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Abstract 

Background Microbial anaerobic metabolism is a key driver of biogeochemical cycles, influencing ecosystem func-
tion and health of both natural and engineered environments. However, the temporal dynamics of the intricate inter-
actions between microorganisms and the organic metabolites are still poorly understood. Leveraging metagenomic 
and metabolomic approaches, we unveiled the principles governing microbial metabolism during a 96-day anaerobic 
bioreactor experiment.

Results During the turnover and assembly of metabolites, homogeneous selection was predominant, peaking 
at 84.05% on day 12. Consistent dynamic coordination between microbes and metabolites was observed regard-
ing their composition and assembly processes. Our findings suggested that microbes drove deterministic metabolite 
turnover, leading to consistent molecular conversions across parallel reactors. Moreover, due to the more favorable 
thermodynamics of N-containing organic biotransformations, microbes preferentially carried out sequential degra-
dations from N-containing to S-containing compounds. Similarly, the metabolic strategy of C18 lipid-like molecules 
could switch from synthesis to degradation due to nutrient exhaustion and thermodynamical disadvantage. This 
indicated that community biotransformation thermodynamics emerged as a key regulator of both catabolic and syn-
thetic metabolisms, shaping metabolic strategy shifts at the community level. Furthermore, the co-occurrence 
network of microbes-metabolites was structured around microbial metabolic functions centered on methanogenesis, 
with  CH4 as a network hub, connecting with 62.15% of total nodes as 1st and 2nd neighbors. Microbes aggregate 
molecules with different molecular traits and are modularized depending on their metabolic abilities. They estab-
lished increasingly positive relationships with high-molecular-weight molecules, facilitating resource acquisition 
and energy utilization. This metabolic complementarity and substance exchange further underscored the cooperative 
nature of microbial interactions.

Conclusions All results revealed three key rules governing microbial anaerobic degradation. These rules indicate 
that microbes adapt to environmental conditions according to their community-level metabolic trade-offs and syn-
ergistic metabolic functions, further driving the deterministic dynamics of molecular composition. This research offers 
valuable insights for enhancing the prediction and regulation of microbial activities and carbon flow in anaerobic 
environments.
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Introduction
Microbial growth and activity drive the global carbon 
cycle, and an essential part of carbon flow is mediated by 
microbial anaerobic metabolism [1–3]. Approximately, 
70% of global methane  (CH4) emissions are created via 
microbial anaerobic metabolism in typical anaerobic 
habitats, including the deep layers of terrestrial soils and 
aquatic sediments, guts and rumens, and anaerobic facili-
ties [4]. Anaerobic microorganisms also contribute to 
carbon storage via microbial carbon sequestration [3, 5], 
which leads to the transformation of organic carbon from 
labile to recalcitrate molecules in terrestrial and marine 
carbon pools [5–7]. Moreover, the anaerobic metabolic 
activities of animal digestive flora are relevant to host 
health [8]. Understanding microbial anaerobic metabo-
lism promotes the prediction of and response to global 
climate change, the regulation of carbon flow during 
microbial engineering, and the maintenance of vital sys-
tems’ health [7, 9, 10]. However, the core rules underly-
ing anaerobic metabolic patterns and dynamics remain 
largely understudied within natural habitats and engi-
neered systems [11–13].

Microorganisms are capable of complex and flexible 
metabolic pathways [14, 15]. It has been emphasized that 
microorganisms exhibit different metabolic behaviors to 
adapt to habitats and resist disturbance [16, 17]. Mean-
while, microorganisms also have metabolic discrepancies 
in their preferences for substances and forms of meta-
bolic utilization during various activities such as growth, 
multiplication, and other trophic activities [2, 3]. This has 
led to controversial inferences and opposing experimen-
tal evidence in judging the effects of environmental and/
or biotic factors on microbial metabolisms. For exam-
ple, there are debates regarding the positive and nega-
tive correlations of microbial carbon use efficiency with 
microbial carbon storage [7]. Furthermore, the observed 
changes in microbial metabolites represent the collec-
tive metabolic performances of individual microorgan-
isms under specific environmental conditions [16, 17]. 
Therefore, we introduce the concept of meta-metabolism 
to represent the collective metabolic interactions and 
dynamics of various microorganisms within a given envi-
ronment. An exploratory study by Danczak et al. [18] has 
suggested that the composition of metabolites, although 
not performing active behaviors like microorganisms, 
can be considered similar to microbial communities, 
undergoing turnover and assembly, and fulfilling ecologi-
cal functions. The advancement of multi-omics detec-
tion technologies provides vast amounts of data about 
the complex compositions of microbial communities and 
metabolites [19, 20]. However, a new challenge arises in 
linking the complex compositions of microbial commu-
nities and metabolites [21, 22]. To address this challenge, 

it is crucial to characterize metabolic patterns and con-
tinuously monitor the response of microbial meta-
metabolism to the surrounding conditions [16, 23, 24].

The anaerobic digestion (AD) system can serve as a 
model for studying the dynamics and rules of microbial 
meta-metabolism. It operates as a relatively self-con-
tained and closed system characterized by rapid rates of 
biological metabolism [25, 26], allowing for the obser-
vation of the dynamic pattern within the system. As a 
successful bioengineering technique, AD facilitates the 
conversion of macromolecular organic matter into inter-
mediates such as volatile fatty acids and biogases [4]. In 
this resource recovery process, the regulation of car-
bon flows towards target products is quite essential to 
promote the efficiency [12, 27]. During the AD process, 
organic molecules are mainly generated through the 
ex  vivo modification and in  vivo turnover of microor-
ganisms as metabolites and released into the liquid envi-
ronment [3]. The microbial and metabolic compositions 
within the AD system are incredibly complex [12, 28] and 
synchronously influenced by microbial cooperation, met-
abolic thermodynamics, and variable environmental fac-
tors [29–31]. These co-factors contribute to the diverse 
metabolic pathways, trade-offs, and strategies within the 
system, offering a tractable model system for studying the 
microbial metabolic mechanisms.

Here, we combined metagenomic and metabolomic 
data to discover the dynamic mechanisms of micro-
bial anaerobic meta-metabolism during the simulated 
AD experiment. Based on identifying dissolved organic 
matter (DOM) metabolites, the inference of biotrans-
formation, and the linkages with microbial activities, we 
focused on the overall and specific dynamic metabolic 
patterns under anaerobic conditions. The hypotheses 
of this study were as follows: (i) assembly processes can 
elucidate the consecutive turnover of DOM metabo-
lites, akin to microbial community dynamics, with har-
monious interactions between metabolite assemblages 
and microbial communities; (ii) microbial communi-
ties exhibit metabolic strategy trade-offs throughout the 
process, which can be understood using general princi-
ples derived from meta-metabolism evidences; and (iii) 
the selection of metabolites by microorganisms depends 
on microbial ecological functions and molecular traits, 
influenced by specific environmental conditions.

