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Abstract 

Background  Plant-associated microorganisms can be found in various plant niches and collectively comprise 
the plant microbiome. The plant microbiome assemblages have been extensively studied, primarily in model species. 
However, a deep understanding of the microbiome assembly associated with plant health is still needed. Ginger rhi-
zome rot has been variously attributed to multiple individual causal agents. Due to its global relevance, we used ginger 
and rhizome rot as a model to elucidate the metabolome-driven microbiome assembly associated with plant health.

Results  Our study thoroughly examined the biodiversity of soilborne and endophytic microbiota in healthy and dis-
eased ginger plants, highlighting the impact of bacterial and fungal microbes on plant health and the specific metabo-
lites contributing to a healthy microbial community. Metabarcoding allowed for an in-depth analysis of the associated 
microbial community. Dominant genera represented each microbial taxon at the niche level. According to linear 
discriminant analysis effect size, bacterial species belonging to Sphingomonas, Quadrisphaera, Methylobacterium-Meth-
ylorubrum, Bacillus, as well as the fungal genera Pseudaleuria, Lophotrichus, Pseudogymnoascus, Gymnoascus, Mortierella, 
and Eleutherascus were associated with plant health. Bacterial dysbiosis related to rhizome rot was due to the relative 
enrichment of Pectobacterium, Alcaligenes, Klebsiella, and Enterobacter. Similarly, an imbalance in the fungal community 
was caused by the enrichment of Gibellulopsis, Pyxidiophorales, and Plectosphaerella. Untargeted metabolomics analysis 
revealed several metabolites that drive microbiome assembly closely related to plant health in diverse microbial 
niches. At the same time, 6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was present 
at the level of the entire healthy ginger plant. Lipids and lipid-like molecules were the most significant proportion 
of highly abundant metabolites associated with ginger plant health versus rhizome rot disease.

Conclusions  Our research significantly improves our understanding of metabolome-driven microbiome structure 
to address crop protection impacts. The microbiome assembly rather than a particular microbe’s occurrence drove 
ginger plant health. Most microbial species and metabolites have yet to be previously identified in ginger plants. The 
indigenous microbial communities and metabolites described can support future strategies to induce plant disease 
resistance. They provide a foundation for further exploring pathogens, biocontrol agents, and plant growth promoters 
associated with economically important crops.
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Background
Plant-associated microorganisms can be found in various 
plant niches and collectively comprise the plant micro-
biome [1]. Plant microbiomes contain beneficial and 
pathogenic microbes [2]. Advances in high-throughput 
sequencing techniques have deepened our knowledge of 
the relationship between microbiomes and hosts [2].

Plant microbiome assemblages separated into above- 
and belowground constituent parts have been extensively 
studied, primarily in model species, including the soil 
microbiome [3–5], rhizosphere [6–10], root [11–13], and 
phyllosphere [14, 15]. Microbial communities associated 
with several plant niches have also been analyzed [16]. 
Fungus-induced changes are correlated with changes in 
the wheat leaf microbiome [17]. However, understanding 
the variation in the microbiome is imperative for deter-
mining how microbiome assembly affects overall plant 
holobiome health.

Conversely, plant secondary metabolites (PSMs) per-
form many functions, including defense against patho-
gens [18]. PSMs capable of broadly changing plant 
microbiomes have been described [2]. Phytohormones 
such as jasmonic acid (JA), salicylic acid (SA), ethylene 
(ET), and abscisic acid (ABA), among the most studied 
pathogenesis mediators, have also been shown to have an 
impact on the microbiome of plants [7, 11, 19].

The plant microbiome and metabolome are closely cor-
related, which indicates that endophytes can promote the 
accumulation of secondary metabolites that are relevant 
to active medicinal properties [20, 21]. The rhizosphere 
microbiome was shown to drive the systemically induced 
root exudation of metabolites [22]. Less attention has 
been given to the effects of the metabolome–microbi-
ome relationship on plant health, although the interactive 
effect of host plant defense and root-associated micro-
biota is evident after Fusarium oxysporum infection in 
Arabidopsis thaliana [12].

Although little research has been conducted on ginger 
(Zingiber officinale L. Roscoe) compared to other agricul-
tural plants [23], ginger is a perennial monocotyledon-
ous herb with underground rhizomes and a long history 
of use as a fresh vegetable, spice, and herbal medicine. 
However, this crop is vulnerable to various plant patho-
gens [24], and rhizome rot has been a significant limiting 
factor for ginger’s yield and marketing potential in China.

Rhizome rot is a highly destructive disease that has 
been found to reduce ginger production by 50–90% [25]. 
The disease causes significant losses, especially in warm 
and humid conditions, with severe outbreaks observed in 
recent years. In 2020, rhizome rot led to an average yield 
loss of 20 to 25% in the Tangshan region, posing a signifi-
cant threat to local ginger farming [26]. This disease has 
increasingly become one of the most devastating issues 

for ginger cultivation in Shandong Province, a key ginger 
production area in China [27].

Further research on the disease’s epidemiology and 
potential management options is necessary. Ginger rhi-
zome rot can be attributed to multiple causal agents, 
including Fusarium oxysporum f. sp. Zingiberi [25], 
Pectobacterium brasiliense [26], Bacillus pumilus [27], 
Pythium myriotylum [28], and Enterobacter cloacae [29]. 
This complex pathosystem is worth studying to deter-
mine the microbiome and the metabolome assembly that 
keeps plants healthy. Here, we performed metataxonomic 
analyses using bacterial and fungal amplicon sequencing 
and untargeted metabolomics analysis to identify the 
metabolome-driven structure and function of microbial 
communities associated with rhizome rot and ginger 
plant health.

Methods
Sample collection and preparation
Samples were collected in the Laiwu district of Jinan, 
Shandong Province (1.36°19′50" N, 117°29′29" E; north-
ern China), which has optimal growing conditions, but 
rhizome rot is a factor limiting the yield and marketabil-
ity of ginger [28]. The sampling area is in a typical warm-
temperate humid/semihumid climate zone, with an 
annual mean temperature of 12.5  °C, annual mean pre-
cipitation of 688.9  mm, and 62% relative humidity. The 
frost-free period is 191 days, and the annual sunshine 
hours are 2629 h [30]. Almost 70% of the total precipita-
tion occurs from July to September. The soil in the area is 
classified as sandy loam [31].

The ginger variety used, Zingiber officinale var. 
officinale, was the same as that planted by local farm-
ers. The size of each plot was approximately 666 m2, 
and 7000 to 8000 plants were grown in each plot. The 
plots were subjected to the same irrigation and ferti-
lization regimes. These plants were watered ten times 
during the crop growth cycle. Approximately 100 kg 
of compound and organic fertilizer (chicken manure) 
were applied to the soil at various times during the 
crop cycle, including during soil preparation, sowing, 
and crop growth. Sample collection was performed 
on September 12, 2021. In September, the mean tem-
perature is 25°C during the day and 18°C at night. The 
relative humidity of the soil is 75–85%, and the area is 
exposed to 9 h of sunshine on average. Only ginger was 
grown within a radius of at least 1500 m in the sam-
pled area. The area where samples are collected is also 
utilized for planting garlic. The crop rotation cycle 
occurs every 2 years, and this area has been dedicated 
to ginger farming for approximately 40 years. The dis-
eased plants were stunted with yellowish, dry lower 
leaves that turned brown. Additionally, their rhizomes 
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were rotted or spongy, which aligns with the symptoms 
of rhizome rot previously described [25]. Endophytic 
bacteria were identified from asymptomatic plant tis-
sues, but there was a notable increase in Pectobacte-
rium_carotovorum_subsp._brasiliense (Supplementary 
Table 1) in diseased plants compared to healthy plants. 
Three replicates of healthy and diseased plants were 
collected from three adjacent plots. Each replicate con-
sisted of a composite sample obtained by mixing three 
samples collected from the same niche (leaf, stem, root, 
rhizome, rhizosphere soil, and bulk soil; Fig. 1D) from 
three symptomatic or asymptomatic plants per plot for 
a total of 36 composite samples. The rhizosphere is the 
microbial habitat around the root [32], although we also 
applied this term to the soil adjacent to the rhizome. 
Approximately 30  g of bulk soil sample was collected 
at a distance of 20 cm from the root and at a depth of 
0 to 15  cm, and the rhizosphere soil attached to the 
roots and rhizomes was collected by manual shaking. 
The samples were subsequently transferred to collec-
tion bags and transported to the laboratory on dry ice. 
Plant samples were washed immediately upon arrival 
at the laboratory with tap water until they appeared to 
be free of debris and then rinsed three times with dis-
tilled water (dH2O). To sterilize the surface of the plant 
organs and remove exogenous bacteria and fungi, the 
samples that were used for endophytic diversity anal-
yses were immersed in 70% ethanol for 5  min, 2.5% 
sodium hypochlorite solution for 1–2  min, and 70% 
ethanol for 1  min and then rinsed vigorously three 
times with sterilized Millipore water. To verify the effi-
cacy of the sterilization process, a sample from the last 
portion of the water used for washing was inoculated 
on potato dextrose agar (PDA) plates, which were incu-
bated at 28 °C for 10 days, and on LB plates, which were 
incubated at 37  °C for 5  days before checking for the 
appearance of colonies [33]. The surface-sterilized plant 
organs constituted the endophyte samples. Samples for 
molecular analysis were stored in a − 80°C freezer until 
DNA extraction.

