
Kawano‑Sugaya et al. Microbiome          (2024) 12:188  
https://doi.org/10.1186/s40168-024-01903-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Microbiome

A single amplified genome catalog reveals 
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Abstract 

Background  The increase in metagenome-assembled genomes (MAGs) has advanced our understanding 
of the functional characterization and taxonomic assignment within the human microbiome. However, MAGs, 
as population consensus genomes, often aggregate heterogeneity among species and strains, thereby obfuscating 
the precise relationships between microbial hosts and mobile genetic elements (MGEs). In contrast, single amplified 
genomes (SAGs) derived via single-cell genome sequencing can capture individual genomic content, including MGEs.

Results  We introduce the first substantial SAG dataset (bbsag20) from the human oral and gut microbiome, compris‑
ing 17,202 SAGs above medium-quality without co-assembly. This collection unveils a diversity of bacterial lineages 
across 312 oral and 647 gut species, demonstrating different taxonomic compositions from MAGs. Moreover, the SAGs 
showed cellular-level evidence of the translocation of oral bacteria to the gut. We also identified broad-host-range 
MGEs harboring antibiotic resistance genes (ARGs), which were not detected in the MAGs.

Conclusions  The difference in taxonomic composition between SAGs and MAGs indicates that combining 
both methods would be effective in expanding the genome catalog. By connecting mobilomes and resistomes 
in individual samples, SAGs could meticulously chart a dynamic network of ARGs on MGEs, pinpointing potential ARG 
reservoirs and their spreading patterns in the microbial community.

Introduction
The intimate connection between humans and their asso-
ciated microbiomes has received significant research 
attention given its crucial ramifications, including its 
influence on human health, disease progression, and 
treatment responses [1–5]. The advent of metagenom-
ics has provided unprecedented insights, particularly 
by unlocking data from uncultured microbes. Genome 
catalogs such as the Unified Human Gastrointestinal 
Genome Catalogue [6–11] stand out in this endeavor, 
curating comprehensive microbial genomes from micro-
bial communities. A number of metagenome-assembled 
genomes (MAGs) are registered in these catalogs, but 
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some biological information may be missing from the 
genome sequences.

Notably, metagenomics, in its principle of assembling 
and aggregating similar sequences, struggles to ren-
der MAGs that link information on highly conserved 
sequences, such as rRNA genes, and mobile genetic ele-
ments (MGEs), including plasmids and phages. The limi-
tations of metagenomics have been previously reported 
[12–15]. For instance, only 7% of even highly complete 
human gut MAGs yielded 16S rRNA genes [16]. Fur-
thermore, another study reported low presence rates of 
MGEs in MAGs (38–44% for genomic islands and 1–29% 
for plasmids) and a complete lack of virulence genes 
and antibiotic resistance genes (ARGs) in plasmids [17]. 
Another challenge for metagenomics is distinguishing 
whether sequence reads are from intact microbes or free 
fragment DNA in the sample. Because of this limitation, 
metagenomics is not well suited for assessing microbial 
transfer and survival between different environments.

Single-cell genome sequencing has emerged as a poten-
tial avenue to overcome these challenges by construct-
ing single amplified genomes (SAGs) from individual 
microbial strains, including highly conserved genes and 
MGEs. While this method theoretically reveals cell-to-
cell variation, its practical realization depends on the 
evolution of supporting technologies. Despite advance-
ments in high-throughput single-cell genome sequenc-
ing technologies, such as droplet barcoding sequencing 
[18–20] and their ability to concurrently acquire tens of 
thousands of SAGs, several challenges persist. Due to the 
low completeness of SAGs produced by those technolo-
gies, the in silico integration of multiple SAGs was gener-
ally required to construct quality genomes. This process 
results in the recovery of a few representative genomes 
from tens of thousands of low-quality SAGs. It risks 
obscuring strain heterogeneity information, such as the 
relationship between the SAGs and MGE or ARG.

We have developed a high-quality, high-throughput 
single-cell genome sequencing technology, named SAG-
gel [21, 22], which enables the simultaneous generation 
of hundreds or thousands of SAGs. It can obtain SAGs 
above medium-quality without pooling the SAGs to gen-
erate consensus genomes. This advantage is attributed to 
efficient whole-genome amplification and deep single-
cell sequencing by coupling in-gel and well-formatted 
reactions. Thus far, we have applied our method to vari-
ous microbiomes, not only from human-associated sam-
ples but also from environmental samples, enabling us 
to reach novel implications such as strain heterogeneity, 
including MGEs [14, 21–24].