Materials and methods
Experiment and sampling
Food waste (FW) was selected as the substrate of our 
bioreactor due to its high volume as a major source of 
municipal organic waste and a vital application scenario 
for AD [32]. To simulate the anaerobic digestion of FW 
and ensure maximum degradation of organic matter [33, 
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34], we set up six parallel bioreactors that were run con-
tinuously for 96 days under anaerobic conditions. The 
simulated FW used in the study (see Table S1 for details) 
was modified from a previous study [35]. The FW sus-
pension was prepared by mixing simulated FW and tap 
water in a 1:3 wet-weight ratio. Each reactor (total vol-
ume 2.87 L) was ultimately filled with 2.5 L of the ini-
tial starting mixture composed of seed anaerobic sludge 
and FW suspension in a 1:4 wet-weight ratio. After set 
up, these reactors were controlled within a tempera-
ture range of 35–38 °C [26] and a stirring speed of 100 
rpm. Samples were collected on days 0, 3, 6, 9, 12, 24, 48, 
and 96 after the experiment was set up. Physicochemi-
cal properties were measured according to our previous 
study [25], and more details are provided in the supple-
mentary information (SI).

Metabolomic preprocessing
The untargeted metabolomics proceeded using a Fourier-
transform ion cyclotron resonance mass spectrometer 
(FT-ICR-MS) with a 15.0 T superconducting magnet 
and a negative electrospray ion source (Bruker solariX, 
Bruker, USA). Before detection, the DOM metabolites 
in the filtered liquor (0.45-µm filter) were enriched from 
the aqueous phase to the organic phase using solid-phase 
extraction with a Bond Elut-PPL straight barrel (1 g, 6 
mL Agilent, USA) according to a previous study [36]. The 
mass spectrometric detection was performed in negative 
ion mode, and the signal was scanned and accumulated 
three hundred times to improve quality [37]. After the 
quality control process (see SI for details), 11,086 peaks 
were assigned to distinct molecular formulas. Diverse 
characteristics of each formula were calculated using 
R software v4.0.4, including O/C ratio, H/C ratio, N/C 
ratio, P/C ratio, S/C ratio, Kendrick defect based on  CH2 
 (kdefectCH2), double bond equivalent (DBE), DBE minus 
oxygen (DBE-O), aromaticity index (AI), modified AI 
 (AImod), DBE minus AI (DBE-AI), the nominal oxida-
tion state of carbon (NOSC), standard Gibbs free energy 
of carbon oxidation (GFE), and carbon use efficiency 
(Ymet) [18, 38]. In addition, analyzed formulas were clas-
sified based on their elemental composition compared 
to natural organic matter [38–40]. The molecules were 
then classified into seven categories: lignin-like, lipid-
like, unsaturated-hydrocarbon-like, condensed-aromatic-
like, protein-like, carbohydrate-like, and tannin-like 
(Table S2).

Metagenomic preprocessing
Following the manufacturer’s instructions, microbial 
DNA was extracted from the time series samples (fil-
ter cake obtained by filtering 4 mL of sludge, n = 48) 
using the PowerSoil™ DNA Isolation® Kit (MO BIO 

Laboratories, USA). The V4 region of the 16S rRNA gene 
of prokaryotes was amplified using the universal primer 
pair 515F and 806R [41]. The procedures of amplifica-
tion and purification were consistent with our previ-
ous study [42]. Sequencing was finally performed on an 
Illumina NovaSeq platform (Magigene Biotech, Guang-
zhou, China). The sequenced data were analyzed on our 
amplicon sequencing data analysis pipeline (https:// 
dmap. dengl ab. org. cn) [43]. Subsequently, 8319 zero-
radius operational taxa units (ZOTUs) were obtained for 
further analysis. In addition, DNA extracted from each 
sample was subjected to shotgun sequencing on an Illu-
mina NovaSeq platform (Magigene Biotech, Guangzhou, 
China), while the mixed DNA from six replicates at each 
time was subjected to nanopore metagenome sequenc-
ing (BENAGEN, Wuhan, China). Metagenome-assem-
bled genomes (MAGs) were then obtained from hybrid 
metagenomic assembly (see SI for details). The predicted 
genes of different MAGs were reannotated via eggNOG-
mapper online [44], and pathway reconstruction was 
conducted via KEGG Mapper [45]. Furthermore, DRAM 
[46, 47] and dbCAN3 [48] were utilized to provide 
extra gene annotation related to short-chain fatty acid 
(SCFA) metabolisms and carbohydrate-active enzymes 
(CAZYmes). More details are provided in the SI.

Diversity and relative abundance analysis
Alpha diversity was calculated and displayed based on 
observed richness. The dissimilarity between composi-
tions of different samples was computed using the Bray–
Curtis distance, and the results were visually represented 
through principal coordinates analysis (PCoA). The rela-
tive abundances of various categories were measured 
according to the relative peak intensity and the elemen-
tary composition of the detected formulas. When ana-
lyzing and visualizing the relative abundance of organic 
matter with varying carbon content, we ranked the aver-
age accumulated abundance of each category over time 
and displayed only the top five in the final results.

Temporal conversion characteristics analysis
The conversion characteristics of metabolites through-
out the entire process were observed to infer the meta-
bolic strategies employed. The overall characteristics of 
the metabolites were calculated based on the weight of 
the corresponding characteristics of all formulas in each 
sample [40]. The variations of these general characteris-
tics during the process were used to analyze the trends 
of metabolite conversion. Then, potential biotransfor-
mations [49] were determined based on pairwise mass 
distance [12, 50] mapping to a professional database 
[18] (https:// github. com/ dancz akre/ Meta- Metab olome_ 
Ecolo gy). The specific biotransformations of different 

https://dmap.denglab.org.cn
https://dmap.denglab.org.cn
https://github.com/danczakre/Meta-Metabolome_Ecology
https://github.com/danczakre/Meta-Metabolome_Ecology
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time points were then identified using the linear discri-
minant analysis effect size (LEfSe) method [51]. If the 
relative abundance of special biotransformations at a spe-
cific time point was significantly higher than at all other 
time points (p < 0.05), we considered these transforma-
tions time-specific. Furthermore, community biotrans-
formation thermodynamics were calculated to elucidate 
trade-offs in microbial metabolic strategies. The biotrans-
formation thermodynamics of pairwise molecules were 
determined by calculating the difference in their GFE 
[49]. A smaller GFE difference indicates that the trans-
formation between paired molecules occurs more easily. 
To determine the direction of a transformation, which 
is necessary for calculating GFE difference, we used 
the increase and decrease in molecular weight between 
paired molecules. An increase in molecular weight cor-
responds to synthetic metabolism, while a decrease cor-
responds to catabolic processes. The mean values of the 
biotransformation thermodynamics for all pairwise mol-
ecules with the same characteristics were defined as the 
community biotransformation thermodynamics for a 
specific type of molecular transformation.