DNA extraction and PCR amplification
All laboratory protocols were performed at Shanghai 
Majorbio Bio-pharm Technology Co., Ltd. The samples 
were processed under normal experimental conditions. 
Illumina metagenomic library preparation guidelines 
were followed to create 16S and ITS rRNA gene amplicon 
libraries. DNA extraction from 0.5 g of rhizosphere and 
bulk soil samples or 5 g of plant tissues was performed 
using a DNeasy PowerSoil Kit (Qiagen, MD, USA) 
according to the manufacturer’s instructions. After the 
genomic DNA extraction was completed, 1% agarose gel 
electrophoresis was carried out to detect the extracted 

genomic DNA. DNA was quantified using a NanoDrop 
spectrophotometer. Each sample was tested three times 
and kept at − 20℃ until PCR amplification was per-
formed. The V5–V7 hypervariable region of the bacterial 
16S rRNA gene was amplified using the universal primers 
799F (5′-AACMGGA​TTA​GAT​ACC​CKG-3′) and 1193R 
(5′-ACG​TCA​TCC​CCA​CCT​TCC​-3′), which provided a 
more accurate picture of the bacterial community struc-
ture and very low amplification of nontarget DNA [10], 
while the fungal ITS2 region was amplified using the 
primers ITS3F (5′-GCA​TCG​ATG​AAG​AAC​GCA​GC-3′) 
and ITS4R (5′-TCC​TCC​GCT​TAT​TGA​TAT​GC-3′) [34], 
which proved to be the most appropriate for the char-
acterization of fungal communities with metabarcoding 
[35]. An AxyPrep DNA Gel Recovery Kit (AXYGEN) 
was used to excise the products from the gel and recover 
them according to the manufacturer’s instructions. PCR 
products were assessed and quantified with the QuantiF-
luorTM-ST Blue Fluorescence Quantitative System (Pro-
mega Corporation, Madison, WI, USA). Replicates of the 
same sample were pooled in equimolar proportions for 
sequencing.

Amplicon sequencing and bioinformatic analysis
The bacterial and fungal amplicon sequences of the 36 
analyzed samples were independently sequenced. Nega-
tive controls were used (sterile water was used instead 
of template DNA) to exclude contamination by PCR 
amplification. Amplicon libraries were sequenced on the 
Illumina MiSeq PE300 platform (Illumina, USA) accord-
ing to the manufacturer’s protocols, and 250  bp paired-
end reads were generated. The 16S rRNA and ITS gene 
sequences generated were analyzed using the online 
Majorbio Cloud Platform [36] based on the QIIME pipe-
line [37] version 1.9.1 using recommended parameters. 
Paired-end reads obtained from the Illumina platform 
were assembled, and the primer sequences and low-quality 
reads with scores less than Q30 were trimmed using USE-
ARCH v.11.0 software [38] with default parameters. The 
sequencing run produced 2,645,244 high-quality reads 
across the 36 input libraries. Operational taxonomic units 
(OTUs) were assigned based on 97% similarity among 
clustered reads and then checked for chimeras using the 
UPARSE (v.7.0.1090, https://​drive5.​com/​uparse/) pipe-
line [39] in USEARCH v.11.0 software [38] with default 
parameters before generating an OTU count table. OTUs 
were taxonomically annotated using the SILVA reference 
database (v.138, https://​www.​arb-​silva.​de) and I database 
(v.8.0, http://​unite.​ut.​ee/​index.​php) for bacteria and fungi, 
respectively. The Shannon rarefaction curve was calculated 
(Supplementary Fig. 1A and 1B) by randomly resampling 
each sample several times, plotting the rarefied number 
of OTUs defined at a 97% sequence similarity threshold 

https://drive5.com/uparse/
https://www.arb-silva.de
http://unite.ut.ee/index.php
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Fig. 1  The plant disease rhizome rot drives changes in the assembly of the microbiota associated with the entire ginger plant. Occurrence 
of specialist bacterial (A) and fungal (B) genera in healthy and diseased ginger plant niches. C Number of core/specialists bacterial and fungal 
microbes. D Sampling diagram of various ginger microbial niches. Each pie chart shows the number of specialist microbes inhabiting a specific 
microbial niche, and the most abundant microbes (> 5%) per niche are indicated by letters. The microbial niches are numbered beside each one, 
and the specialist microbes per niche are listed in Supplementary Table 3. The numbers shown below each abbreviation equal the total number 
of microbes and the number of specialist microbes for each microbial niche. An empty circle is shown for HPRh, indicating the absence of specialist 
microbes inhabiting that microbial niche. HPBS healthy plant bulk soil, DPBS diseased plant bulk soil, HPRhS healthy plant rhizosphere soil, DPRhS 
diseased plant rhizosphere soil, HPRh healthy plant rhizome, DPRh diseased plant rhizome, HPR healthy plant root, DPR diseased plant root, HPS 
healthy plant stem, DPS diseased plant stem, HPL healthy plant leaf, DPL diseased plant leaf
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relative to the number of samples (Mothur v.1.30.2, https://​
www.​mothur.​org/​wiki/​Downl​oad_​mothur), and the mini-
mum number required for subsequent analysis was vali-
dated. We performed a single rarefaction at a depth of the 
shallowest sample to control for variable sequencing effort 
between representatives. Then, we chose a subsampling 
depth of 27,618 sequences per bacterial sample and 45,861 
per fungal sample, which yielded a final rarefied dataset 
for all 36 models. Bacterial and fungal sequences were 
assigned to each sample based on their barcodes using the 
SILVA v138 16S (http://​www.​arb-​silva.​de) and UNITE v8.0 
ITS (http://​unite.​ut.​ee/​index.​php) databases, respectively.

Microbial diversity analysis
Although different indices showed very similar results 
(source data Fig.  2), plant health was related to both 
diversity and microbial composition [40]. Thus, two 
alpha diversity indices were considered at the genus level: 
observed richness (Sobs), which provides a direct meas-
ure of population complexity by counting the number of 
different species in a sample (observed OTUs), and the 
Shannon H’ index, which is an estimator of taxon diver-
sity, combining richness, and uniformity [41] with the 
Kruskal–Wallis test for all pairwise combinations. Prin-
cipal coordinate analysis (PCoA) was conducted with 
the vegan package v.2.4.3 in R software v.3.3. [42] based 
on the Bray–Curtis distance algorithm to visualize the 
β diversity pattern of microbial communities between 
samples from different microbial niches of healthy and 
diseased plants. Permutational multivariate analysis of 
variance (PERMANOVA) was performed using 999 per-
mutations computed from the rarefied dataset (n = 36) 
to test the relative contribution of both disease and plant 
compartment microhabitats to community dissimilarity. 
The core or generalist taxa in the ginger microbiomes 
were defined as OTUs present in 100% of the plant sam-
ples, while the specialists were present in only one plant 
niche.

Predictive and statistical analysis
The data are displayed as the average of at least three 
independent replications and the standard deviation. P 
values less than 0.05 were considered to indicate statisti-
cal significance. We summarized the distribution of the 
annotated OTUs based on the species results to reveal 
the general species distribution patterns of the different 
samples. In particular, pie diagrams were generated to 
indicate the numbers of shared (core) or unique (special-
ist) microbial genera among compartments for healthy 
and diseased ginger plants. Clustering heatmaps reflect-
ing differences in the abundance of different samples 
through color changes were generated (ggplot2’ package 

v3.2.1 in R Studio v3.5.3). Microbial functional assem-
blages from 16S rRNA gene sequences were predicted by 
FAPROTAX [43] and were compared using the Kruskal–
Wallis rank sum test, while fungal OTUs were classified 
into ecological guilds using the online application FUN-
Guild [44]. A confidence ranking of “highly probable” 
or “probable” was retained for high accuracy, whereas 
those with “possible” confidence rankings were consid-
ered unclassified. Undefined guilds: undefined patho-
gens, defined as nonspecific pathogens of fungi, plants, or 
animals; undefined saprotrophs, defined as nonspecific 
saprotrophs of wood, plants, or litter soil. Linear discri-
minant analysis (LDA) effect size (LEfSe) was applied to 
determine the features (differentially enriched microbial 
taxa and functions) most likely to explain differences 
between healthy and diseased ginger plants. The samples 
were pooled to analyze the soil and endophyte microbi-
omes of plants that appeared healthy or diseased. Taxa 
with an LDA effect size greater than 4.0 (P < 0.05) were 
considered significant.

