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Abstract 

Background The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we 
still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes 
within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial plank-
tonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct 
a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species 
distribution modeling, and ecological niche characterization.

Results Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environ-
ments. The phylum was represented by 179 Picozoa’s OTU (pOTUs) placed in five phylogenetic clades. Picozoa com-
munity structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar 
ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, 
Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs 
sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa 
communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude 
of variations in environmental factors, such as temperature, shaping physiological and ecological traits.

Conclusions Overall, this work advances our understanding of uncharted protists’ evolutionary dynamics and eco-
logical strategies. Our results highlight the importance of understanding the species-level ecology of marine het-
eroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche 
conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecologi-
cal niches.
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Introduction
Marine microbes play a fundamental role in shaping 
the Earth’s ecosystem, governing global biogeochemical 
cycles, and facilitating the transfer of matter and energy 
to higher trophic levels [1–3]. Among them, protists are 
key components of the marine microbiome and fulfill a 
vast array of ecological roles due to their wide variety of 
physiological capacities [4–6]. Within the expansive and 
complex world of marine protists, a group of small heter-
otrophic picoeukaryotes known as Picozoa has emerged 
as a fascinating and enigmatic lineage.

Picozoa were described for the first time in 2007 as a 
unique photosynthetic protist lineage, called  Picobi-
liphytes [7]. The assignment of this nutrition strategy 
was based on a distinct orange autofluorescence (appar-
ently phycobilin pigments) emitted by the cells when 
observed under epifluorescence microscopy [7]. How-
ever, subsequent studies failed to find phycobilin in 
natural populations, concluding that Picozoa were not 
autotrophs but rather phagotrophs and that their orange 
fluorescence could represent ingested picocyanobac-
teria [8]. The question of whether or not Picozoa were 
autotrophs seemed to be resolved by the morphological 
characterizations of a single strain of Picozoa (Picomonas 
judraskeda) [9]. This strain was characterized as a biflag-
ellate, with cells consisting of two hemi-spheres with 
structural features that have not been observed before 
in any other eukaryote. The anterior part contains the 
typical eukaryotic organelles, whereas the posterior part 
contains numerous vesicles and vacuoles and the feeding 
apparatus. These two parts are separated by a vacuolar 
cisterna of unknown function [9]. At present, it remains 
unknown if this morphological description is universally 
applicable to all members of this group. The absence of 
chloroplast and the feeding apparatus suggested that this 
species was adapted to exploit small particles as a food 
source. Therefore, Picobiliphytes was renamed as “Pico-
zoa” highlighting their heterotrophic lifestyle [9, 10, 11, 
12]. In agreement, the genome sequencing of three single 
cells showed no evidence of plastid DNA or plastid-tar-
geted proteins [2], although this was based on incomplete 
genomes. Furthermore, viral and bacterial genes were 
found together with these genomes, suggesting that Pico-
zoa may feed on these organisms [12]. A recent single-
cell genomics study based on a wide range of cells has 
definitely refuted the presence of chloroplasts in Picozoa 
[13].

The phylogenetic position of Picozoa has also been a 
subject of uncertainty. For several years, multiple studies 
have characterized the group as an orphan basal lineage, 
distinct from any established eukaryotic cluster [7, 12, 
14–16]. However, a recent phylogenomic study revealed 
that Picozoa belongs to the Archaeplastida supergroup. 

Archaeplastida comprises diverse photosynthetic line-
ages from primary endosymbiosis (green algae, red algae, 
and glaucophytes), where a eukaryotic host cell engulfed 
a cyanobacterium, giving rise to their plastids [13]. In 
addition to these photosynthetic lineages, Archaeplastida 
also includes heterotrophic groups like Rhodelphis [17] 
and, more recently, Picozoa, both basal to red algae [13]. 
The coexistence of a few heterotrophic lineages along-
side photosynthetic lineages highlights the complexity of 
this supergroup [18]. Indeed, rhodelphids lost their plas-
tid genome over time, but the plastid organelle remains 
[17]. So, these organisms are obligate phagotrophs pre-
serving cryptic non-photosynthetic plastids [17]. Pico-
zoa, however, lacks a plastid and shows no evidence of 
an early cryptic endosymbiosis with cyanobacteria [13]. 
This unique scenario raises the possibility that this group 
could be the first example of complete plastid loss in a 
free-living taxon. Alternatively, it may suggest that red 
algae and rhodelphids obtained their plastids indepen-
dently from other archaeplastids [13].

Over the few last years, the presence of Picozoa in 
molecular surveys has exhibited a sustained increase 
across the global ocean, from temperate and tropical 
waters [7, 15, 19–21] to polar regions [22–25]. Recently, 
an amplicon dataset retrieved from samples from tropical 
and subtropical oceanic regions has revealed that Pico-
zoa constitute more than 10% of the relative abundance 
of heterotrophic flagellates in surface samples, position-
ing them as the second most dominant HFs group after 
MAST-3 [21]. These findings highlight the central role 
of Picozoa in marine microbial planktonic communities. 
However, key aspects of their diversity, distribution, and 
ecological significance remain poorly understood.