Assembly process analysis
Organic matter turnover could arise as the collective 
result of the gain, loss, and transformation history of indi-
vidual molecules [18]. This process is similar to the turn-
over of microbial communities, allowing the extended 
application of assembly processes to DOM. After that, 
deterministic processes, influenced by environmental 
and/or biotic factors, drive the composition to follow a 
convergent or divergent pattern of assembly, as “homo-
geneous selection” and “heterogeneous selection,” respec-
tively [52]. Alternatively, the DOM component could 
be structured according to stochastic processes such as 
drift and dispersal in microbial community ecology [18, 
52]. The inferred community assembly mechanisms, via 
phylogenetic bin-based null model analysis (iCAMP) 
[53], were utilized to quantify the process of assembling 
metabolite composition. Under this framework, metabo-
lites were assigned to a tree based on their similarities of 
molecular traits, analogous to the phylogenetic tree of 
microorganisms. The distances between metabolites on 
the tree were determined by their combined Euclidean 
distances across 16 molecular trait dimensions (Table S3) 
[52]. Based on the distribution of metabolites on the tree, 
and following the default procedures of the software, 
closely related metabolites are clustered into bins, ulti-
mately forming 57 bins [52, 53]. The molecular assembly 
process was determined for each bin, and the overall pro-
cess was weighted according to the total relative abun-
dance of metabolites in these bins.

To assess the relationship between the turnovers of the 
metabolite composition and the microbial community, 
Mantel tests based on Spearman correlation were utilized 
to calculate the associations between these two compo-
nents, specifically in terms of taxonomic composition 
variation and ecological niche structure. To accomplish 
this, we used Jaccard and Bray–Curtis distances to rep-
resent differences in taxonomic composition. Addition-
ally, we considered microbial phylogeny and molecular 
similarity as corresponding concepts and calculated the 
β-nearest-taxon index (βNTI) to illustrate differences in 
ecological niches [18, 53, 54].

To evaluate the relative importance of co-turnover of 
the microbial community and individual environmental 
variables in metabolite composition, multiple regression 
on matrices (MRM) analysis was utilized. The proce-
dure involved filtering environmental explanatory vari-
ables with higher correlation (Spearman’s ρ2 < 0.5) [55]. 
The matrices of metabolite composition and microbial 
community were calculated using Bray–Curtis distance, 
while matrices of environmental explanatory variables 
were structured based on Euclidean distance. Before the 
regression, all input distance matrices were standard-
ized, with 0 as the mean and 1 as the standard deviation. 
Therefore, the coefficients of the regression could be used 
to approximate the degree of the influence of different 
explanatory variables. MRM was performed using the R 
package ecodist v2.0.9 with 100,000 permutation tests. 
We also repeated the same procedure independently to 
explain microbial community turnover.

Co‑occurrence network analysis
To further explore the relationships among individuals in 
the system, a bipartite network was constructed between 
microbes and substances, including DOM metabolites 
and environmental variables. First, individuals which 
appeared on half of the sampling days and in at least five 
of the six replicates for individual sampling days were 
filtered and retained. The selected individuals were then 
standardized to a range of 0 to 1, and the standardized 
data was used to compute local similarity (LS) scores to 
assess the correlation of the time-series data [56, 57], 
allowing for a delay of 1-time point. The random matrix 
theory (RMT) method was employed to select a thresh-
old based on the LS score matrix, and the threshold was 
set at 0.819 [58]. After module identification, we calcu-
lated the relative within-module degree and the par-
ticipation coefficient of the individuals in the network 
to determine their role in the network [58]. The network 
analysis process was performed on the iNAP platform 
[59] (https:// inap. dengl ab. org. cn).

To evaluate the variation of molecular traits among dif-
ferent network modules, a multi-response permutation 

https://inap.denglab.org.cn
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procedure (MRPP) analysis was performed based on 
molecular similarity distance. To analyze the relation-
ship between the network structure and the metabolite’s 
molecular weight, the local positive correlation ratio was 
calculated step by step in a molecular weight range of 
120, starting from the minimum molecular weight in the 
network and with a step of 10. Furthermore, to explore 
the metabolic function of key species in the bipartite net-
work, these species were related to MAGs via local align-
ment search based on the 16S rRNA gene and annotation 
comparison.

Results
Discovering intrinsic traits of the overall DOM metabolites 
composition
Meta-metabolites offer a vast functional space for 
microbial metabolism, serving as a shared material pool 
wherein thousands or more metabolites are produced, 
exchanged, and assimilated by microorganisms [60, 
61]. The initial step should be comprehending the com-
position of this DOM metabolites pool. Using a high-
resolution mass spectrum, a total of 11,086 molecular 
formulas of DOM were identified throughout the 48 
samples collected at eight distinct time points (days 0, 3, 
6, 9, 12, 24, 48, and 96) in all AD bioreactors. As shown 
in Fig. S1, many formulas displayed lignin-like (4290) 
and lipid-like (1,572) compositions. When focusing on 
the elemental composition of these formulas, it was 
shown that the majority of analyzed matters contained 
the element oxygen (O) (10,566/11,086) (Fig.  1A). Con-
sequently, the presence or absence of O was not consid-
ered separately in the elemental composition analysis. In 
descending order, the prevalent categories within this AD 
system included CH(O) (3149), CH(O)N (2663), CH(O)
NS (1749), and CH(O)S (1533) (Fig. S1). In contrast, only 
a tiny proportion of the identified DOMs (1992/11,086) 
contained the element P, categorized as CH(O)NP, 
CH(O)P, and CH(O)PS. The molecules/formulas with 18 
C atoms were the most numerous, while the number of 
molecules gradually decreased with variations from 18 
(Fig.  1A). A similar trend was observed when consider-
ing H and O elements, where the highest quantity of 
molecules was reached with 6 H and 22 O (Fig. 1A). In 
addition, the molecules did not display a significant bias 
towards unsaturation, with most DOM molecules con-
taining reducing C (Fig. 1B). Therefore, the overall com-
position of the metabolites in this AD system for food 
wastes was determined to be biodegradable.

