1, L1,m2, L2) < 0.45 , the second one is 

(1)p(m|q,M) = Binom(m|q, L) ,

(2)p(q|m, L) = Beta(q|m + a, L−m + b)

(3)p(q1 < q2|m1, L1,m2, L2) =
1

0

1

q1

p(q1|m1, L1) p(q2|m2, L2) dq1 dq2 .



Page 16 of 19Jochheim et al. Microbiome          (2024) 12:187 

preferred. If the probability falls into the range 0.45 to 
0.55, we consider it as “inconclusive,” and prefer the 
extension that offers the longer extension instead. The 
center sequence is extended by the member sequence 
of its group that is preferred over all other possi-
ble extensions. For the pseudocount parameters, we 
choose a = 1 , b = 1.

Cycle detection
As circular and long terminal repeats are common among 
viruses and would lead to over-extensions in the greedy 
iterative assembly procedure, we introduced a step to 
detect contigs containing such structures. Therefore, we 
search for contigs with (near-)identical terminal repeats 
on both sides and exclude them from the next iterations. 
Instead, we mark them as circular and collect them over 
all iterations—marked by a flag in their header entry. To 
identify circular sequences while minimizing the runt-
ime, we use a procedure that approximates the alignment 
of the sequence to itself using k-mer matches. We look 
for an overrepresentation of k-mer matches within diag-
onal bands and mark the contig as circular if a hit rate 
threshold of 0.24 is exceeded. This threshold was calcu-
lated using 5994 viruses from the RefSeq [62] database.

Simulated datasets/assembly benchmark
For benchmarking experiments, we generated synthetic 
read datasets. To make the distribution of the coding 
sequences as realistic as possible, we generated the 
reads from real viral genomes from the NCBI database 
[63]. For the first set (HRV in silico mixture), we down-
loaded three human rhinovirus strains (Accession No.: 
MF973193.1, MF973194.1, MN749156.1) with pairwise 
ANI values ranging from 92 to 95.5%. We mixed them 
in a proportion of 4:2:1 and simulated 2 × 150 bp over-
lapping paired-end reads (insert size range 220–280 
bp) using randomreads.sh from the BBmap software 
suite (version 38.71) [64]. The simulated coverage was 
set to 50.

For the HIV datasets, we aimed to construct bench-
mark sets with a high degree of natural variation. We 
downloaded 2550 HIV-1 genomes from the NCBI data-
base (accessed 07/2019, search string: (“Human immuno-
deficiency virus 1” [Organism] OR hiv1 [All Fields]) AND 
complete genome [All Fields]). Comparing their ANI 
values with fastANI showed values mostly in the range 
from 85 to 95% (see Fig. 3A). We then used randomreads.
sh to generate three synthetic read datasets from this 
set using varying coverage values (1, 10, 100). Next, we 
also introduced sequencing errors with an error rate of 
0.001%, 0.01%, and 0.1% for the 10× coverage set to check 
if the assembly quality is influenced by the presence of 
sequencing errors.

The HIV1 genome is approximately 9.7 kbp and is 
flanked at both ends by long terminal repeats (LTRs) that 
can interact, leading to circularized forms containing one 
or two copies of the viral LTR (1-LTR circles, 2-LTR cir-
cles) [47, 48]. All downloaded 2550 HIV-1 genomes were 
reported as “complete genome” in the NCBI database, 
but their LTRs were reported inconsistently (without, 
with one LTR or two LTRs, etc.). Because of that, it was 
not clear what result an assembler should ideally produce 
(genome with one LTR or two LTRs, etc.). Therefore, we 
consistently circularized all genomes by removing one of 
the repetitive regions, if two were present, and doubling 
the sequences, before simulating the reads. This results 
in reference genomes to which all linear representa-
tions of the complete genome can be mapped continu-
ously, regardless of the starting position of the assembled 
contig.

We assembled all synthetic paired-end read datasets 
using PenguiN, Megahit, metaSPAdes, metaviralSPAdes, 
rnaSPAdes, rnaviralSPAdes, SAVAGE, IVA, VICUNA, 
and Haploflow.

Evaluation on simulated datasets
For the evaluation of the assemblies, only contigs > 1 
kb were considered. Evaluations of assemblies were per-
formed with MetaQUAST [46], which provides com-
monly used statistics. We used MetaQUAST with 
the--unique-maping flag and default parameters oth-
erwise as it is commonly used in metagenomic assembly 
benchmark studies [32, 65, 66]. In addition, we computed 
the per-base sensitivity and per-base precision values 
for the HIV datasets as we previously defined [28]. We 
searched with the set of reference genomes through the 
assembled contigs using MMseqs2 [49] with options -a 
-s 5.7--max-seqs 500000 --min-seq-id 0.89 
--strand 2 --search-type 3 --max-seq-
len 1000000 and subsequently filtered the resulting 
alignments with a minimum sequence identity threshold 
between 90% and 99%. Sensitivity was then calculated 
as the fraction of reference sequences that can be cov-
ered by contigs with a sequence identity of at least this 
threshold (total count of aligned nucleotides divided by 
the total length of the reference genomes). We consid-
ered two ways - either all alignments or only the longest 
alignment for each reference genome. Precision was cal-
culated by searching with the contigs through the set of 
reference genomes, using MMseqs2 with options-a -s 
5.7 --max-seqs 5000 --min-ungapped-score 
100 -a --min-seq-id 0.89 --strand 2 
--search-type 3 --max-seq-len 10000000. 
For each contig, only the longest alignment was consid-
ered. Precision was then defined as the fraction of contigs 
that are aligned to the reference genomes (total count of 
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aligned nucleotides divided by total length of assembled 
contigs).