In this study, we aimed to explore the human micro-
biome at the single-cell level, focusing on the oral and 
fecal microbiomes, which are linked in the body and are 

closely associated with human health and disease. We 
present the bbsag20 dataset, which comprises 17,202 
SAGs of medium-quality and above derived from the 
human oral and gut microbiomes of Japanese individu-
als using SAG-gel technology. This dataset, being one of 
the largest human oral and gut bacterial SAGs, offers a 
rich resource for exploring the intricate dynamics of the 
microbiomes, mobilomes, and resistomes. We uncovered 
compelling evidence of oral bacterial translocation to 
the gut at the cellular level. Furthermore, we elucidated 
unexpectedly broad host ranges of plasmids and phages 
and detailed individual differences in ARG and MGE 
prevalence and their networks.

Results
Comparison of genomes obtained by metagenomics 
and single‑cell genomics
The workflow and an overview of the bbsag20 data-
set are shown in Fig.  1. Briefly, we performed sin-
gle-cell genome sequencing [21] of saliva (total, 
924,058,281,770 bp; mean, 75,310,373 bp/SAG) and feces 
(total, 1,302,352,706,360  bp; mean, 66,500,853  bp/SAG) 
collected from the Japanese participants (Supplemen-
tary Table 1). From 32 saliva samples, we obtained 11,809 
bacterial SAGs, with an average of 369 SAGs (66 species) 
per sample. From 51 fecal samples, we obtained 19,042 
bacterial SAGs, with an average of 373 SAGs (54 species) 
per sample. For the same set of 51 fecal samples, shotgun 
metagenome sequencing was conducted, yielding a total 
of 405,617,601,132  bp with a mean of 7,953,286,297  bp 
per metagenome. The salivary metagenomes did not 
reach sufficient quality due to the predominant human-
derived DNA. The fecal metagenomes produced 1544 
MAGs, averaging 30 MAGs per sample, as shown in 
Fig.  1a. According to standards by the Genomic Stand-
ards Consortium [25], 17,202 SAGs (55.76%) and 869 
MAGs (56.28%) were classified as high- or medium-qual-
ity (Fig. 1a, b and Supplementary Table 2). When exam-
ining shared sequence information, SAG contigs shared, 
on average, a 49.5% overlap with metagenome assembly 
contigs, ranging between 31.9 and 84.0% (Supplemen-
tary Fig. 1). Conversely, the overlap with MAGs averaged 
30.6%, ranging from 6.9 to 80.4%. Although the com-
monality of sequences obtained by metagenomics and 
single-cell genomics depends on the sample, more than 
half of the sequences were obtained in a method-depend-
ent manner. These disparities underscore the unique 
genomic information yielded by single-cell genomics 
compared with metagenomics.

Comparisons of genome quality (Fig.  1b) showed that 
high- or medium-quality SAGs tended to have slightly 
lower quality (mean 61.5), higher contig counts (mean 
364.2), and fewer tRNA genes than MAGs. A striking 



Page 3 of 13Kawano‑Sugaya et al. Microbiome          (2024) 12:188 	

difference was observed in the recovery of rRNA genes, 
with MAG containing almost no rRNA (0.0069%), 
whereas 94.8% of fecal SAGs contained 16S rRNA genes, 
and 36.6% contained full-set rRNA genes (Fig. 1b). This 
lack of rRNA sequence challenge resulted in the produc-
tion of a large number of semi-HQ MAGs, representing 
over a quarter of all MAGs, marked by the absence of 
rRNA genes, yet showing > 90% completeness and < 5% 
contamination. Participant-wise species distributions 
revealed 25–77 (mean 45) species in oral SAGs, 3–54 

(mean 30) species in fecal SAGs, and 2–38 species 
(mean 17) in fecal MAGs. Notably, a Crohn’s disease 
patient had almost all SAGs (326 of 328) attributed to 
Clostridium perfringens, which causes gas gangrene and 
enterotoxemia.

A phylogenetic tree along 17,202 oral and fecal SAGs 
and 869 MAGs was retrieved through phyloT [26] and 
displayed varying taxonomic biases between SAGs and 
MAGs (Fig.  2a). A majority of SAGs identified deep 
genomic diversity across related species in specific 

Fig. 1  Overview of the Single Amplified Genome catalog bbsag20 for human oral and fecal bacteria. a Overview of samples, assembled genomes, 
MGEs, and ARGs in the bbsag20 dataset. SAGs and MAGs were categorized as high-quality (HQ), medium-quality (MQ), or low-quality (LQ). b 
Assembly statistics for both SAGs and MAGs. Gray dots indicate the average values. Genome completeness and contamination show all fecal MAG, 
fecal SAG, and oral SAG data. Metrics for high- or medium-quality genomes include quality (defined as completeness minus 5 × contamination), 
total length, contig count, CDS count, GC content, N50, tRNA repertoire, and rRNAs