The composition of metabolites underwent a continu-
ous and rhythmic succession. Specifically, the observed 
richness of metabolites increased during the initial 
stage (days 0–3), followed by fluctuations and decreases 
throughout the rest of the process (Fig. 1C). This indicates 

that most metabolites were generated through biological 
processes accompanied by hydrolysis. However, despite 
increased richness during days 0–3, we observed a trend 
towards a composition of simpler metabolites over 
time (days 3–96). Meanwhile, the continuous turnover 
of metabolites was visualized using principal coordi-
nates analysis based on Bray–Curtis dissimilarity (Fig. 
S2). All bioreactors exhibited a consistent pattern in 
the succession of metabolite composition, wherein the 
system gradually converted towards a simpler molecu-
lar makeup over time. Furthermore, while most of the 
categories identified in this study followed the trend of 
overall observed richness, lipid-like substances showed 
a distinct variation (Fig.  1D). Unlike most substances 
that only increased at the initial phase (days 0–3), lipid-
like substances increased in richness during days 0–9 
(Fig.  1D), accompanied by a steady increase in relative 
abundance until day 12 (Fig. 1E) when methane genera-
tion began (Fig. S3). Therefore, the production of lipid-
like components in this system exhibited a prolonged 
phase, during which most substances were hydrolyzed 
and then other categories decreased. We further ana-
lyzed the five most abundant classifications at each time 
point by carbon chain length. Our results showed that 
the C18 component was the most-produced throughout 
the experimental period (Fig.  1F and S4). Moreover, we 
observed an apparent turnover in the length of the most 
abundant carbon-chain classes. For example, the relative 
abundance of the C18 component increased during the 
first 12 days of the experiment, followed by a subsequent 
decrease from day 12 to day 96. Meanwhile, other car-
bon-chain classes that were initially dominant gradually 
gave way to different classes throughout the experiment. 
These results indicated the metabolic conversion obeyed 
definite dynamic rules during the AD process.

Inferring microbial meta‑metabolic strategies 
from temporal characteristics of the metabolites 
conversion
In addition to revealing variations in metabolite com-
position, we sought to explore molecular conversion 
patterns throughout the dynamic process, shedding 
light on microbial meta-metabolic strategies. Weighted 
average compositional values were calculated to evalu-
ate the general trend of molecular conversion in the 
process. We found the overall molecular weight was 
reduced over the process (Table  1), indicating that 
anaerobic microorganisms reduced the total amount 
of organic matter and converted larger molecules 
into smaller ones. In particular, we observed a sharp 
decrease in C and O during the early stages (days 0–12) 
of the process, while C and H primarily decreased 
during the later stages (days 9–96) (Table  1 and Fig. 
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S5). We also found the degree of unsaturation, redox 
state, and carbon use efficiency showed a decreasing 
trend followed by an increasing trend around day 12 
(Table 1). Lower values of unsaturation and redox state 
suggested a higher lability of molecules, and the lower 
values of carbon use efficiency suggested a higher ther-
modynamic efficiency of metabolic reactions involved 

in biomass accumulation [62]. Therefore, our find-
ings indicated that early microbial meta-metabolism 
might render the entire organic matter composition 
more susceptible to biodegradation before methane 
generation. Meanwhile, we observed that the molecu-
lar weight of the lipid-like component increased until 
day 9 (Table  S4). This increase in molecular weight of 

Fig. 1 General characteristics of molecules and the overall variations throughout the AD process. A The number distribution of molecules 
with different numbers of atoms for C, H, O, N, S, and P. B The degree of unsaturation and redox state of all formulas. (DBE-O)/C and NOSC were 
used to evaluate these two indexes, respectively. C Variation of alpha diversity over time. Observed richness was used to quantify alpha diversity, 
pairwise difference was calculated via Wilcoxon test, and p-value was adjusted using Benjamini–Hochberg method. To indicate statistical 
significance, different letters were assigned to the results. Groups that do not share any letters are significantly different (p < 0.05), while groups 
that share at least one letter are not significantly different. D Stadardized richness of different categories over time. The results were stadardized 
into the range 0 to 1 before visualization. E Average relative abundance of different categories across the whole process. F Average relative 
abundance of the most abundant five components based on number of C atoms. The standard error of the data are represented by error bars in D, 
E, F. Abbreviations in D and E CB, carbohydrate-like; CA, condensed-aromatics-like; LG, lignin-like; LP, lipid-like; PT, protein-like; TN, tannins-like; UH, 
unsaturated-hydrocarbons-like; UC, unclassified
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the lipid-like component directly demonstrated their 
microbial synthesis and elongation during the early 
stage of the experiment.

After that, we conducted a detailed examination of 
specific transient biotransformations to discover micro-
bial metabolic actions and trade-offs. Pairwise mass dis-
tances were analyzed for each sample, and the results 
were mapped to 866 common biochemical transforma-
tions (Figs. 2A and S6). We further measured their vari-
ance over the process to confirm the time specificity 
of these potential biotransformations. Given that the 
relative abundance of the majority of potential biotrans-
formations (616/866) at a specific time point was sig-
nificantly higher than at all other time points (LEfSe, 
Wilcoxon test’s p < 0.05), we considered these trans-
formations to be time-specific (Fig.  2B). The metabolic 
transformations performed by the microbial community 
can be seen as manifestations of their metabolic strate-
gies. Thereby, the differential metabolic actions suggest 
that the microbial community adopts distinct metabolic 
strategies throughout the experiment. When consider-
ing both the time specificity of the transformations and 
the elemental composition involved, we found that the 
transformations of nitrogen (N) and sulfur (S) elements 
exhibited distinct temporal patterns in this anaerobic 
biodegradation system. Specifically, N-containing bio-
transformations were concentrated in the early stages of 
the experiment (days 0, 3 and 6), while S-containing bio-
transformations were more prominent in the later stages 
(after day 12). Subsequent attempts were made to calcu-
late biotransformation thermodynamics at the commu-
nity level to explore the underlying metabolic strategies. 
Considering the overall process of molecular biodegrada-
tion within the system, we calculated the thermodynamic 
changes associated with molecular transformations of 
by subtracting the GFE of smaller molecules from that 
of larger molecules. This calculation is performed in the 
direction of decreasing molecular weight. The average 