Metabolomics analysis
We analyzed changes in the endophyte microbiome of 
plants driven by the metabolome and implications for 
plant health. The same 24 samples of leaves, stems, roots, 
and rhizomes from healthy and diseased plants that were 
used for the microbiome analysis were analyzed using 
an untargeted metabolomics approach. Fifty milligrams 
of each sample was added to a 2-ml centrifuge tube, 
and a 6-mm diameter grinding bead was added. For the 
extraction of the metabolite, 400 μL of methanol:water 
(4:1 (v:v)) containing 0.02 mg/mL internal standard 
(L-2-chlorophenylalanine) was used. The samples were 
ground with a Wonbio-96c frozen tissue grinder (Shang-
hai Wanbo Biotechnology Co., Ltd.) for 6 min (− 10°C, 
50 Hz), followed by ultrasonic extraction at a low tem-
perature for 30 min (5°C, 40 kHz). The samples were kept 
at − 20°C for 30 min and then centrifuged for 15 min (4°C, 
13,000g), after which the supernatant was transferred to 
an injection vial for LC‒MS/MS analysis in positive and 
negative ionization modes. A pooled quality control sam-
ple (QC) was prepared by mixing equal volumes of all the 
samples. The QC samples were disposed and tested in the 
same manner as the analytic samples. LC‒MS/MS analy-
sis of the samples was conducted on a SCIEX UPLC-Tri-
ple TOF 5600 system equipped with an ACQUITY HSS 
T3 column (100 mm × 2.1 mm i.d., 1.8 μm; Waters, USA) 
at Majorbio Bio-Pharm Technology Co., Ltd. (Shang-
hai, China). The mobile phases consisted of 0.1% formic 
acid in water:acetonitrile (95:5, v/v) (solvent A) and 0.1% 
formic acid in acetonitrile:isopropanol:water (47.5:47.5, 
v/v) (solvent B). The flow rate was 0.40 mL/min, and 
the column temperature was 40°C. The UPLC system 

https://www.mothur.org/wiki/Download_mothur
https://www.mothur.org/wiki/Download_mothur
http://www.arb-silva.de
http://unite.ut.ee/index.php
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was coupled to a quadrupole time-of-flight mass spec-
trometer (Triple TOFTM5600+, Sciex, USA) equipped 
with an electrospray ionization (ESI) source operating 
in positive mode and negative mode. The optimal con-
ditions were set as follows: source temperature, 550°C; 

curtain gas (CUR), 30 psi; Ion Source Gas1 and Gas2, 
50 psi; ion-spray voltage floating (ISVF), − 4000 V in 
negative mode and 5000 V in positive mode; decluster-
ing potential, 80 V; collision energy (CE); and 20–60 eV 
rolling for MS/MS. Data acquisition was performed in 

Fig. 2  Diversity analysis at the genus level for microbial communities from the niches of healthy and diseased ginger plants. Box plots of alpha 
diversity showing the Sobs index (A) and Shannon index (C) for archaeal/bacterial communities at the genus level and the Sobs index (B) 
and Shannon index (D) for fungal communities at the genus level for both healthy and diseased ginger plants. The bars represent the average 
of three composite biological replicates for each microbial niche, and the error bars indicate the standard variation in the mean. Significance 
was tested using a Kruskal–Wallis rank sum test; *P < 0.05, **P < 0.01, ***P < 0.001. Principal coordinate analysis (PCoA) plot visualizing variation 
in the bacterial (E) and fungal (F) community compositions of healthy and diseased plant samples in two-dimensional space based on Bray‒
Curtis dissimilarity. Permutational multivariate analysis of variance (PERMANOVA) by Adonis was performed to test the significance of microbial 
community dissimilarity. Each dot represents a single composite sample. Lines are drawn to connect three replicates of each composite sample 
to each other. The different colors in the figure represent different microbial niches
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information-dependent acquisition (IDA) mode. Detec-
tion was carried out over a mass range of 50–1000 m/z. 
Pretreatment of the raw LC/MS data was performed with 
Progenesis QI (Waters Corporation, Milford, USA) soft-
ware, and a three-dimensional data matrix was exported 
in CSV format. Internal standard peaks, as well as any 
known false-positive peaks (including noise, column 
bleeding, and derivatized reagent peaks), were removed 
from the data matrix, and the peaks were pooled. More-
over, the metabolites were identified by searching data-
bases, and the main databases used were the HMDB 
(http://​www.​hmdb.​ca/), Metlin (https://​metlin.​scrip​ps.​
edu/), and Majorbio databases. The data were analyzed 
through the free online platform Majorbio cloud (cloud.
majorbio.com). At least 80% of the metabolic features 
detected in any set of samples were retained. To reduce 
the errors caused by sample preparation and instrument 
instability, the response intensity of the sample mass 
spectrum peaks was normalized by the sum normaliza-
tion method, after which the normalized data matrix 
was obtained. The RSD was less than 0.3 for the overall 
dataset, and the peak ratio was more than 70%, so the 
overall data were suitable for subsequent analysis (Sup-
plementary Fig. 3). The total set of metabolites identified 
was annotated using public databases, including KEGG 
(Kyoto Encyclopedia of Genes and Genomics, http://​
www.​genome.​jp/​kegg/) and HMDB (Human Metabo-
lome Database, www.​hmdb.​ca). Pearson’s correlation 
based on the Bray‒Curtis distance algorithm was used 
to evaluate the abundance of endophyte microbiome at 
the genus level and metabolites in the ginger plant com-
partments. Correlation analysis heatmaps were drawn, 
and KEGG enrichment analysis of the differentially 
abundant metabolites was performed using SciPy v.1.0.0 
(Python) software. The differentially abundant metabo-
lites were screened with the orthogonal projections to 
latent structures discriminant analysis (PLS-DA) model 
using the default criteria, with a variable importance 
value (VIP) ≥ 1 and a significance threshold of P < 0.001, 
using ropls v.1.6.2 (R software). Procrustes analysis of 
the Euclidian distances of eigenvalues for both the bacte-
rial or fungal microbiome and metabolome datasets was 
executed to analyze the congruence of two-dimensional 
shapes produced from the superimposition of principal 
component analyses (PCAs) [45].

Results
Overview of the sequencing and de novo assembly
Data analysis of 36 composite samples from 6 microbial 
niches of healthy and diseased plants was carried out to 
characterize the microbial communities associated with 
the sampled ginger plants. Supervised taxonomic clas-
sification of all high-quality reads was performed using 

the SILVA and UNITE databases to examine the taxo-
nomic structure of the bacterial and fungal communi-
ties, respectively. A total of 994,248 archaeal/bacterial 
and 1,650,996 fungal high-quality reads were obtained 
and sorted into 5353 archaeal/bacterial and 1793 fungal 
operational taxonomic units (OTUs). Archaeal/bacte-
rial OTUs were assigned to 2 domains, 2 kingdoms, 44 
phyla, 125 classes, 304 orders, 517 families, 1073 genera, 
and 2101 species (Supplementary Table 1), and the fungal 
OTUs were assigned to 15 phyla, 51 classes, 112 orders, 
233 families, 426 genera, and 667 species (Supplementary 
Table  2). The saturated rarefaction curves (Supplemen-
tary Fig.  1A, B) and species diversity (Shannon index) 
for both the archaeal/bacterial (Supplementary Fig.  1C) 
and fungal communities (Supplementary Fig.  1D) indi-
cated that the sampling efforts were adequate to reflect 
the microbial communities within each sample. Proteo-
bacteria (57.40%), Actinobacteriota (16.74%), Bacteroi-
dota (8.24%), and Firmicutes (6.83%) were the dominant 
bacterial phyla, while unclassified_k_Fungi (62.08%) and 
Ascomycota (32.53%) were the dominant fungal phyla.

Despite the great diversity, the ginger ecosystem’s bac-
terial and especially fungal communities were dominated 
by a few phyla among all samples, and we next examined 
how differences in the microbiome assembly can impact 
plant health.

Assemblage of plant‑associated bacterial and fungal 
microbiota
Microbial composition in plant niches associated with plant 
health
To determine the microbial composition and relative 
abundance in the niches of healthy and diseased plants, 
we constructed pie diagrams to represent the number of 
generalist (shared) and specialist (inhabitants of a sin-
gle niche) microbes between the niches of all the plants. 
The total number of microbes per niche included gen-
eralists, specialists, and those inhabiting more than one 
niche, known as satellites. A greater number of bacte-
rial genera was found in the microbial communities of 
healthy plants compared to diseased plants, except in 
the rhizosphere soil, where the number of bacterial gen-
era was higher in the diseased plants. A total of 3331 
bacterial genera were identified in the healthy plants, 
with 138 unique to that group. In contrast, 2512 genera 
were detected in the diseased plants, with 58 unique to 
that group (Fig. 1). Only two representatives of archaeal 
microorganisms (g_norank_f_Nitrososphaeraceae and 
g_Candidatus_nitrocosmicus) were present in the ana-
lyzed soil samples analyzed, and their relative abun-
dances were very low to be included in further analyses.