(See figure on next page.)
Fig. 2  Taxonomy of bbsag20 for human oral and fecal bacteria. a, (left) Venn diagram visualizing the species found by fecal MAGs, fecal SAGs, 
and oral SAGs. (right) Phylogenetic tree representing 811 species obtained from all medium- or high-quality 17,202 SAGs and 869 MAGs. The 
colored strips show the presence of genomes in each method. b A list of the 12 species consistently present in both the oral and fecal microbiomes 
of the participants. The number of SAGs obtained is shown in different colors depend on samples. c ANI heatmap for Streptococcus salivarius 
across SAGs from saliva (salmon) and feces (green). d ANI heatmap for Streptococcus sp001556435 across SAGs from saliva (salmon) and feces 
(green)
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Fig. 2  (See legend on previous page.)
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lineages, whereas MAGs covered a broader range of line-
ages. In particular, 96.4% of SAGs (Fig. 2a; green strips) 
targeted 419 species of Firmicutes, currently renamed 
Bacillota, which are largely absent in MAGs. Of the 
460 fecal SAG species identified, 320 were exclusive to 
SAGs, constituting 49.5% of the combined 647 species 
from fecal SAGs and MAGs (Fig.  2a and Supplemen-
tary Table  2). In contrast, MAGs identified 327 species 
(Fig.  2a; magenta strips), some of which (187 species) 
were uncharted in the SAG datasets. The predominance 
of Firmicutes (Gram-positive) in fecal SAGs was simi-
lar to that observed in our previous study [14]. These 
observations could result from inherent sample biases or 
potentially because certain species, such as Gram-nega-
tive bacteria, are susceptible to aerobic sample process-
ing, solvent-induced lysis during sample preservation [24, 
27], and freezing-induced stress, impeding their recov-
ery through single-cell genome sequencing. Given that 
single-cell genomics can rectify the phylogenetic biases 
overlooked in metagenomics and provide strain genomes 
of closely related species, jointly leveraging both tech-
niques promises a comprehensive genomic reference to 
unravel microbial diversity.

Cell‑resolved SAGs revealed oral‑to‑gut bacterial 
translocation
The oral microbiome comprises over 700 species and has 
been implicated in various systemic diseases [28], includ-
ing afflictions of the central nervous system, gastrointes-
tinal system, respiratory system, and hypertension [29]. 
While recent research suggests that 125 out of 310 oral 
species can be found in both the saliva and feces of 470 
individuals across five countries, as determined by shot-
gun metagenome sequencing [30], there exists a contrast-
ing study challenging the colonization of oral bacteria in 
the gut [31]. However, metagenomics might overstate the 
extent of oral bacterial translocation to the gut, especially 
because they also detect DNA fragments from lysed cells.

To investigate the translocation of oral bacteria to the 
gut at the cellular level, we analyzed the taxonomy of 
SAGs from both saliva (7136 SAGs across 312 species) 
and feces (10,066 SAGs across 460 species) for each par-
ticipant. The overlap between these two microbiomes 
was limited, with only 12 species from four genera in 
oral SAG detected in fecal SAGs (Fig. 2b). These included 
Streptococcus (nine species), Enterococcus (one species), 
Ligilatobacillus (one species), and Gemella (one spe-
cies). These bacterial candidates for translocation were 
identified based on oral and fecal SAG pairs that showed 
a Jaccard index > 0.21 in Dashing2 [32] within the same 
participants. While we found no relationships between 
these bacterial translocations and metadata of the partic-
ipants (e.g., age, gender, or diseases), it is notable that the 

genus Streptococcus exhibited varying species detection 
trends across participants, and some participants even 
showed the translocation of multiple species. In total, 14 
of the 32 participants, including four who were healthy, 
displayed signs of translocation.

For the validation of oral-to-gut bacterial transloca-
tion, we identified strains between fecal and oral SAGs 
according to average nucleotide identity (ANI) com-
parisons. Figures 2c and d show ANIs for Streptococcus 
salivarius and Streptococcus sp001556435 SAGs derived 
from fecal and oral samples. In Fig.  2c for S. salivarius, 
the three fecal SAGs (QLF024-00020, QLF024-00362, 
and QLF029-00187) showed high ANI of 99.5–100% 
with oral SAGs from the same participant while showing 
95–97% ANI with the SAGs from other participants or 
other strain SAGs from the same participant. In Fig. 2d 
for Streptococcus sp001556435, six fecal SAGs in QLF020 
showed high ANI of 99.6–100% with oral SAGs from the 
same participant while showing 95–97% ANI with the 
SAGs from other participants.

Our data present initial evidence of bacterial transloca-
tion from the oral cavity to the gut based on cell-resolved 
SAG identity. Although further validation is needed to 
evaluate the existence of biological systems that allow 
oral bacteria to survive in the gastric environment or 
colonize the fecal microbiota, the strain identity between 
oral and fecal SAGs observed in this study proves the 
presence of oral bacteria that have tolerated harsh envi-
ronmental changes. Utilizing cell-resolved SAGs may be 
instrumental for culture-independent evaluations of bac-
terial viability and colonization, especially when explor-
ing the interactions between distinct bacterial species 
across environments.