value of element-related transformations for each sample 
represents the thermodynamic difficulty of these trans-
formations within that sample. The analysis revealed that 
N-containing biotransformations were thermodynami-
cally easier than S-containing biotransformations during 
microbial anaerobic decomposition (Fig. 2C), suggesting 
a prioritization of available resources by microorgan-
isms. Meanwhile, the biodegradation of phosphorus (P) 
containing molecules did not show time specificity dur-
ing the AD process, which might be typical for microbial 
metabolic activities with low thermodynamic barriers 
(Fig.  2C). The switch from synthesis to degradation of 
C18 lipid-like molecules provided additional evidence 
that thermodynamic conditions might determine the 
selection and execution of metabolic strategies by micro-
organisms. By considering the synthesis of lipid-like 
substances, the GFE change was then calculated in the 
direction of increasing molecular weight. We found the 
thermodynamic barriers to the synthesis of C18 lipid-like 
substances from small molecules showed significant dif-
ferences between the synthesis (days 0–9) and catabo-
lism phases (days 12–96) of C18 lipid-like substances 
(Fig.  2D). These findings on meta-metabolism indicated 
that microorganisms execute metabolic strategies in 
response to specific physical conditions such as system 
thermodynamics and available resources.

Extending community ecology to understand microbial 
meta‑matabolism
Community ecology has provided us with new perspec-
tives on the assembly of metabolite composition [18]. 
Referring to microbial community assembly [54], homo-
geneous and heterogeneous selection can imply that 
metabolite composition becomes convergent or diver-
gent under the influence of biotic and abiotic factors [18, 
52]. Homogenizing dispersal and dispersal limitation can 
indicate whether molecules easily diffuse and migrate 
within the environment, thereby forming molecular 

Table 1 Weighted average compositional values of DOM metabolites throughout the AD process

To indicate statistical significance, different letters were assigned to the results. Groups that do not share any letters are significantly different (p < 0.05), while groups 
that share at least one letter are not significantly different

Day Molecular weight H/C O/C (DBE‑O)/C NOSC Ymet

0 466.683 ± 0.974a 1.378 ± 0.005e 0.407 ± 0.006a  − 0.042 ± 0.009ab  − 0.527 ± 0.007a 0.081 ± 0.001d

3 367.340 ± 1.780c 1.532 ± 0.013d 0.329 ± 0.007b  − 0.034 ± 0.009ab  − 0.837 ± 0.021b 0.092 ± 0.001b

6 353.762 ± 2.041d 1.740 ± 0.007b 0.285 ± 0.003c  − 0.098 ± 0.003d  − 1.150 ± 0.014d 0.089 ± 0.001c

9 399.591 ± 5.032b 1.681 ± 0.011c 0.289 ± 0.003c  − 0.080 ± 0.005c  − 1.083 ± 0.017c 0.078 ± 0.001e

12 350.525 ± 0.738d 1.783 ± 0.013a 0.274 ± 0.003d  − 0.110 ± 0.006d  − 1.226 ± 0.016e 0.088 ± 0.001c

24 351.165 ± 2.169d 1.747 ± 0.014b 0.288 ± 0.003c  − 0.106 ± 0.005d  − 1.155 ± 0.021d 0.089 ± 0.001bc

48 318.462 ± 5.468e 1.573 ± 0.037cd 0.318 ± 0.009b  − 0.042 ± 0.012bc  − 0.915 ± 0.058bc 0.104 ± 0.003a

96 309.541 ± 4.611e 1.493 ± 0.017d 0.336 ± 0.003b  − 0.016 ± 0.008a  − 0.788 ± 0.025b 0.110 ± 0.001a



Page 8 of 17Yang et al. Microbiome          (2024) 12:166 

composition [18, 52]. The remaining parts (drift and oth-
ers) can suggest that molecules undergo random trans-
formations, unobserved processes, or unexpected events 
that result in the observed molecular composition [52, 
54]. We found that homogeneous selection dominated 
the assembly of metabolites in the system (Fig.  3A). 

Nevertheless, a pattern of increasing and then decreas-
ing proportion of homogeneous selection was observed 
(with a peak at 84.05% on day 12), while the proportion 
of drift and others continued to increase, achieving a 
level similar to that of homogeneous selection at day 96 
(36.53% vs. 36.76%) (Fig.  3A). As the overall ecological 

Fig. 2 Transient characteristics and thermodynamics of metabolite conversion based on biotransformation analysis. A Molecular biotransformation 
with time specificity on day 96. Molecular biotransformations were represented using mass distances. The difference analysis was performed using 
LEfSe, and the time specificity on day 96 was exhibited as an example. The compositions of molecular biotransformations were annotated using 
different colors. B Time specificity of molecular biotransformation and their elemental compositions. The compositions and time specificities were 
annotated using different colors. C The thermodynamics of N-containing, S-containing, and P-containing biotransformations during the anaerobic 
decomposition process. The mean values of the energy change for pairwise molecules as degradation reactions were calculated for each sample. 
D The thermodynamics of the synthesis of C18 lipid-like substances from small molecules. The mean values of the energy change for pairwise 
molecules as synthesis reactions were calculated for each sample. The pairwise difference was calculated by the Wilcoxon test in C and D, 
and the label “***” indicates the p-value < 0.001
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Fig. 3 Assembly mechanism of DOM metabolites and the correlation with microbial community. A Assembly processes of metabolite component 
across the anaerobic digestion process. The similarity of molecular properties was calculated based on 16 molecular traits, and then the proportion 
of different assembly processes was calculated based on the molecular similarity relationships and relative abundance of the metabolite 
component using iCAMP software. All molecules were clustered into 57 bins during this process. The variance of relative abundance and properties 
of the assembly process for each bin are shown individually. Each bin is labeled with the molecular formula of the most dominant matter. B The 
extent of influence of metabolite components and microbes from each other and environmental factors. The extents of influence were evaluated 
based on the coefficient from the multiple regression on matrices (MRM). The collinearities among environmental factors were obtained based 
on the Spearman method, and the correlations between individual factors and the turnover of metabolite components and microbes were 
obtained using the Mantel test based on distance matrices. C The relationship of the similarity of metabolite component and phylogenetic 
similarity of the microbial community. The correlation was calculated based on the Mantel test using the Spearman method
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process was weighted according to the processes of 57 
bins (Fig. S7) of similar molecules, we also found the larg-
est number of individual bins were subject to homoge-
neous selection during days 0–24, with a range of 21 to 
31 bins (Fig. 3A). However, on days 48 and 96, more bins 
were influenced by drift and others, with a total of 23 and 
27 bins respectively, out of which 18 and 16 were driven 
by homogeneous selection (Fig.  3A). These results sug-
gested the influence of the environment and biotic pro-
cesses on the organic matter might have a dominant role 
in determining the content of the large to small molecu-
lar transformation. In contrast, an eventual increase in 
stochastic processes might represent a weakening of the 
directed conversion activity of microorganisms.On the 
basis of homogeneous selection being dominant dur-
ing the molecular turnover process, we next explored 
the relative attribution and mechanism of microbiologi-
cal processes. Firstly, the Mantel test affirmed the co-
turnover in the compositions of molecules and microbes 
(p < 0.05, Table  S5). To further assess the extent of the 
drive on molecular turnover from environmental vari-
ables and biotic procession, we conducted multiple 
regression on matrices analysis to explore linear relation-
ships between the response distance matrix and multi-
variate explanatory distance matrices. When fitting the 
turnover of the molecular composition, we found that 
microbial community structure had the most signifi-
cant influence (coef. = 0.327, p = 0.00001), indicating that 
microbiological processes played a crucial role in shap-
ing the composition of molecules (Fig.  3B). Similarly, 
we observed a significant impact of the molecular com-
position on the succession of the microbial community 
(coef. = 0.388, p = 0.00001). Additionally, pH significantly 
influenced microbial community structure (coef. = 0.419, 
p = 0.00001), suggesting the microbial community 
was structured (Fig. S8) by both the physical environ-
ment (Table S6) and the composition of organic carbon 
sources.