Eighty-three bacterial genera were identified as mem-
bers of the core (generalist) bacterial microbiota (Fig. 1C, 

http://www.hmdb.ca/
https://metlin.scripps.edu/
https://metlin.scripps.edu/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.hmdb.ca
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Supplementary Table  3). The most abundant bacte-
rial genera were Flavobacterium (10.48%), Acidovorax 
(8.78%), Sphingomonas (7.92%), Methylobacterium-Meth-
ylorubrum (6.38%), and Bacillus (5.07%). Compared with 
the same niches in the diseased plants, all the organs of 
the healthy plants except for the stem harbored the larg-
est number of endophyte bacteria (total; specialist); this 
trend was more notable in the leaves and rhizomes than 
in the other organs (Fig. 1A).

Healthy plants’ roots (588; 11) and rhizomes (550; 25) 
harbored the most significant number of endophyte bac-
terial genera. However, rhizome rot strongly reduced the 
number of these in the roots (220; 1) and rhizomes (332; 
3). Diseased plants exhibited fewer specialist bacteria in 
all plant organs except the stems.

The most abundant fungal generalist genera were 
unclassified_k_Fungi (85.89%) and Gibellulopsis (5.20%) 
(Supplementary Table 3). The greatest number of fungal 
genera (total; specialist) was detected in the niches of 
healthy plants (922; 61) compared with diseased plants 
(833; 38) so the presence of the specialists was notice-
ably more affected by the disease. A greater abundance 
of fungal genera was observed in the rhizomes of dis-
eased plants (70; 1) than in those of healthy plants (53; 0) 
(Fig. 1B).

Most of the taxa with relatively high abundances inside 
the diseased ginger plants were also detected in the 
soil, indicating that these taxa might have colonized the 
plants from the ground. Interestingly, the rhizomes of 
the diseased plants harbored a greater diversity of fungi 
than did those of the healthy plants, while the opposite 
occurred for bacteria.

Rhizome rot drives microbial community assembly in diverse 
plant niches
To quantify the diversity and summarize the struc-
tural changes in the microbial community, we first used 
the Kruskal‒Wallis test to calculate the microbial alpha 
diversity across all niches of healthy and diseased plants. 
The soil samples showed the highest diversity of bacteria 
(Fig. 2A, C) and fungi (Fig. 2B, D). The microbial commu-
nities in the rhizosphere were similar to those in the bulk 
soil, except for the fungal community in healthy plants, 
which was notably richer in the rhizosphere (Sobs index: 
180 ± 21.6). Significant differences were observed in the 
bacteria and fungal populations among healthy plants.

The disease significantly reduced bacterial richness in 
both roots (healthy, 396.3 ± 56.2; diseased, 130.0 ± 26.2; 
P = 0.0439) and rhizomes (healthy, 353.7 ± 44.5; dis-
eased, 185.0 ± 35.0; P = 0.0431) (Fig.  2A). Healthy plants 
had higher bacterial diversity in rhizomes (Shannon H’: 
4.30 ± 0.6). Diseased plants showed significant differences 
in fungal richness (Sobs index: 24.33 ± 9.3, Fig.  2B) and 

diversity (Shannon H’: 0.04 ± 0.0, Fig.  2D) in rhizomes 
compared to healthy plants.

To assess the microbial community dissimilarity 
between the niches of healthy and diseased plants, prin-
cipal coordinate analysis (PCoA) based on Bray–Curtis 
distance was performed (Fig.  2E, F). The closer the dis-
tance between samples in the PCoA diagram, the more 
similar their community composition. The analysis 
revealed differences in bacterial and fungal microbiome 
compositions between healthy and diseased plants. The 
first two axes account for about 50% and 47.5% of the 
variation for bacterial microbiomes (PERMANOVA, 
R = 0.70, P < 0.001; ANOSIM: R = 0.73, P < 0.001) and fun-
gal microbiomes (PERMANOVA: R2 = 0.63, P < 0.001; 
ANOSIM: R = 0.39, P < 0.001), respectively. Different 
plant niches displayed distinct microbial communities, 
suggesting a potential link to plant health. These findings 
indicate that plant health is connected to unique micro-
bial communities in various parts of the plant.

Additionally, functional signatures related to plant 
health status were predicted via FAPROTAX analysis 
based on the classification results from 16S amplicon 
sequencing. Testing for significance was performed using 
a Kruskal–Wallis rank sum test (Fig. 3A, Supplementary 
Table 4). The analysis predicted that the bacteria inhabit-
ing the stems of diseased plants would have the highest 
functional potential for nitrogen (9.29 ± 2.19%), nitrate 
(8.05 ± 3.70%), and nitrite (8.79 ± 2.28%) respiration; 
nitrite (7.55 ± 1.85%) and nitrate (7.55 ± 1.55%) ammoni-
fication; nitrate reduction (10.47 ± 4.16%); and plant 
pathogens (8.37 ± 2.04%), presumably associated with the 
highest relative abundance of Pectobacterium (Fig. 3B).

The most common functional groups of fungi were 
undefined saprotrophs in the bulk (25.19 ± 2.21%) and 
rhizosphere (37.09 ± 2.90%) soils of healthy plants, 
while in the diseased plants, these functional groups 
were dominant in the bulk soil (13.91 ± 1.03%), roots 
(18.12 ± 1.92%), and rhizomes (17.12 ± 1.28%). Inter-
estingly, the highest levels associated with the eco-
logical guild of plant pathogens were observed in the 
rhizosphere (27.75 ± 2.08%) and rhizomes (27.75 ± 2.19%) 
of diseased plants (Fig. 3C), associated with an increased 
relative abundance of various potential pathogens in 
these microbial niches (Fig. 3D, Supplementary Table 5).

The alpha diversity analysis indicates that plant roots 
and rhizomes harbor a significant number and variety 
of bacterial microbes. However, the presence of rhizome 
rot disease reduced these indices. In contrast, plant dis-
ease increased the diversity of the fungal microbes. Beta 
diversity analysis revealed changes in the composition of 
microbial communities in rhizosphere soil due to plant 
disease. Additionally, the composition of the bacterial 
microbiome in rhizomes and roots differed from that in 
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stems and leaves in healthy plants, but the disease nulli-
fied this difference.

Bacterial and fungal taxa potentially involved in plant health
We used linear discriminant analysis (LDA) effect size 
(LEfSe) to identify discriminative features at taxonomic 
levels for overall plant health regardless of the microbial 
niche. This study focused on potentially pathogenic and 
disease-suppressive microbes in soil and endophytes in 
plant tissues. In total, 105 taxa (from phylum to species) 
were identified with  a log10 (LDA) score > 4.0 and a P 
value < 0.05.

In the LEfSe analysis, we found seven plant-endophyte 
bacteria (Fig. 4A) and five soilborne bacteria (Fig. 4B) that 
are biomarkers for plant health. Specifically, we observed 

that bacteria such as s_unclassified_g_Sphingomonas, 
Quadrisphaera granulorum, and Methylobacterium 
komagatae were significantly enriched in healthy plants. 
On the other hand, bacteria like P. carotovorum subsp. 
brasiliense, s_unclassified_f_Alcaligenaceae, Alcaligenes 
faecalis, and Klebsiella aerogenes were found to be sig-
nificantly increased in diseased plants. Additionally, we 
found certain bacteria enriched in the soil of healthy and 
diseased plants.

Four species of endophyte plant fungi (Fig.  5A) and 
ten soil-borne fungi (Fig.  5B) were identified as poten-
tial biomarkers. In healthy plants, s_unclassified_k_Fungi 
(from phylum to species) was significantly enriched. Bio-
markers associated with s_unclassified_g_Cheilymenia 
(from class to species), Pseudaleuria sp. (from genus 

Fig. 3  Functional analysis of the bacterial and fungal genera from the various niches of healthy and diseased ginger plants. Genus-level distribution 
of the bacterial (A) and fungal (C) microbiome associated with different ginger plant niches. The length of the bars represents the percentage 
of each microbial genus per sample. Top genera with an abundance > 1% in at least one sample are shown. Clustered heatmap of top thirty 
predicted bacterial functional profiles (B). The samples are grouped according to their similarity to each other, and the clustering results are 
arranged horizontally according to the clustering results. The color bar indicates the relative abundance of microbial functions from lowest (blue) 
to highest (red). Variations in the composition of the top fungal functional groups (> 5%) inferred by FUNGuild analysis (D). BS bulk soil, RhS 
rhizosphere soil, Rh rhizome, R root, S stem, and L leaf
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to species), Lophotrichus sp. (order to species), Pseud-
ogymnoascus sp. (from class to species), Gymnoascus 
sp. (order to species), Mortierella polycephala (phylum 
to species), and Eleutherascus cristatus (from family to 
species) were significantly increased in the soil of healthy 
plants. In diseased plants, Gibellulopsis piscis (from phy-
lum to species), Pyxidiophorales sp. (from class to spe-
cies), and Plectosphaerella cucumerina (from phylum to 
species) were enriched, serving as potential biomarkers 
of disease. However, only three fungal biomarkers were 
characteristic of the soil of diseased plants: P. cucumer-
ina (from genus to species), Trichoderm longibrachiatum 
(species), and Fusarium nematophilum (species).