Linking mobilome and resistome in the human‑associated 
microbiome
MGEs, such as plasmids and phages, are transferred 
across bacterial hosts and sometimes act as carriers of 
ARGs, thereby conferring antimicrobial resistance to 
bacteria [33, 34]. Despite efforts in culturomics [35, 36] 
and metagenomics, which have accumulated hundreds 
of thousands of MGEs [37, 38], current genomic analy-
ses have found it challenging to reveal the prevalence of 
MGEs in individual bacteria. Unlike traditional meth-
ods, SAGs can directly determine the host and MGE 
relationships based on single-cell-resolved information. 
To integrate the mobilome and resistome information 
from SAGs, we detected plasmids using Platon [39], 
which matched known databases, and identified phages 
using PhageBoost [40]. The phages were of complete, 
high-, or medium-quality and contained viral genes [41] 
obtained from both SAGs and MAGs. From the oral 
SAGs, we identified 1491 plasmid sequences and 5827 
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phage sequences (Fig.  1a and Supplementary Tables  3 
and 4). In fecal SAGs, we identified 5087 plasmid and 
4226 phage sequences, respectively. Oral SAGs tend to 
have fewer plasmids than fecal SAGs, with 0.21 plasmids/
genome compared to 0.51 plasmids/genome. In contrast, 
oral SAGs contained more phages, with 0.82 phages/
genome compared to 0.42 phages/genome. In contrast, 
of the 2227 plasmids and 633 phages identified in fecal 
metagenomes, only 10.78% and 33.65%, respectively, 
were binned into MAGs, highlighting the challenge of 
associating MGEs with MAGs. Participant-wise plasmid 
distributions revealed 2–521 in oral SAG, 4–1331 in fecal 
SAG, 0–34 in fecal MAG, and 4–130 in fecal MG (Sup-
plementary Fig.  2). Participant-wise phage distributions 
revealed 32–471 in oral SAG, 11–191 in fecal SAG, 0–16 
in fecal MAG, and 1–23 in fecal MG samples. The major-
ity (83.1–96.7%) of the oral and fecal phages found were 
Caudoviricetes, with complete, high-, or medium-quality 
viral genomes acquired in thousands (Supplementary 
Table 4).

Next, we evaluated the number of bacterial host line-
ages and assumed host ranges for each MGE. Both plas-
mid and phage contigs were deduplicated by clustering 
using MMseqs2 [42] at 90% similarity and coverage, and 
the number of identical clusters observed was recorded 
according to taxonomic categories. Both plasmids and 
phages showed distinct broad host ranges when com-
paring SAGs with MAGs. The histogram showed that 
21 species for plasmids and four species for phages were 
the maximal MGE host ranges observed in fecal SAGs, 
but only three species for plasmids and one species for 
phages were observed in fecal MAGs (Fig.  3a). These 
observations in SAGs are consistent with a recent study 
of broad-host-range plasmids using thousands of isolated 
genomes in public databases [43] and demonstrate the 
advantage of single-cell genomics for determining the 
bacterial host ranges of MGEs, which are often underes-
timated using conventional metagenomic approaches.

We identified 10,241 and 19,660 ARGs in oral and 
fecal SAGs, respectively (Supplementary Table  5), using 
AMRFinderPlus [44]. Metagenome assemblies displayed 
2881 ARGs, with only 640 allocated to MAGs (Fig.  1a). 
Notably, fecal SAGs exhibited a higher count of ARGs 

than MAGs, with 1.95 ARGs/SAG and 0.74 ARGs/MAG. 
The repertoire of ARGs differed among the oral SAGs, 
fecal SAGs, metagenome assemblies, and MAGs. The 
efflux pump genes corresponding to fluoroquinolone 
resistance were exclusively found in oral SAGs (1329 
of pmrA genes) but not in fecal SAGs or metagenomes 
(Supplementary Fig.  3 and Supplementary Table  5; 0 
genes and 1 qnrS1 gene, respectively). Conversely, fecal 
SAGs contained 1869 genes along with 26 aminogly-
coside resistance genes, whereas oral SAGs had only 10 
genes (Supplementary Fig. 3 and Supplementary Table 5). 
Regarding the disparities between SAGs and MAGs, 631 
genes linked to trimethoprim resistance (dfrA1, dfrA17, 
dfrF, and dfrG) were found in fecal SAGs, while the 
metagenome and MAG had 21 and 1 genes, respectively. 
Metagenomes and MAGs showed distinct profiles in tet-
racycline resistance genes; only 29 genes were found in 
MAGs, despite 251 genes being found in metagenome 
assemblies, suggesting difficulty in binning ARGs to 
MAGs.