Following the confirmation of co-turnover in compo-
sition between the microbial community and molecu-
lar composition, we analyzed the correlations between 
their ecological functions. Phylogenetically closely 
related microorganisms tended to share similar ecologi-
cal niches, forming the foundation for studying microbial 
ecological processes based on phylogenetic trees [63]. 
Similarly, molecular chemical traits such as size, avail-
ability, and energy provision influenced their specific 
behaviors in biochemical processes, including synthesis, 
degradation, and diffusion [18, 21]. A reasonable infer-
ence was that molecules with similar molecular traits 
in multiple dimensions (see the 16 molecular traits in 
Table S3) exhibited analogous ecological functions. These 
inferences provided the basis for studying the ecological 

functional relationships between microorganisms and 
molecules using microbial phylogenetic trees and molec-
ular trait trees. Mantel test based on Spearman correla-
tion showed a significant correlation between the βNTI 
values of the two components (p = 0.001) (Fig. 3C), indi-
cating their interdependence in ecological functions. As 
βNTI was also used to infer the assembly process, the 
correlation between the βNTI values of the two compo-
nents also suggested the coordination of the assembly 
process between microbial community and DOM com-
position. This implies that the two components under-
went similar processes in most cases. Our study found 
that when one component of microbes and metabolites 
was subject to selection (|βNTI|> 2), the proportions of 
the other component structured under the same pro-
cess were 78.43% (βNTI > 2, χ2 = 514.152, p = 0.000) and 
43.89% (βNTI <  − 2, χ2 = 265.606, p = 0.000) (Table  S7). 
For the stochastic process (|βNTI|< 2), the probability 
of the consistency of the other component was 24.48% 
(χ2 = 7.567, p = 0.006) (Table  S7). These results suggest 
that the assembly mechanisms of the two components 
influenced each other due to the correlation of their 
ecological functions. In particular, each component is a 
crucial factor of the other during the selection process, 
coordinating the co-turnover between the microbial 
community and molecular composition.

Linking microbial functions with metabolites traits
After confirming the mutualistic relationship between 
microbes and DOM metabolites in the turnover and 
assembly processes, we further structured the co-
occurrence network to infer the underlying relationship 
between the two components. We treated microorgan-
isms as one group and organic molecules and environ-
mental variables as a separate group to obtain a robust 
time series network between the two groups. We found 
that the microbes-metabolites network of the system 
was assembled around  CH4 generation, with  CH4 identi-
fied as a network hub (Figs. 4A and S9). The network was 
tightly connected, with 62.15% of the total nodes being 
the first and second neighbors of  CH4. Expanding to the 
fourth-order neighbors allows connection to almost all 
nodes (99.49%) (Fig. 4A). Meanwhile, all connector hubs 
in this network belonged to organic matters (Figs. 4A and 
S9). Microorganisms provided the second network hub 
(ZOTU 756, family Ruminococcaceae) and the majority 
of module hubs in the network (Figs. 4A and S9). Differ-
ent metabolic activities might be modularly distributed, 
as evidenced by the detection of significant differences 
in molecular traits in various modules (Fig. 4B). In addi-
tion, we found that larger molecules were more likely 
to have positive correlations with microbes (Fig.  4C). 
These monotonically positive correlations with microbes 



Page 11 of 17Yang et al. Microbiome          (2024) 12:166  

indicated a more unstable position for larger molecules 
in the network. In general, the system was structured 
around  CH4 generation, with different microbial meta-
bolic activities aggregating microorganisms and sub-
stances into different modules to form the network 
structure and drive the conversion of molecules into 
smaller matters.

On the basis of the key species identified in the net-
work, we further matched these key species to their 
MAGs to associate their key roles with their metabolic 
functions. Through the comparison of 16S rRNA gene 
sequences and annotations, seven ZOTUs were suc-
cessfully matched to four MAGs (Table S8). Specifically, 
ZOTU_2654 (genus Sporanaerobacter) and ZOTU_52 
(genus Tepidanaerobacter) were linked to MAG1 and 
MAG2, respectively. ZOTU_4243 and ZOTU_6705 were 
associated with MAG3, classified as Limosilactobacillus 
reuteri. ZOTU_756, ZOTU_2098 and ZOTU_5627 were 
mapped to MAG4 and classified as Ruminococcaceae 
JAAZLM01. All matched MAGs were of high quality, with 
completeness ranging from 80.24 to 95.28% and contami-
nation ranging from 0.67 to 3.52% (Table S9). These key 
species were likely to play essential roles in the metabo-
lism of substances during the dynamic process, as they 
each generally possessed a relatively complete fatty acid 
biosynthesis pathway and exhibited diverse capacities in 
carbohydrate metabolism and fermentation (Figs. 4D and 
S10). For example, MAG1 showed proficiency in butyrate 
metabolism, while MAG2 contained the complete path-
way from glucose to pyruvate to acetyl-CoA to acetate 
(Fig.  4D). Moreover, both MAG3 and MAG4 matched 
with multiple key species and demonstrated the ability to 
metabolize macromolecular carbohydrates such as starch 
and the ability to produce alcohol. Especially, MAG4 was 
a generalist in carbohydrate metabolism with the capa-
bility to utilize 15 different substrates, including various 
polysaccharides such as xylan, xyloglucan, cellulose, and 
others. Therefore, several vital microorganisms organ-
ized the system’s metabolic framework through perform-
ing crucial functions within the system and possessing 
a wide range of metabolic capabilities. In addition, the 
key species directly linked to  CH4 in the network did not 
show methanogenic functions. Since the network was 