A probabilistic graph model related to a co-occurrence 
Bayesian network model (Supplementary Fig.  2A and 
B) shows a robust core bacterial and fungal microbiota 
and biomarkers linked to ginger plant health, including 
identifying Pectobacterium associated with rhizome rot 
in ginger plants. A greater network complexity has been 
associated with microbial communities exhibiting more 
intense activity and higher resilience to perturbation [16]. 
Our analysis of intrakingdom networks revealed a higher 
network complexity associated with increased nodes 
and edges in the bacterial networks (Supplementary 

Fig. 2B and C) than in the fungal networks (Supplemen-
tary Fig.  2D and E). The node average degree (206.48) 
and positive edges (48,524) were higher in the bacterial 
co-occurrence network in diseased plants than the node 
average degree (106.67) and positive edges (24,449) in 
healthy plants. However, the bacterial community in 
healthy plants had much higher opposing edges (1458) 
than in diseased ones (206). For fungal networks, the 
node average degree (35.97), positive edges (6,487), and 
opposing edges (23) were all higher in the healthy plants 
related to the node average degree (29.64), positive edges 
(4,816), and opposing edges (cero) in diseased plants.

Network statistics can determine the importance of 
microorganisms in co-occurrence networks [46]; in a 
co-occurrence network, hub or keystone species can be 
inferred by identifying species with the highest network 
centrality indices. The network analysis revealed that all 
bacterial biomarkers were highly prevalent in the sys-
tem. Bacillus and Sphingomonas were identified as the 
most crucial nodes in the genus-level network within the 
healthy ginger ecosystem (Supplementary Table  6). The 
co-occurrence network for diseased plants revealed sig-
nificant bacterial biomarkers. However, the ginger patho-
gen Pectobacterium [26] was identified as the top-ranking 

Fig. 4  LEfSe (LDA effect size) multilevel species hierarchy tree diagram (cladogram) and latent Dirichlet allocation (LDA) discrimination results 
diagram for endophytic (A) and soilborne (B) bacterial community biomarkers for plant health. The cladogram demonstrates the classification 
of taxa at the five levels, and the different colors indicate the differences in relative abundance for microbes that inhabit healthy (red) or diseased 
(blue) plants. Nonsignificant differences are represented by yellow circles. The LEfSe bar chart shows the biomarkers with significant differences 
between healthy and diseased plants, and the lengths of the bars indicate the influence of the species. The LDA score threshold was log10 (LDA 
score) > 4.0. The higher the LDA score is, the greater the impact of species abundance on the difference effect
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bacterium (Supplementary Table  7). Moreover, the fun-
gal biomarker exhibited a significant correlation within 
the microbial co-occurrence network of healthy ginger 
plants. Notably, Pseudaleuria and Mortierella emerged 
as prominent nodes with high degrees within the top 10 
hub nodes (Supplementary Table 8). Conversely, the fun-
gal networks of diseased plants featured Plectosphaerella 
and Gibellulopsis (Supplementary Table 9). These results 
emphasize the potential significance of these microbial 
strains in preserving the health of ginger plants.

Metabolites driving ginger microbial community assembly 
and plant health
Overview of metabolite information
We used untargeted metabolomics to simultaneously 
detect and analyze small-molecule metabolites that 
impact microbiome assembly and the health of ginger 
plants. The metabolomes of the niches corresponding 

to the vegetative organs of healthy and diseased plants 
were analyzed via LC–MS/MS, which revealed a total 
of 10,415 chromatographic peaks with 735 metabolites, 
500 of which were in the library (annotated to pub-
lic databases like HMDB and Lipidmaps), and 199 of 
which were annotated to the KEGG database (Table 1, 
Supplementary Table 10).

The metabolites identified across all the samples 
included 170 lipids and lipid-like molecules, 79 organic 
acids and derivatives, 63 organic oxygen compounds, 
and other compounds (Fig.  6A). The highest numbers 
of differentially accumulated metabolites (total; specific 
to each niche) were found in the rhizomes (164; 86), fol-
lowed by the leaves (135; 63), roots (89; 35), and stems 
(76; 25). Interestingly, a metabolite associated with the 
health of the whole ginger plant (6-({[3,4-dihidroxi-
4-(hidroximetil)oxolan-2-il]oxi}metil)oxano-2,3,4,5-tet-
rol) was identified (Fig. 6B).

Fig. 5  Fungal biomarkers for plant health based on the LEfSe (LDA effect size) multilevel species hierarchy tree diagram (cladogram) and latent 
Dirichlet allocation (LDA) discrimination results diagram for endophytic (A) and soilborne (B) microbes. The cladogram demonstrates 
the classification of taxa at the five level, and the different colors indicate the differences in relative abundance for microbes that inhabit 
healthy (red) or diseased (blue) plants. Nonsignificant differences are represented by yellow circles. The LEfSe bar chart shows the biomarkers 
with significant differences between healthy and diseased plants, and the lengths of the bars indicate the influence of the species. The LDA score 
threshold was log10 (LDA score) > 4.0. The higher the LDA score is, the greater the impact of species abundance on the difference effect
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Table 1  Total ion numbers and identification statistics

a Annotated to public databases like HMDB and Lipidmaps

Ion mode All peaks Identified metabolitesa Metabolites in library Metabolites in KEGG

Positive 4582 356 228 112

Negative 5833 379 272 87

Fig. 6  Overview of metabolite information related to plant health. A Superclass classification of the main types of metabolites found in diverse 
organs of healthy and diseased plants. B Number of differentially accumulated metabolites in the microbial niches of healthy plant organs. The 
histogram in the lower left corner refers to the number of overexpressed compounds in each microbial niche. The bar graph on the right shows 
the number of compounds after the intersection of various metabolic sets belonging to microbial niches. The single point below represents specific 
metabolite within the metabolite set, and the connection between some points shows the number of common metabolites
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The plant health‑associated microbiome is driven 
by the metabolome
The relationship between plant health-associated 
microbes and metabolites was examined. Procrustes 
analyses were performed using distance plots (PCA) as 
input based on the matrix of endophytic microbial com-
munities (Bray–Curtis). Significant associations were 
found between certain bacterial (M2 = 0.58, P = 0.00) and 
fungal (M2 = 0.84, P = 0.04) genera and metabolite syn-
thesis. The associations varied based on plant health and 
microbial niches (Fig. 7A). In diseased plants, only fungi 
in the rhizomes and roots were closely linked to metabo-
lite synthesis (Fig. 7B).

Furthermore, the metabolites that drive the assembly of 
the potentially plant health-determining microbiota accord-
ing to the LEfSe analysis are detailed below. Similarly, trans-
EKODE-(E)-Ib (P = 0.0137) and 2,3-dinor prostaglandin E1 
(P = 0.0359) were positively related to Sphingomonas, while 
piperidine (P = 0.0004), cyclohexane (P = 0.0006), tripro-
pylamine (P = 0.0005), palmitoleamide (P = 0.0012), farnesyl 
acetone (P = 0.0031), and C16 sphinganine (P = 0.0055) 
were negatively correlated with this bacterial genus. trans-
EKODE-(E)-Ib (P = 0.0341) was positively related, while 
ethyl hydrogen sulfate (P = 0.0008), 2-dodecylbenzene-
sulfonic acid (P = 0.0009), piperidine (P = 0.0034), farnesyl  
acetone (P = 0.0040), 9,12,15-octadecatrien-1-ol (P = 0.0042), 