Understanding the mode of ARG transfer between 
bacteria is important for determining the emergence of 
drug-resistant bacteria. We integrated the mobilome 
and resistome of fecal SAGs and MAGs to determine the 
potential for ARG transfer associated with plasmids and 
phages (Fig. 3b). Importantly, only 2.8% (550/19,660) and 
1.8% (12/640) of ARGs in fecal SAGs and MAGs were 
located on plasmids or phages, respectively, and the rest 
were found in the chromosome or unidentified (Sup-
plementary Fig.  4). There was no obvious dependence 
of the resistome profiles on the participant background. 
MAGs detect a minimal number of MGE and ARG rela-
tionships, rendering sample comparisons challenging. 
In contrast, SAGs provided comprehensive data, reveal-
ing largely consistent mobilome and resistome profiles 
across samples (Fig. 3b). This provides an insight into the 
preferences of the transfer modes for each resistance. For 
instance, tetracycline resistance genes were mainly found 
in phages rather than plasmids, whereas those for mac-
rolides were found in plasmids. Intriguingly, although 
the pattern of resistome possession in each individual 
was similar, each ARG was shown to be capable of being 
transferred via plasmids or phages.

Fig. 3  Detailed examination of mobilomes and resistomes in human-associated microbiomes at single-cell resolution. a Determination of the host 
spectrum of plasmids and phages. To avoid redundant counts, similar plasmids or phage sequences were grouped into clusters. The predicted host 
numbers are depicted in histograms, distinguishing between SAGs and MAGs across different taxonomic ranks. b Distribution of ARGs in MGEs. ARG 
(class) presence and genetic context are visualized as pie charts. The x-axis labels detail the medical condition associated with each sample (Healthy; 
BC, breast cancer; CRC, colorectal cancer; LC, lung cancer; IBS, irritable bowel syndrome; UC, ulcerative colitis). c Comparison of ARGs (subclass) 
in MGEs among participants. Six resistomes in the gut microbiome (QLF001, QLF003, QLF010, QLF027, QLF033, and QLF055, marked with stars in c) 
are presented. d A network diagram depicted the links between the plasmid and its host genome at the species level in QLF055. Lines represent 
the connections between bacterial hosts and plasmids

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Figure  3c shows the ARG subclasses and their bac-
terial hosts for the six participants. These bacterial 
host-specific ARG-MGE profiles suggest that the same 
resistance genes for macrolide (ermB) are transmitted 
via different modes to different bacterial taxa (Fig.  3c; 
QLF001, 003, 027, and 055). The distribution of resist-
ance genes offers insight into their transmission patterns. 
For instance, resistance genes for amikacin/kanamycin 
(aph(3′)-IIIa) were predominantly found on plasmids 
in QLF033 SAGs. In QLF010 SAGs, nearly half of these 
genes were present in phages of bacterial genera that 
were not found in QLF033. In other cases, while QLF003 
SAGs had ermB genes across plasmids from three gen-
era, including Anaerostipes, Faecalibacillus, and Lachno-
spira, QLF055 SAGs had these genes in plasmids across 
nine genera, including Anaerostipes, Blautia, and others 
(Fig.  3c). The total number of plasmids detected from 
the nine genera of QLF055 SAGs was 52, which showed 
100% sequence homology to each other, except for small 
gaps at the contig ends (Supplementary Fig.  5). Platon 
suggested a 99.94% identity between these partial contigs 
and NC_017962.1 (Enterococcus faecium DO plasmid 2), 
suggesting that macrolide resistance genes were poten-
tially transferred via these plasmids to multiple gut bacte-
rial species in the same participant (QLF055) as shown 
in a network diagram (Fig. 3d; center). Single-cell genom-
ics represents a breakthrough in our ability to unveil 
intricate networks of mobilomes and resistomes on a 
per-sample basis (Supplementary Fig.  6). This informa-
tion surpasses conventional metagenomics, highlighting 
dynamic gene exchanges through MGEs in the microbial 
landscapes of human hosts.

Discussion
Our study introduced the bbsag20 dataset, which is a 
comprehensive collection of 17,202 SAGs and 869 MAGs 
from human saliva and feces. The qualitative similarities 
between SAGs and MAGs are notable, but the enhanced 
rRNA gene recovery in SAGs underscores their poten-
tial superiority in reference genomes for conventional 
analyses, including 16S rRNA amplicon sequencing. Both 
methods exhibited taxonomic biases, emphasizing the 
benefits of combining single-cell genomics and metagen-
omics to achieve a full species diversity snapshot. We 
noted pronounced taxonomic differences between oral 
and fecal SAGs, with a limited overlap of only 12 species. 
This mirrors earlier research highlighting the separate 
microbial niches in the oral cavity and gut, underlining 
the need for targeted sampling in microbiome studies.

In culture-free microbial research, single-cell genomics 
has emerged as a potent tool for addressing and filling the 
lacunae left by traditional metagenomic approaches. This 
assertion is bolstered by our findings, which highlight the 

superior sensitivity and precision of single-cell genom-
ics, especially in the profiling of MGEs and ARGs. While 
some cutting-edge research aims to connect MAGs, 
MGEs, and ARGs using Hi-C metagenomics, the exten-
sive sequence reads required often limit MGE and ARG 
detection [45–49]. Single-cell genomics, with its ability 
to overcome such challenges, offers a refined view of the 
complex dynamics among ARGs, MGEs, and their hosts.