constructed by selecting the strongest correlations and 
using the RMT method, the threshold was set at 0.819. 
Although the correlations were significant (p < 0.05), the 
links between methanogens and  CH4 were not retained 
in the network, as their strongest correlation was 0.656.

Discussion
Understanding the strategies of microbial anaerobic 
meta-metabolism can guide the utilization and regula-
tion of material and energy cycles in various natural and 
artificial ecosystems, as well as contribute to the main-
tenance of ecosystem health [1, 2, 4, 8]. However, the 
complexity of metabolic activities and flexibility in met-
abolic strategies under different environmental condi-
tions present challenges in elucidating the link between 
microbial metabolisms and metabolite turnover [20]. 
Here, we maintained an anaerobic digestion system as a 
model system to elucidate microbial metabolic rules by 
monitoring microbial and metabolite dynamics. Instead 
of being limited to system-wide metabolic performance 
[64, 65], we adopted a meta-metabolism perspective 
and focused on both overall performance and individual 
strategies within the AD system over time. By drawing 
parallels between metabolite composition and micro-
bial communities, we have investigated the diversity, 
turnover, community ecology, and bipartite networks of 
metabolites. However, it is crucial to note that metabolite 
composition and microbial communities are not entirely 
equivalent. For example, metabolites do not reproduce 
or migrate actively, and their interconversion is dis-
tinct from microbial processes like reproduction, com-
petition, or extinction [18]. Our method leveraged the 
approximate characteristics to enhance our understand-
ing of microbial metabolism. Additionally, we highlight 
the role of microbial function and metabolic traits in 
the performance of metabolic activities, hence uncover-
ing the underlying mechanisms of co-turnover between 
microbial community and DOM metabolic composition. 
Consequently, we proposed three general dynamic rules 
(Fig. 5) of microbial anaerobic meta-metabolism guiding 
the DOM conversion. By discovering the intricate rela-
tionships and interactions between microorganisms and 
DOM metabolites, we gained deeper understandings of 

(See figure on next page.)
Fig. 4 Co-occurrence network analysis between microbes and analyzed substances throughout the AD process. A Bipartite network structured 
around methane generation. The analyzed substances in the network included DOM metabolites and other detected environmental substances. 
Each node was annotated with its role in the network, its category, and the neighborhood relationship with  CH4. B Difference analysis 
of organic molecules in different modules based on molecular trait similarity. The distance matrix of molecules was calculated based on 16 
traits of the molecular formula. The pairwise difference was quantified using MRPP, and those marked with a star indicate that the difference 
was significant (p < 0.05). C Local positive correlation ratio in the network varied with molecular weight. Each point represents the ratio of positive 
correlation with the microorganisms of a series of molecules in a 120-molecular-mass range. D Functional annotation of the genomes of key 
microorganisms identified in the bipartite network
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Fig. 4 (See legend on previous page.)
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the metabolic strategies employed in specific systems, 
facilitating further prediction and regulation efforts.

Pathway of deterministic process from operational 
conditions to microorganisms to metabolites
The compositions of DOM metabolites in the AD sys-
tems were decomposed or synthesized rapidly under 
a deterministic pattern. The complexity of molecules 
is generally associated with the overall persistence of 
organic composition [66, 67]. A recent study on the 
decomposition of soil plant residue observed a divergent-
convergent pattern of microbial meta-metabolism, where 
complexity increased from 0.5 to 3 years and decreased 
from 3 to 9 years [16]. In the AD system, we observed a 
similar trajectory of metabolite diversity, with a diver-
gence-convergence pattern occurring as early as day 3 
(Fig. 1C). The rapid biological metabolism in the AD sys-
tem [25, 26] significantly reduced the time required to 
observe metabolic patterns in natural environments [16, 
17]. Furthermore, the composition of DOM metabolites 
in parallel bioreactors underwent continuous turno-
ver in a similar trajectory (Figs. 1C, D, E, F and S2). This 
pattern of constant turnover, previously observed in 

microbial community succession, suggested that external 
conditions determine compositional variation [68, 69]. 
Through assembly process analysis, we demonstrated 
that metabolite composition was primarily structured 
by deterministic processes (Fig.  3A). This implied that 
carbon turnover during the AD process is regulatable 
and predictable, providing opportunities for engineering 
interventions in carbon activities through adjustments in 
process parameters or the addition of microbial agents 
to modify the microbial community structure or func-
tional expression. However, the deterministic process of 
metabolite turnover arises from a combination of biotic 
and abiotic factors, and the relative contributions of these 
factors are subject to debate [1, 70]. Metabolites are gen-
erated from microbial activities [3] but are influenced 
by complex interactions with local environmental con-
ditions [9, 70]. Consequently, the associations between 
metabolites’ and microbial communities’ compositions 
can vary across habitats [22]. Our study provided some 
evidence for the co-turnover of both microorganisms 
and metabolites within an anaerobic digestion system 
(Table  S5 and Fig.  3B). Importantly, our results sug-
gested that this co-turnover with microorganisms might 

Fig. 5 The dynamic rules of microbial anaerobic metabolism within anaerobic digestion systems. Three general dynamic rules were 
concluded as follows: (I) Pathway of deterministic process from operational conditions to microorganisms to metabolites, (II) microorganisms 
respond to environmental conditions through metabolic trade-offs at community level, (III) microorganisms cooperate based on metabolic 
complementarities and substance exchange
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be more significant for metabolites than the influences of 
environmental conditions (Fig.  3B). In addition, a note-
worthy observation was the gradual accumulation of 
stochasticity within the system and a subsequent decline 
in selection (Fig. 3A). As the selection pressure from the 
environment increased over time (Fig. S3), this shift from 
determinism to stochasticity was primarily driven by 
biotic factors. This shift signified a reduction in microbial 
metabolic capacity and activity. Consequently, the rapid 
conversion of molecules (Fig. 1C, D, E, F) and the deter-
ministic processes (Fig. 3A) observed in AD systems were 
predominantly the outcomes of microbial activity. Mean-
while, microorganisms exhibited sensitivity to environ-
mental pressures and variations (Fig.  3B), implying that 
environmental factors may regulate the composition and 
turnover of metabolites by influencing microbial commu-
nities. Therefore, microorganisms and DOM metabolites 
seemed to synchronize their responses to environmental 
conditions, resulting in coordinated assembly processes 
(Table  S7). As microorganisms responded to dissimilar 
environmental conditions, the metabolic activities were 
altered responsively, which in turn affected the composi-
tion of metabolites, indicating the environmental deter-
ministic effect within the system was transmitted from 
the microbial community to the metabolite composition.