Fig. 7  Associations between the endophyte microbiota and the plant metabolome. Procrustes correlation between the metabolome 
and the endophyte bacterial (A) or fungal (B) microbiota. M2 represents the sum of squared distances between matched sample pairs; 
the lower the value is, the greater the correlation between the two sets of data. The Monte Carlo P value was determined from 999 labeled 
permutations and provides a general measure of consistency between the two datasets (P < 0.01 indicates that the composition of the microbial 
community and the expression of metabolites are very consistent; P < 0.05 indicates consistency between these two datasets; and P > 0.05 
indicates that the trend of association between the datasets is not significant). The connection represents the Procrustes residue of the two 
ordered configurations, which can be used to assess the variation between the two. The longer the connection is, the lower the consistency 
between the two datasets. A heatmap based on Pearson’s correlation indicated the associations between metabolites and bacterial (C) or fungal 
(D) communities at the genus level. Metabolites are shown on the right; microbial genera are shown at the bottom. Asterisks indicate Pearson’s 
correlation coefficient (*P < 0.05; **P < 0.01; ***P < 0.001). The “blue to red” color gradient indicates the Pearson’s correlation index value. A darker red 
color indicates a greater positive Pearson correlation coefficient, while a darker blue color indicates a greater negative correlation coefficient
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13Z-docosenamide (P = 0.0090), palmitoleamide (P = 0.0108), 
cyclohexane (P = 0.0227), palmitic amide (0.0358), p-chloro-
phenylalanine (P = 0.0424), and tripropylamine (P = 0.0452) 
were negatively correlated with Methylobacterium–Methyl-
orubrum. Moreover, PA (16:0/18:2(9Z,12Z)) (P = 0.0120) 
and isocitrate (P = 0.0482) were positively related to Quad-
risphaera. 2-Amino-4-methylpentanoic acid (P = 0.0421) 
and p-chlorophenylalanine (p = 0.0449) were positively 
related to Pectobacterium, while 6-{4-[3-(3,7-dimethylocta-
2,6-dien-1-yl)-7-hydroxy-8-(4-hydroxy-3-methylbut-2-en-
1-yl)-4-oxo-4H-chromen-2-yl]-3-hydroxyphenoxy}-3,4,5-
trihydroxyoxane-2-carboxylic acid (P = 0.0364) and quercetin 
tetramethyl (5,7,3’,4’) ether (P = 0.0379) were negatively cor-
related with these bacteria. There was a significant positive 
correlation between linoleamide (P = 0.0185) and Alcaligenes, 
and a negative correlation between this bacterial genus and 
DG (18:4 (6Z,9Z,12Z,15Z)/18:2 (9Z,12Z)/0:0) (P = 0.0086) 
was detected. DG (18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)/0:0) 
was negatively correlated with Klebsiella (P = 0.005). DG 
(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)/0:0) (P = 0.005) and 6-{4- 
[3-(3,7-dimethylocta-2,6-dien-1-yl)-7-hydroxy-8-(4-
hydroxy-3-methylbut-2-en-1-yl)-4-oxo-4H-chromen-2-yl]-
3-hydroxyphenoxy}-3,4,5-trihydroxyoxane-2-carboxylic acid 
(P = 0.0025) were negatively correlated with Enterobacter 
(Fig. 7C).

12,13-Epoxy-9,15-octadecadienoic acid (P = 0.0235), 
L-glutamate (P = 0.0353), and (E)-9,12,13-trihydroxyoc-
tadec-10-enoic acid (P = 0.0481) were positively associ-
ated with Gibellulopsis, while PA(16:0/18:2(9Z,12Z)) 
(P = 0.0079) and LysoPA(0:0/18:2(9Z,12Z)) (P = 0.0207) 
were negatively related to this genus. 12,13-Epoxy-
9,15-octadecadienoic acid (P = 0.0468) was positively cor-
related with Plectosphaerella. ( ±)9-HpODE (P = 0.0428) 
was positively correlated with Lophotrichus. Isocitrate 
(P = 0.0087) and 3’-methoxy-[6]-gingerdiol 3,5-diacetate 
(P = 0.0167) significantly affected the presence of Mor-
tierella (Fig. 7D).

The metabolome can directly impact the health of ginger 
plants
To identify the compounds that play roles in plant health, 
the VIP combined with univariate statistical analysis was 
used. Of the total metabolites (anion plus cation), 470 
(4.51%) were enriched and 711 (6.83%) were depleted in 
healthy ginger plants compared to diseased ginger plants 
(Fig. 8A). One hundred five annotated metabolites exhib-
ited significant differences in abundance (Welch’s two-
sided t test, P < 0.05) between the diseased and healthy 
ginger plants. In contrast, the abundances of 469 anno-
tated metabolites were unchanged in either plant group 
(Fig.  8B). The abundance of 74 named metabolites was 
reduced, and 31 annotated metabolites were enriched 
in healthy plants compared to diseased plants. Particu-
larly notorious, niacinamide, a heterocyclic aromatic 
amide (P < 0.001), the metabolic intermediates involved 
in de novo lipid synthesis 1-oleoyl lysophosphatidic acid 
(P < 0.001), and the phospholipid PG (16:0/16:0) (P < 0.05) 
were enriched in healthy ginger plants, while the nonpro-
teinogenic L-alpha-amino acid 4-methylene-L-glutamine, 
the alkaloid xanthine, and the purine derivative hypoxan-
thine, among others, were significantly more abundant 
(P < 0.001) in diseased plants (Fig. 8C).

Metabolite profiles of plant niches revealed that niaci-
namide and PG (16:0/16:0) were upregulated in rhi-
zomes (VIP value = 2.56, P = 0.0002, and VIP value = 2.37, 
P = 0.0012) and leaves (VIP value = 2.54, P = 0.0002, and 
VIP value = 2.36, P = 0.0012), while 1-oleoyl lysophospha-
tidic acid was upregulated in rhizomes (VIP value = 2.19, 
P = 0.0003) and roots (VIP value = 2.19, P = 0.0003) of 
healthy plants. In diseased plants, 4-methylene-L-glu-
tamine was upregulated in leaves (VIP = 3.49, P = 0.0000). 
Hypoxanthine and xanthine also were upregulated in 
leaves (VIP = 3.16, P = 0.0000, and VIP = 3.29, P = 0.0000), 
and the latter was also in rhizomes (VIP = 3.16, 
P = 0.0000) (Supplementary Table 11).

Fig. 8  Differences in the expression of all metabolites (A) and annotated metabolites (B) are associated with plant health. The first 12 metabolites 
in B are labeled according to the P value (Welch’s two-sided t test). The values of the abscissa and ordinate are logarithmic. C The top 30 
differentially expressed metabolites with variable importance in projection (VIP) values in the PLS-DA model for each group comparison. The 
columns represent samples from healthy (HP) and diseased (DP) plants, and each row represents a metabolite. The bar chart on the right shows 
the VIP scores of the metabolites. The length of each bar indicates the contribution of the metabolite to the difference between the two plant 
groups. The color of the bar indicates the significance of the difference in metabolite levels between the two groups, that is, the P value. One 
asterisk (*) represents P < 0.05, two (**) represent P < 0.01, and three (***) represent P < 0.001
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The analyzed data support that the identified metabo-
lites drive the assembly of the healthy endophytic micro-
biota and directly influence plant health. However, 
further research is required to define whether the metab-
olites come from the plants or their microbiota.

Discussion
We performed untargeted metabolomic and metataxo-
nomic analyses based on 16S and internal transcribed 
spacer (ITS) rRNA gene amplicons to identify metabo-
lome-driven microbiome changes associated with ginger 
plant health and rhizome rot disease. The key findings of 
our study present a comprehensive overview of the bio-
diversity of soilborne and endophytic microbiota in both 
healthy and diseased ginger plant environments. This 
highlights the bacterial and fungal microbes that may 
contribute to plant health, as well as the specific metab-
olites that play a role in healthy microbial assembly and 
overall plant health.

Members of Proteobacteria, such as Burkholderiales, 
Rhizobiales, and Enterobacteriales, were the predomi-
nant members of the global bacterial community in gin-
ger plants. Actinobacteria, Bacteroidetes, and Firmicutes 
followed in abundance. This differs from the top four 
reported for natural ecosystems [46]. However, it has 
been reported that host species and soil type [47], crop 
rotation [48], and environmental conditions like temper-
ature, relative humidity, and pH [49] cooperatively mod-
ulated microbiome assembly.

The global fungal assemblage of ginger plants was 
dominated by members of Ascomycota, with Hypocreale, 
Glomerellales, Pezizales, and Sordariales being the most 
abundant. The kingdom of fungi, including true fungi 
(Fungi) and fungus-like organisms (e.g., Oomycota), is 
the second largest group of organisms, with an estimated 
2.2 to 3.8 million species worldwide [50]. Surprisingly, 
approximately 60% of the fungal taxa are classified as 
unclassified_k_Fungi, indicating a need for further analy-
sis. More comprehensive information on the complete 
ITS sequence of these microbes in databases is required 
to address this issue.

Several agents can cause soft rot (rhizome rot) in gin-
ger, but generally, the “bad guys” are fungi from the 
Fusarium [25] and Pythium [28] genera. Interestingly, 
despite sequencing, these soilborne fungus was rarely 
detected. Previous studies also failed to identify Pythium, 
possibly due to the limitations of the ITS region [51]. The 
ITS3/ITS4 primer set effectively analyzed soil fungal bio-
diversity in various soil types [52]. DNA metabarcoding 
targeting the ITS region revealed the widespread pres-
ence of potentially plant-pathogenic Phytophthora and 
Pythium species in rhizospheric soil associated with 

internationally transported plants [53]. However, the 
ITS region lacks sufficient resolution for distinguishing 
closely related species of indoor and foodborne molds, 
plant pathogens, or other fungi, for which secondary 
barcode markers have been suggested [50]. We identi-
fied these species using ITS3/ITS4 barcoding, except for 
oomycotes in the ginger ecosystem.

Further research is required to understand better the 
absence of such globally widespread fungal species in 
ginger ecosystems. However, manure application pro-
motes saprotrophic fungi while suppressing potential 
soilborne pathogenic fungi [54]. Pectobacterium spp. use 
synchronized production of plant cell wall-degrading 
enzymes (PCWDEs) as their primary virulence attribute. 
These bacteria enter the host through stomatal openings 
and wounds, colonizing xylem vessels, parenchyma, and 
protoxylem cells [55].