From a public health perspective [50, 51], profiling of 
the microbiome, mobilome, and resistome highlights 
pathways to address growing concerns regarding antimi-
crobial resistance. Recognizing the spread of antimicro-
bial resistance, it is vital to understand the reservoirs and 
the transmission of ARGs [3, 46, 47, 52]. This knowledge 
will drive the development of strategies to prevent the 
spread of resistant pathogens. For example, discerning 
that specific resistance genes are mainly present in plas-
mids within certain bacterial groups may inform both 
monitoring and targeted interventions.

The proposed research approach has implications not 
only for health care but also for the environmental and 
agricultural sectors. With the spread of antimicrobial 
resistance through diverse ecosystems such as hospitals, 
farms, and water sources, a thorough understanding of 
ARG dynamics is essential for a comprehensive approach. 
Single-cell genomics has the potential to be a key tool for 
tracking genetic shifts across environments, enabling 
proactive measures and data-driven decision-making.

Conclusions
Our study emphasizes the game-changing capacity of 
single-cell genomics in microbiome studies. This pro-
vides a new perspective on microbial communities, 
MGEs, and antimicrobial resistance patterns, and offers 
a renewed understanding of microbial interplay. The 
bbsag20 dataset demonstrates the effectiveness of this 
method. Our data highlight the potential of single-cell 
genomics for monitoring the dynamics of MGEs and 
ARGs in the microbiome across people, animals, and the 
environment.

Methods
Experimental design and sample collection
All human subjects signed a written informed consent 
form, and the project was approved by the ethics review 
committee at Yamauchi Clinic (No. 2020–08-00092). All 
methods were conducted in accordance with the guide-
lines and regulations outlined by the ethics approval. 
Preserved feces were collected in 15 mL vials containing 
3 mL GuSCN solution (FS-0002; TechnoSuruga Labora-
tory Co., Ltd., Shizuoka, Japan) and stored at 4  °C for a 
maximum of 2  weeks prior to single-cell encapsulation 
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in droplets or DNA extraction. Preserved saliva was col-
lected in OMNIgene ORAL (OM-501; KYODO INTER-
NATIONAL INC., Kanagawa, Japan) and stored at 4  °C 
for a maximum of two weeks prior to single-cell encapsu-
lation in droplets or DNA extraction.

Single‑cell genome sequencing
Following the suspension of human feces in the GuSCN 
solution (500 μL), the supernatant was recovered by 
centrifugation at 2000 × g for 30  s, followed by filtra-
tion through a 35-μm nylon mesh and centrifugation at 
8000 × g for 5  min. The resulting cell pellets were sus-
pended in DPBS and centrifuged twice at 8000 × g for 
5 min. Bacterial cell suspensions were prepared in 100–
500 μL of PBS and used in the following steps.

Single-cell genome amplification was performed using 
the SAG-gel platform, as described in our previous 
reports  [21, 22]. Prior to single-cell encapsulation, cell 
suspensions were adjusted to 0.3–0.4 cells/droplets in 
1.5% agarose in DPBS to prevent encapsulation of mul-
tiple cells in single droplets. Using an On-chip Droplet 
Generator (On-chip Biotechnologies Co., Ltd., Tokyo, 
Japan), single bacterial cells were encapsulated in drop-
lets and collected in a 1.5 mL tube, which was chilled on 
ice for 15  min to form the gel matrix. Following solidi-
fication, the collected droplets were broken using 1H, 
1H, 2H, 2H-perfluoro-1-octanol (Sigma-Aldrich, STL, 
MO, USA) to collect the capsules. The gel capsules were 
washed with 500 μL of acetone (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan), and the solu-
tion was mixed vigorously and centrifuged. The acetone 
supernatant was removed, 500 μL of isopropanol (FUJI-
FILM Wako Pure Chemical Corporation) was added, 
and the solution was mixed vigorously and centrifuged. 
The isopropanol supernatant was removed, and the gel 
capsules were washed three times with 500 μL of DPBS. 
Individual cells in capsules were then lysed by submerg-
ing the gel capsules in lysis solutions: first, 50 U/μL 
Ready-Lyse Lysozyme Solution (Lucigen, WI, USA); 2 U/
mL Zymolyase (Zymo Research Corporation, CA, USA); 
22 U/mL lysostaphin (Sigma-Aldrich); and 250 U/mL 
mutanolysin (Sigma-Aldrich) in DPBS at 37 °C overnight; 
second, 0.5 mg/mL achromopeptidase (FUJIFILM Wako 
Pure Chemical Corporation) in PBS at 37  °C for 6–8  h; 
and third, 1  mg/mL Proteinase K (Promega Corpora-
tion, WI, USA) with 0.5% SDS in PBS at 40 °C overnight. 
At each reagent replacement step, the gel capsules were 
washed three times with DPBS and subsequently resus-
pended in the next solution.