Metatranscriptomic datasets
For the benchmark test on real sequencing data, we 
considered 82 metatranscriptomic samples from acti-
vated sludge and aquatic environments previously used 
in [50]. We downloaded the samples from the NCBI 
Sequence Read Archive (SRA) database and pre-pro-
cessed them analogously to the Callanan et  al. study. 
We removed Illumina adapters using Cutadapt (ver-
sion 3.3) [67] and performed quality trimming using 
Trimmomatic (version 0.39) [68]. We discard all reads 
shorter than 100 bp. Assembly was then performed per 
sample using PenguiN, Megahit, metaSPAdes, meta-
viralSPAdes, rnaSPAdes, rnaviralSPAdes, SAVAGE, 
IVA, VICUNA, and Haploflow. The minimum contig 
length was set to 500 and the maximum runtime per 
sample was set to 10 days. We found that SAVAGE and 
IVA were unable to process the samples, so they were 
excluded from the results.

Detecting ssRNA phage sequences in the assemblies
To detect and classify ssRNA phage contigs in the assem-
blies of the metatranscriptomic samples, we used the 
HMM based pipeline described in Callanan et  al. [50] 
after the assembly. We predicted proteins with Prodigal 
(version 2.6.3) [69] and searched against the sequence 
profiles of the HMM 5-MC model generated by [50] 
using hmmscan from the HMMER package version 3.2.1 
at http://​hmmer.​org/. Clustering was performed using 
MMseqs2. The sequence identity cutoff for clustering 
was first chosen as 100% in accordance to Callanan et al. 
However, for comparison between assemblers, we chose 
a cluster identity threshold of 99% to avoid overestimat-
ing sequences close to duplicates. All sequences longer 
than 750 bp were classified depending on the number 
of protein hits. We classified the contigs using the same 
terms as Callanan et  al.: contigs encoding at least two 
protein hits (“partial genomes”), contigs encoding three 
protein hits (“near-complete genomes”), and contigs 
encoding three protein hits without proteins that are pre-
maturely terminated by the edge of a contig (“complete 
genomes”).

Analysis of ssRNA phage sequences
Due to the lack of ground truth for real data, we could 
not calculate precision or sensitivity values, instead we 
assessed the assembly quality by analyzing the complete 
ssRNA phage sequences in more detail. We calculated 
the fraction of PenguiN’s assembled phage sequences 
which are covered by alignments to phage sequences 
in the other assemblies at a minimum identity cutoff 

of 99%. Aligning was performed using MMseq2 search 
[49] with options –max-seqs 500000 -a –min-
seq-id 0.99 –strand 2 –search-type 3 
–min-aln-len 300 –max-seq-len 1000000. 
For two assemblies A and B, we counted a contig from 
A to lie in A ∩ B if it has an alignment with a contig 
from B with ≥ 99% sequence identity and ≥ 99% cover-
age. To analyze the recovered diversity of the different 
assemblies we extracted from all complete phages the 
amino acid sequences that had a hit to the RdRp HMM 
model, and clustered them using MMseqs2 cluster [49] 
at sequence identity cutoffs of 50–100% (with step = 
10 until 90% and step = 1 between 90 and 100%). To 
check the phylogenetic consistency, we considered the 
subgroups of the three core genes that were observed 
to co-occur only in specific patterns [50]. We checked 
the order and co-occurrence of the core genes for devi-
ations from these patterns using the list of predicted 
proteins provided by Prodigal and their respective 
HMM scores.

Detecting 16S rRNA gene sequences in the assemblies
To detect 16S rRNA genes in the assemblies of the 82 
metatranscriptomic samples, we used Barrnap v.0.9 
(https://​github.​com/​tseem​ann/​barrn​ap). We classified 
predictions as being aligned to at least 50% of the 16S 
HMM model from the RFAM database v.11.0 [70]. To 
reduce redundancy, predicted 16S rRNA sequences 
were clustered using MMseqs2 with a sequence iden-
tity cutoff of 99%. To validate the assembled 16S rRNA 
contigs and determine the number of full-length 16S 
rRNAs recovered, we searched the 16S contigs (non-
redundant) against the SILVA database v.138.1 [54]. 
The search was performed using MMseqs2 with a 
minimum sequence identity cutoff of 99% and cover-
age threshold of 50%, 80%, and 95%. To estimate the 
diversity of the 16S rRNA contigs, we clustered the 
sequences predicted by Barrnap using MMseqs2 with 
sequence identity cutoffs of 50–90% (with step = 10) 
and 91–99% (with step = 1). We then counted the 
number of cluster representatives having more than 
80% of their sequence aligned to the Barrnap 16S 
HMM model.

Software
The respective software versions of the assembly tools 
used in the benchmark are: PenguiN (GitHub commit 
7571d37), Megahit (v1.2.9), metaSPAdes/rnaSPAdes/
metaviralSPAdes/rnaviralSPAdes (v3.15.2), SAVAGE 
(v0.4.2), IVA (v1.0.8), VICUNA (v1.3), Haploflow (v0.1).

Each assembler was run with default parameters, 
except for the minimum contig length and the CPU 

http://hmmer.org/
https://github.com/tseemann/barrnap
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thread parameter setting, which was uniformly set to 
utilize all 16 available cores of the machine, if possi-
ble. The minimum contig length was set to 500 bp or 
1000 bp depending on the dataset for all assemblers 
that provide such a filter option, or otherwise by filter-
ing the final assembly file. As input, we used paired-
end reads in two separate files or concatenated them if 
necessary.
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