At the genus level, 16S rRNA gene sequencing revealed 
Flavobacterium, Acidovorax, Sphingomonas, Methylo-
bacterium-Methylorubrum, and Bacillus as the most 
abundant genera. These genera were shared across all the 
ginger microbial niches. Research on the assembly of the 
bacterial microbiota in the endosphere and rhizosphere 
of rice plants has identified Acidovorax, Sphingomonas, 
Bacillus, and Pseudomonas as members of the core gen-
eralist microbiota [56].

The diversity and species richness of the ginger micro-
biota narrowed from the soil as a “seed bank” to the plant 
organs, which suggest that the plants actively filtered the 
microbiota composition. Rhizome rot disease causes a 
significant change in the microbial community of ginger 
plants, especially in terms of microbial diversity. This 
change may be due to the plant’s reduced ability to filter 
organisms as the disease progresses.

The microbial structure detected in the rhizomes of 
both healthy and diseased plants revealed that special-
ist microbes did not cause rhizome rot. Instead, an 
imbalance caused by satellite [57] microbes like Pecto-
bacterium was primarily detected in the stems and rhi-
zomes of diseased plants. Saprotrophic fungi often take 
advantage of weakened diseased plants by colonizing 
their roots and rhizomes, while healthy plants maintain 
them in the soil. The presence of these fungi suggests 
that the cause of rhizome root disease is a necrotrophic 
pathogen that kills plant cells to feed on dead tissues 
and encourages the presence of other saprotrophs [58]. 
Most plant pathogens are mainly found in the rhizomes 
of diseased plants, although they have been discovered 
in all plant organs. This aligns with disease symptoms 
that spread to the entire plant.

Healthy plants harbor a more significant number and 
variety of bacterial microbes compared to diseased 
plants, while rhizome rot increases the diversity of 
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fungal microbes. Changes in microbiota composition 
have been associated with immune suppression dur-
ing pathogen infections. In the leaves of Arabidopsis 
immune-compromised mutants, the Shannon diver-
sity index and the relative abundance of Firmicutes 
were significantly decreased, while Proteobacteria were 
more prevalent [59]. These findings are similar to some 
aspects of dysbiosis in human inflammatory bowel dis-
ease [60].

The higher diversity of endophytic bacteria in healthy 
plants is likely due to the abundance of beneficial bac-
teria. Conversely, diseased plants have a more diverse 
range of bacteria in the rhizosphere, possibly due to 
decaying roots providing nutrients for soil organ-
isms. In a study involving tobacco plants infected with 
Ralstonia solanacearum wilt, researchers found that 
healthy plants had a greater diversity of microorgan-
isms than diseased plants. They observed increased 
levels of certain bacteria that promote plant growth 
and suppress diseases [61]. Similarly, healthy mulberry 
plant samples exhibited greater diversity of beneficial 
bacteria compared to those infected with bacterial wilt 
[62].

Among the bacterial species important in keeping 
plants healthy, Q. granulorum is capable of nitrification, 
denitrification, and polyphosphate accumulation [63]. M. 
komagatae was reported to be a potential biostimulator 
against fungal pathogens of ginger [64]. Sphingomonas 
species have variable functions, ranging from the reme-
diation of environmental pollution to the production of 
highly beneficial plant growth regulators [65], and some 
strains are also involved in nitrogen fixation [59]. Bacil-
lus  spp. serves multiple ecological functions, from soil 
nutrient cycling to inducing plant growth and stress tol-
erance [66].

In contrast, among the bacteria that were associated 
with the disease, only a P. brasiliense strain TS20HJ1 was 
isolated from ginger rhizome and shown to cause soft rot 
symptoms [25]. A. faecalis  is a heterotrophic nitrifying 
bacterium that oxidizes ammonia and generates nitrite 
and nitrate [67], and K. aerogenes significantly enhances 
the production of plant biomass and plant secondary 
metabolites [68].

In relation to the fungi that were enriched in the dis-
ease-suppressive soil, Pseudaleuria had been negatively 
correlated with the disease severity index of Pisum sati-
vum L. [69] and its abundance was favored by the appli-
cation of manure rather than mineral fertilization [70]. A 
high abundance of Pseudogymnoascus in the rhizosphere 
contributes to the nutrient cycling and helps crops better 
adapt to the environment [57]; these fungi are antagonis-
tic to potato scab pathogens [71]. Gymnoascus  spp. can 
also antagonistically affect pathogens and promote plant 

growth [72]. Mortierella species promote plant growth 
and have beneficial effects by modifying the soil micro-
biological composition [73].

Interestingly, P. cucumerina served as a biomarker for the 
endophyte microbiota of diseased plants and soil. The Plec-
tosphaerellaceae species G. piscis and P. cucumerina have 
been previously described as pathogens of essential crop 
plants [74, 75]. However, to our knowledge, these fungi 
have not been previously reported as pathogens of ginger.

Analysis of the correlation between microbial commu-
nities and metabolomes remains scarce. Specific metabo-
lites can attract beneficial microbes that defend against 
pathogens, while others exclude specific species from the 
microbial community [14]. The results revealed a metab-
olome-associated deterministic assembly process in 
the microbiota of the various microbial niches of ginger 
plants. The highest number of differentially accumulated 
metabolites between healthy and diseased plants was 
found in the plant compartments that hosted a greater 
diversity of fungal microbes, i.e., rhizomes and roots.

Recent research on ginger has revealed detailed informa-
tion about its over 60 bioactive compounds, including phe-
nolic compounds, terpenes, polysaccharides, lipids, and 
dietary fibers [76–79]. Some compounds can attract ben-
eficial microbes that protect the plant from pathogens, while 
others may harm the microbial community [13, 80]. Remark-
ably, our research has shown that lipids and lipid-like mol-
ecules are the most prevalent metabolites, among the more 
than 700 identified using untargeted metabolomics, that 
contribute to the health of ginger plants, particularly in pre-
venting rhizome rot disease. Lipids, a principal constituent of 
cell membranes, act as the interface and mediate cell signal-
ing pathways after microbe recognition, allowing advanta-
geous resource exchange or inhibiting interaction through 
downstream signaling cascades [81, 82]. Furthermore, when 
plants are exposed to necrotrophic pathogens such as Pec-
tobacterium species, their immune responses often involve 
oxylipins, signaling molecules derived from oxygenated fatty 
acids and related metabolites [83].

We hypothesized that the metabolites exhibiting 
more variability in abundance in healthy or diseased 
ginger plants may be closely associated with the plants’ 
responses to disease onset. Interestingly, the organoxy-
gen compound 6-({[3,4-dihydroxy-4-(hydroxymethyl)
oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was the only 
overexpressed metabolite in all the vegetative organs of 
healthy plants related to those of diseased plants, but its 
role in plant protection needs to be elucidated.

The levels of numerous rice amino acids increased in 
response to high saline–alkali stress, with threoninyl-
proline showing the most significant increase [84]. Glu-
Val is a dipeptide composed of L-valine and L-glutamic 
acid residues. Amino acids and their metabolites have 
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also been observed to stimulate the immune system in 
plants. Treating rice roots with Glu, and to a lesser extent 
Val, led to systemic disease resistance against rice blast 
(Magnaporthe oryzae) in leaves.

Niacinamide derivatives have been synthesized, and 
their fungicidal activity has been demonstrated [85]. Ara-
chidonic acid (AA), a microbe-associated molecular pat-
tern (MAMP) not commonly found in plants, is a potent 
elicitor of plant defense. Treating roots with AA-pro-
tected pepper and tomato seedlings from root and crown 
rot caused by Phytophthora capsici, leading to lignifica-
tion at sites of attempted infection [86]. A relative of the 
ginger health biomarker M. polycephala, M. alpina has 
also been identified as an attractive AA producer [87]. In 
transgenic A. thaliana plants producing arachidonic acid, 
levels of jasmonic acid were increased, while levels of sal-
icylic acid were decreased [88].

4-Methylene-L-glutamine is a nonproteinogenic L-alpha-
amino acid that has been implicated in the transport of 
nitrogen [89]; coincidentally, the most prominent features of 
bacterial dysbiosis related to rhizome rot are related to the 
nitrogen cycle. Asparagine accumulation as part of nitrogen 
remobilization has been recorded in response to diverse abi-
otic and biotic stressors, such as disease and mineral limita-
tion, as an adaptative process [90]. These changes in amino 
acids may be the result of disease in niches of ginger plants, 
although members of the Rhizobium complex of nitrogen-
fixing bacteria were also enriched in the rhizome, stem, and 
leaves of diseased ginger plants.

Palmitoleamide is a primary fatty amide. A crude 
extract from the endophytic fungus Botryodiplodia theo-
bromae containing fatty acid amides was observed to be 
broadly antimicrobial [91]. This metabolite was accu-
mulated in stems of diseased ginger plants and showed a 
negative effect on microbes of the plant growth-promot-
ing bacterial genus Methylobacterium–Methylorubrum. 
4-Hydroxy nonenal alkyne, primarily detected in leaves 
of diseased ginger plants, is a significant aldehyde pro-
duced during the lipid peroxidation of ω-6 polyunsatu-
rated fatty acids [92, 93].