Following lysis, the gel capsules were washed five times 
with DPBS, and the supernatant was removed. The cap-
sules were then suspended in Buffer D2 and subjected 
to multiple displacement amplification (MDA) using 

REPLI-g Single Cell Kit (QIAGEN, Germany). Following 
MDA treatment at 30  °C for 3  h, the gel capsules were 
washed three times with 500 μL of DPBS. Thereafter, the 
capsules were stained with 1 × SYBR Green I (Thermo 
Fisher Scientific, MA, USA) in DPBS and observed with 
fluorescence microscopy BZ-X810 (KEYENCE CORPO-
RATION, Osaka, Japan) to count the number of fluores-
cence-positive gel capsules. Following confirmation of 
DNA amplification based on the presence of green fluo-
rescence in the gel, fluorescence-positive capsules were 
sorted into 384-well plates using a BD FACSMelody cell 
sorter (BD Biosciences, Tokyo, Japan) equipped with a 
488-nm excitation laser.

Following droplet sorting, 384-well plates were sub-
jected to the second round of MDA or were stored 
at − 30  °C. Following gel capsule collection in 384-well 
plates, second-round MDA treatment was performed 
using the REPLI-g Single Cell Kit. Buffer D2 was added to 
each well and incubated at 65 °C for 10 min. Thereafter, 
the MDA mixture was added and incubated at 30 °C for 
120 min. The MDA reaction was terminated by heating at 
65 °C for 3 min.

For sequencing analysis, sequencing SAG libraries were 
prepared from the second-round MDA product using 
the QIAseq FX DNA Library Kit (QIAGEN). Aliquots 
of SAGs were transferred to replica plates for DNA yield 
quantification using Quant-iT dsDNA Broad-Range (BR) 
Assay Kit (Thermo Fisher Scientific) prior to library prep-
aration. Ligation adaptors were modified using TruSeq-
Compatible Full-length Adapters UDI (Integrated DNA 
Technologies, Inc., IW, USA). Each SAG library was 
sequenced using an Illumina HiSeq X Ten System with 
a 2 × 150  bp configuration at Macrogen Japan Corp. 
(Tokyo, Japan) or using an Illumina NextSeq 2000 System 
with a 2 × 150 bp configuration.

Shotgun metagenome sequencing
The QIAamp PowerFecal Pro DNA Kit (QIAGEN) was 
used for total DNA extraction from the saliva and fecal 
samples. Metagenomic sequencing libraries were con-
structed from extracted DNA samples with 10 μL (1/5 
volume) reactions using the QIAseq FX DNA Library 
Kit (QIAGEN). Each metagenomic sequencing library 
was sequenced using the Illumina NextSeq 2000 System 
2 × 150 bp configuration.

Genome analysis
Adapter sequences and low-quality reads were eliminated 
from raw sequence reads of metagenome sequences and 
single-cell genome sequences using bbduk.sh (version 
38.90; https://​sourc​eforge.​net/​proje​cts/​bbmap/) with 
following options (qtrim=r trimq=10 minlength=40 
maxns=1 minavgquality=15). These quality-controlled 

https://sourceforge.net/projects/bbmap/
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reads of single-cell genomes were assembled de novo 
into contigs using SPAdes (v3.14.0) [53] with the follow-
ing options (--sc --careful --disable-rr --disable-gzip-out-
put). Contigs shorter than 1000  bp were excluded from 
the SAG assemblies. Metagenome reads were assembled 
using SPAdes with the following options (--meta). MAGs 
were constructed using three binning tools, includ-
ing CONCOCT (v1.0.0) [54], MaxBin 2  (v2.2.6) [55], 
and MetaBAT 2 (v2.12.1) [56], with default options, and 
DAS_Tool (v1.1.2) [57] was used to refine the binning 
results. CDSs, rRNAs, and tRNAs were predicted from 
the SAGs and MAGs using Prokka (v1.14.6) [58] with 
the following options (--rawproduct). The completeness 
and contamination of SAGs and MAGs were evaluated 
using CheckM (v1.1.2) [59] lineage workflow with default 
options. Taxonomy identification was performed using 
GTDB-Tk (v2.1.0) [60] with default options, and GTDB 
release 207.

Alignment of metagenome assemblies and single‑cell 
genome assemblies
The contig overlap lengths between metagenome 
assemblies and SAGs were calculated based on the 
results of BLASTn with the following options (-outfmt 
6 -num_threads 4 -perc_identity 95 -max_target_seqs 
50,000). Only hits above 1000 bp and 99% similarity were 
extracted using the awk command (awk ‘{if($3 >= 99 && 
$4 >= 1000) print $0}’). The redundancy was removed by 
piling up the overlap hits using awk and BEDTools [61] 
(cut -f 2,9,10 input.tsv | sort | uniq | awk ‘{if($2 > $3) 
print $1 "\t" $3–1 "\t" $2 "\t." "\t0" "\t + "; else if($2 < $3) 
print $1 "\t" $2–1 "\t" $3 "\t." "\t0" "\t + ";}’ | sort -k1,1 V 
-k2,2  V -k3,3  V | uniq | bedtools merge -i  -  | awk 
‘BEGIN{OFS = "\t"}{$4 = $3-$2; print $0}’ | sed "1i contig\
tstart\tend\tlength").