Microorganisms respond to environmental conditions 
through metabolic trade‑offs at community level
The overall performance was the consequence of indi-
vidual metabolic behaviors, and the metabolic patterns 
exhibited variability across different categories and con-
ditions. In the AD system, the overall performance was 
characterized by a biodegradation process leading to a 
reduction in molecular weights (Table  1). A previous 
study suggested that catabolism drives diversity, while 
synthesis promotes monotony [3]. However, in our sys-
tem, continued decomposition and reduced diversity 
were highly coordinated (Fig. 1C and Table 1). This result 
indicated that it was impossible to summarize microbial 
community metabolic patterns in terms of synthesis and 
catabolism dichotomies, and the metabolic performance 
was depended on the prevailing conditions and concomi-
tant metabolic trade-off [71, 72]. Meantime, accurately 
capturing individual metabolic patterns within the context 
of complex macrometabolic systems remains challeng-
ing, at least for the time being [73]. However, the coarse-
grained metabolic patterns at the community level were 
traceable. For instance, lipid-like metabolites followed a 
distinct trajectory from other categories, with an initial 
period of biosynthesis (Fig. 1E and Table S4). Microorgan-
isms tend to accumulate lipids as cellular raw materials 
and energy reserves [74]. However, the efficiency of mate-
rial transport and energy conversion limits the microbial 

choice for carbon chain elongation [75, 76], as reflected in 
the accumulation of C18 substances (Fig. 1F). Therefore, 
these C18 substances have the potential to serve as an 
indicator of biosynthesis during the AD process. Further-
more, the degradation of C18 substances occurred in the 
later stage of the experiment (Fig. 1F), suggesting a shift 
in metabolic strategy to sustain community functions as 
resources became depleted (Fig. S3) and thermodynamic 
conditions changed (Fig.  2D). In addition, the biotrans-
formations performed by microorganisms represented 
the metabolic strategies [49, 52]. Hence, the temporal 
specificity of biotransformation (Fig. 2B) can be a specific 
manifestation of the flexibility in shifting metabolic strat-
egies. The preferential transformation of N-containing 
substances and the delayed degradation of S-containing 
substances (Fig.  2B and C) indicated the strategic prior-
itization of resource utilization by microbial community. 
Thus, the behaviors of microorganisms and metabolites 
varied over categories and the environmental conditions 
by favorable metabolic trade-offs in communities, where 
the community biotransformation thermodynamics serve 
as important indicators.

Microorganisms cooperate based on metabolic 
complementarities and substance exchange
The metabolic capabilities of a microorganism are 
defined by its genome, encompassing the range of direct 
metabolic activities it can perform [48, 77]. During the 
AD process, key microorganisms were identified with 
capabilities to elongate fatty acids, metabolize various 
carbohydrate substrates, and produce short-chain fatty 
acids and ethanol (Fig.  4D). Interestingly, after retain-
ing only the strongest correlations, these remaining key 
microbes might not be directly involved in the produc-
tion of  CH4 [78], a pivotal metabolic activity in the sys-
tem (Fig. 4A). Instead, the modulation of methanogenic 
metabolism could be influenced by these key microbes, 
which are more proactive in responding to environmen-
tal conditions [26, 79, 80]. This suggested that the abun-
dance of methanogens might not be the sole determinant. 
As previously reported, microorganisms involved in 
hydrolysis and fermentation exhibited higher functional 
redundancy than methanogens [26]. Their metabolic 
activities during the initial steps of AD may constrain 
subsequent processes through mutual functional 
dependencies and interactions [26]. This observation 
opens up the possibility of engineering the functional 
microorganism structure to optimize methanogenic con-
ditions, showcasing the potential for targeted regulation 
of carbon flow in AD systems [81]. Metabolic exchanges 
are ubiquitous in microbial communities [61], and we 
connected metabolites traits with metabolic exchanges. 
During the experiment, microorganisms selected organic 
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matters with specific molecular characteristics as mani-
fested in aggregating molecules with distinct traits by 
diverse functional microorganisms within the bipartite 
network (Fig. 4A and B). These molecular traits encom-
pass elemental compositions, bioavailabilities, and bar-
riers to conversion, all directly correlated to molecular 
behaviors in the process of synthesis, degradation, and 
diffusion. Consequently, the modular arrangement of 
molecules with varying characteristics around func-
tional microorganisms (Fig.  4B) illustrated the depend-
ence of microbial metabolic functions on molecular traits 
(Fig. 3C). Furthermore, all network connectors between 
microbially dominated modules were contributed by 
molecules (Figs. 4A and S9). Functional microorganisms 
likely rely on these molecules for substance exchange, 
hence achieving metabolic complementarity among these 
microorganisms and functional complementarity among 
the network modules. Meantime, microorganisms pre-
ferred the biodegradation of larger molecules in a syn-
ergistic pattern (Fig. 4C), leading to their swift depletion 
(Table 1 and Fig. S5). This preference for degrading larger 
molecules, which provides more resources and energy, 
supported these microorganisms’ essential activities 
while concurrently enhancing the resource availability 
of DOM metabolites (Table  1) for mutual benefit with 
other microorganisms [29, 82, 83]. Leveraging the shared 
material pool within the system [78], microorganisms 
cooperated and influenced each other through meta-
bolic selection, culminating in the formation of an active 
interaction network. Due to substance exchange and 
modifications of physical conditions, microorganisms 
realized synergistic cooperation during anaerobic meta-
bolic activities, driving the rapid biodegradation of larger 
molecules, the government of methanogenesis, and the 
maintenance of system harmony.
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