Despite the limitations of this study, particularly con-
cerning abundance thresholds for microbe inclusion, 
which need to be proven by culturomics methods, these 
limitations do not negatively impact the conclusions. Our 
findings provide a foundation for achieving disease sup-
pression via modification of the metabolome-associated 
microbiome and have implications for further exploring 
pathogens, biocontrol agents, and plant growth promot-
ers associated with economically important crop. Most 
microbial species and metabolites have not been previ-
ously identified in ginger plants. The assembly of the 
microbiota rather than the occurrence of a particular 
microbe drove plant health.
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Supplementary Material 1: Supplementary Table 1. OTU table for the 
archaeal/bacterial ginger microbiome. The total number of OTUs in each 
of the three composite biological replicates is shown. HPBS: healthy plant 
bulk soil, DPBS: diseased plant bulk soil, HPRhS: healthy plant rhizosphere 
soil, DPRhS: diseased plant rhizosphere soil, HPRh: healthy plant rhizome, 
DPRh: diseased plant rhizome, HPR: healthy plant root, DPR: diseased plant 
root, HPS: healthy plant stem, DPS: diseased plant stem, HPL: healthy plant 
leaf, DPL: diseased plant leaf.

Supplementary Material 2: Supplementary Table 2. OTU table for the 
fungal ginger microbiome. The total number of OTUs in each of the three 
composite biological replicates is shown. HPBS: healthy plant bulk soil, 
DPBS: diseased plant bulk soil, HPRhS: healthy plant rhizosphere soil, 
DPRhS: diseased plant rhizosphere soil, HPRh: healthy plant rhizome, 
DPRh: diseased plant rhizome, HPR: healthy plant root, DPR: diseased plant 
root, HPS: healthy plant stem, DPS: diseased plant stem, HPL: healthy plant 
leaf, DPL: diseased plant leaf.

Supplementary Material 3: Supplementary Table 3. Core and special-
ists bacterial and fungal microbes. HPBS: healthy plant bulk soil, DPBS: 
diseased plant bulk soil, HPRhS: healthy plant rhizosphere soil, DPRhS: 
diseased plant rhizosphere soil, HPRh: healthy plant rhizome, DPRh: 
diseased plant rhizome, HPR: healthy plant root, DPR: diseased plant root, 
HPS: healthy plant stem, DPS: diseased plant stem, HPL: healthy plant leaf, 
DPL: diseased plant leaf.

Supplementary Material 4: Supplementary Table 4. Bacterial functional 
assemblages based on FAPROTAX analysis. The values are the average of 
three composite biological replicates (mean), sd is the standard variation 
in the mean for each microbial niche. Testing for significance was per-
formed using a Kruskal–Wallis rank sum test.

Supplementary Material 5: Supplementary Table 5. Identification of 
specific ecological categories of fungi through FUNGuild functional 
classification. The values are the average of three composite biological 
replicates. HPBS: healthy plant bulk soil, DPBS: diseased plant bulk soil, 
HPRhS: healthy plant rhizosphere soil, DPRhS: diseased plant rhizosphere 
soil, HPRh: healthy plant rhizome, DPRh: diseased plant rhizome, HPR: 
healthy plant root, DPR: diseased plant root, HPS: healthy plant stem, DPS: 
diseased plant stem, HPL: healthy plant leaf, DPL: diseased plant leaf.

Supplementary Material 6: Supplementary Table 6. Co-occurrence Net-
work statistics for bacterial microbiota in healthy plants. Nodes represent 
microbial genera, and edges represent the statistically significant associa-
tions between nodes. Connections were drawn between significantly 
correlated nodes (P < 0.05 and Spearman’s r > 0.96; Spearman’s rank 
correlation test).

Supplementary Material 7: Supplementary Table 7. Co-occurrence Net-
work statistics for bacterial microbiota in diseased plants. Nodes represent 
microbial genera, and edges represent the statistically significant associa-
tions between nodes. Connections were drawn between significantly cor-
related nodes (P < 0.05 and Spearman’sr > 0.96; Spearman’s rank correlation 
test).

Supplementary Material 8: Supplementary Table 8. Co-occurrence 
Network statistics for fungal microbiota in healthy ginger plants. Nodes 
represent microbial genera, and edges represent the statistically signifi-
cant associations between nodes. Connections were drawn between 
significantly correlated nodes (P < 0.05 and Spearman’s r > 0.96; Spearman’s 
rank correlation test).

Supplementary Material 9: Supplementary Table 9.Co-occurrence Network 
statistics for fungal microbiota in diseased ginger plants. Nodes represent 
microbial genera, and edges represent the statistically significant associa-
tions between nodes. Connections were drawn between significantly 
correlated nodes (P < 0.05 and Spearman’s r > 0.96; Spearman’s rank cor-
relation test).
Supplementary Material 10: Supplementary Table 10. Overview of metab-
olite information. ID: In the data matrix identified by searching the mass 
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spectrometry library, the number of each identified ion peak is randomly 
assigned according to different ion modes; Metabolite: the name of the 
metabolite identified in this project; Metab ID: In the cloud platform analy-
sis, the number of each identified ion peak is randomly assigned; Library 
ID: the metabolite is found in the corresponding accession number of 
the search database;  KEGG compound ID: the accession number of the 
KEGG database; M/Z or Quantum Mass: mass-charge ratio; Retention time: 
refers to the retention time of charged ions in chromatography; Mode: ion 
detection mode, including positive ion and negative ion mode; Adducts: 
adduct ionic mode, refers to the covalent bond between metabolites and 
cellular macromolecules;  Formula: chemical formula of metabolites;  Frag-
mentation score: Metlin database search score;  Theoretical fragmentation 
score: HMDB database search score; Mass error: mass deviation (ppm)); 
CAS ID: chemical substance registration number; RSD: relative standard 
deviation of quality control samples.
Supplementary Material 11: Supplementary Table 11. Niche-specific 
expression of metabolites associated with plant health. ID: In the data 
matrix obtained by the mass spectrometry search database, each ion 
peak is randomly numbered according to different ion modes; metabolite: 
metabolite detected; VIP_value represents the contribution value of the 
metabolite to the difference between the two niches of healthy and dis-
eased plants; VIP: The higher the value, the more significant the difference 
between the two groups of metabolites; P_value: indicates the signifi-
cance of the difference between the two groups of samples for the given 
metabolite; HP: indicates the relative expression level of the metabolite in 
the healthy plant samples; DP: indicates the relative expression level of the 
metabolite in the samples from the diseased plants.
Supplementary Material 12: Supplementary Fig. 1. Shannon rarefaction 
curves of the archaeal/bacterial (A) and fungal (B) community groups at the 
OTU level. The rarefaction curve was calculated by randomly resampling 
each sample several times and then plotting the rarefied number of OTUs 
defined at a 97% sequence similarity threshold relative to the number of 
samples. The abscissa represents the amount of sequencing data randomly 
sampled, and the ordinate represents the diversity index (Shannon index) 
at the OTU level. Rank abundance analysis of the archaeal/bacterial (C) and 
fungal (D) community groups at the OTU level. The abscissa represents the 
rank of the OTU, and the ordinate represents the relative percentage of the 
abundance of the OTU. The position on the abscissa of the open end of the 
sample curve corresponds to the number of OTUs in the sample.
Supplementary Material 13: Supplementary Fig. 2. Co-occurrence network 
analysis of the microbial community associated with the health of the ginger 
plant. Co-occurrence of bacterial (A) and fungal genera (B) in health (S1) and 
diseased (S1D) ginger plants based on relative abundance. Different colors 
represent microbial genera associated with healthy (blue) and diseased (red) 
plants; black is the keystone core genera. Intra-kingdom network analysis 
of the ginger microbiome is conducted based on correlation analysis of 
taxonomic profiles in healthy (C for bacteria and E for fungi) and diseased (D 
for bacteria and F for fungi) ginger plants. Nodes represent microbial genera, 
and edges represent the statistically significant associations between nodes. 
Connections were drawn between significantly correlated nodes (P < 0.05 
and Spearman’s r > 0.96; Spearman’s rank correlation test). The red edges are 
indicators of co-occurrence (positive), and the green edges are indicators of 
mutual exclusion (negative) correlations. Hub microbes for each network are 
ranked according to the number of connections in the network.

Supplementary Material 14: Supplementary Fig. 3. Quality control (QC) 
metabolomic sample evaluation. By calculating the relative standard deviation 
(RSD) value of each variable in the QC sample, variables whose RSD exceeds 
the threshold are eliminated, and variables with RSD ≤ 30% are retained. The 
abscissa is the RSD value (%), i.e., the standard deviation/mean value, and the 
ordinate is the ratio of ion peaks. The dotted line indicates the value before 
preprocessing, while the solid line shows the results after preprocessing.
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