Phylogenetic analysis of oral and fecal bacterial genomes
A total of 7136 oral SAGs, 10,066 fecal SAGs, and 869 
fecal MAGs above medium-quality were retrieved from 
the bbsag20 dataset. The undetermined taxa in GTDB-
Tk (release 207) were removed and 811 unique taxa were 
used in the following analysis. The phylogenetic tree was 
retrieved using phyloT with the removal of one species 
(Methanobrevibacter_A smithii) due to an error in phy-
loT. Tree visualization and annotation were performed 
using an R package “ggtree” [62].

Identification of plasmid, phage, and ARGs
SAGs (oral, 7136; feces: 10,066); fecal metagenome 
assemblies (n = 51); and MAGs (n = 869) above medium 
quality were used for mobilome and resistome analysis. 
Plasmids were predicted using Platon (version 1.6) [39] 
with default parameters (platon --db ${platondb} --output 

${sampleid} --verbose --threads ${cpus} ${fna}). The 
list was filtered with “#Plasmid Hits” = 1 (True). Phages 
were predicted using PhageBoost (version 0.1.7) [40] 
with default parameters (PhageBoost -f ${fna} -o ${sam-
pleid} --threads ${cpus}), and their quality were assessed 
using CheckV (v1.0.1) [41] with following command 
(checkv end_to_end -d checkv-db-v1.4 -t 4 ${input}.fna 
result/checkv/${input}). Only hits with checkv_qual-
ity = Medium-quality, High-quality, or Complete having 
at least one viral gene (viral_genes > = 1) were used in the 
following analysis. We employed clustering on the plas-
mids and phages by MMseqs2 (version 13.45111) [42] 
using a cut-off threshold both of above 90% coverage and 
similarity (mmseqs cluster --threads ${cpu} --cov-mode 
0 -c 0.90 --min-seq-id 0.90 ${mmseqs_db} ${cluster_db} 
${cluster_db_tmp}; mmseqs createtsv --threads ${cpu} 
${mmseqs_db} ${mmseqs_db} ${cluster_db} ${sam-
pleid}_c90s90.tsv). ARGs were identified using the NCBI 
AMRFinderPlus [44] with following options (amrfinder 
--plus -p ${faa} -n ${fna} -g ${gff} --threads ${cpus} -a 
prokka -o ${sampleid}.tsv --nucleotide_output ${sam-
pleid}_amrfp.fna --protein_output ${sampleid}_amrfp.
faa). To exclude virulence genes, heavy metal resist-
ance genes, and partial genes, we removed hits with 
Method = PARTIALP, PARTIAL_CONTIG_ENDX, 
PARTIAL_CONTIG_ENDP, PARTIALX, INTERNAL_
STOP) and used only hits with Element type = AMR.

Estimation of host ranges of plasmids and phages
The filtered plasmids and phages data were combined 
with metadata of high- or medium-quality SAGs or 
MAGs containing genome ID, sample ID, and GTDB 
taxonomy (release 207) based on their contig ID. We 
counted the unique taxa after grouping them by family, 
genus, or species for each plasmid or phage cluster using 
the R program. The frequencies of the unique taxa were 
plotted.

Visualization of mobilome and resistome in individual 
participants
The identified plasmids and ARGs were combined based 
on contig ID. ARGs in phage genomic regions were 
extracted using bedtools (sed 1d ${amrfp}.tsv | awk ‘BEGIN 
{OFS = "\t"}{print $2 "\t" $3–1 "\t" $4 "\tAMRFinderPlus\
t.\t" $5}’ > ${sampleid}_amrfp.bed; sed 1,2d ${sampleid}_
phageboost.gff | sed "s/gnl|bB|//g" | sed "s/QLF…/\1sag/g" 
| awk ‘BEGIN {OFS = "\t"}{print $1 "\t" $4–1 "\t" $5 "\
tPhageBoost\t.\t + "}’ > ${sampleid}_phageboost.bed; bed-
tools intersect -a ${sampleid}_amrfp.bed -b ${sampleid}_
phageboost.bed -f 1.00 -wa). The numbers of ARGs in 
plasmids or phages for each ARG class were counted by 
sample ID and plotted using the R package “scatterpie.” 
The number of ARGs in plasmids or phages for each ARG 
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subclass was counted by genus and plotted depending on 
the sample ID. The network diagram between plasmids and 
ARGs was generated using the R package “igraph” [63] and 
visualized using Gephi [64].
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