The ecological niche theory may not only shed light 
on the significance of Picozoa in marine microbial 
planktonic communities but also provide a framework 
for a deeper understanding of their ecological implica-
tions. The traditional niche-based perspective states 
that selection, including environmental filtering and 
species interactions, plays a pivotal role in shaping 
community structure [26]. This process drives species 
into specific niches based on their ecological require-
ments and interactions with other species, which are 
then balanced by stochastic processes (birth, death, 
colonization, immigration, speciation, and probabil-
istic dispersal) [26, 27]. Together, these deterministic 
and stochastic forces shape community assembly [28, 
29]. In protists, selection and dispersal limitation are 
often considered the main ecological drivers of spe-
cies distributions [30–36]. However, these statements 
are valid for communities in general, and it is expected 
that different taxonomic groups or lineages are struc-
tured by different processes [37]. Phylogenetic niche 
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conservatism (PNC) is an eco-evolutionary process 
that leads closely related taxa to share similar ecologi-
cal niches due to their shared evolutionary history [38]. 
This implies that they are often filtered into the same 
habitats and tend to co-occur within these environ-
ments [39]. The opposite scenario to PNC is competi-
tive exclusion when closely related species require the 
same resource and co-exclude themselves. Under this 
scenario, high phylogenetic overdispersion is expected, 
as closely related species avoid each other due to high 
niche overlap which leads to high resource competition 
[40]. Furthermore, the niche convergence processes can 
result in species sharing similar ecological niches with-
out being necessarily evolutionary closely related [41].

In this study, we aim to unveil the ecology of Picozoa 
through a global-scale phylogenetic and niche characteri-
zation. As Picozoa is a widely distributed and abundant 
picoeukaryote group in the global ocean, we hypoth-
esize that the different species composing the group 
display a latitudinal distribution mainly influenced by 
environmental factors. As a consequence, phylogeneti-
cally related taxa are expected to co-occur, sharing and 
occupying similar ecological niches (Fig.  1). To test our 
hypotheses, we analyze an extensive dataset of 18S rRNA 
gene V4 sequences to (1) determine spatial distribution 
patterns at different levels, from assemblages to OTUs, 
(2) place the detected OTUs into a proper phylogenetic 

context, and (3) study the ecological niche dynamics at 
the OTU level.

Material and methods
EukBank 18S rRNA—V4 region database
The EukBank database compiles eDNA surveys from 
12,570 georeferenced samples that used amplicon high-
throughput sequencing methods (Illumina MiSeq and 
Roche 454) to target the hypervariable V4 region of the 
18S rRNA gene [42]. This database comprised samples 
from both continental and marine environments, target-
ing different microbial size fraction: pico-size (0.2–5 µm), 
nano-size (5–20 µm), and micro-size (> 20 µm) (Supple-
mentary Table S1).

Raw sequences were obtained from the EMBL/EBI-
ENA EukBank umbrella project. When applicable, 
reads were trimmed with Cutadapt [43] to extract frag-
ments covered by the primer sets TAReuk454FWD1 and 
TAReukREV3 from the V4 region or the 18S rRNA gene 
[44]. Identical sequences were merged with VSEARCH 
[45] and clustered with Swarm [46]. Subsequently, chi-
mera detection and removal were conducted using the –
uchime_denovo function in VSEARCH [45]. The final set 
of operational taxonomic units (OTUs) was obtained 
based on occurrence patterns, utilizing a modified ver-
sion of the Lulu algorithm [47]. Taxonomic classification 
of the OTUs was performed using the curated EukRibo 

Fig. 1 Working hypotheses on the distribution and ecological niche of Picozoa. A Picozoa communities are latitudinally structured, with polar 
(tones of blue) assemblages clustering separately from non-polar ones (other colors). B Selection (or environmental filtering) is expected to play 
a larger role in this spatial distribution than species interactions, with temperature being one of the main drivers shaping the assemblage structure. 
C, D Consequently, Picozoa taxa sharing similar distribution patterns are likely to be phylogenetically related, indicating phylogenetic niche 
conservatism
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database version 1.0 [48], employing the global pairwise 
alignment approach (–usearch_global  from VSEARCH). 
This taxonomically informed OTU table was generated 
by the UniEuk consortium [42]. Only samples with more 
than 10,000 reads were considered and rarefied using 
the rrarefy  function from “Vegan” package [49] in the R 
environment [50]. The 223 OTUs that were initially affili-
ated with Picozoa (pOTUs) were corroborated by their 
phylogenetic placement in an 18S rRNA phylogenetic 
reference tree (see next section) and manually checked 
for chimeras. We kept 179 pOTUs together with their 
relative abundance in all samples for further analysis.

Phylogenetic analysis
The Picozoa reference tree (RT) was constructed using 
18S rRNA sequences from the PR2 database (release v. 
5.0.1 [51]). Sequences named Picozoa were downloaded 
(289 sequences longer than 800  bp). A preliminary tree 
indicated the presence of long branches within clades 
and at the base of the tree. A manual inspection of these 
long branches showed that many of them were chimeras 
(20 sequences), had erroneous bases at the start or end 
(25 sequences), or were misassigned. Subsequent analysis 
indicated that most partial sequences did not modify the 
topology of the tree, so we finally kept 50 almost com-
plete sequences for the reference tree (47 longer than 
1600 bp and 3 between 1000 and 1600 bp). Twelve Cryp-
tophyte sequences retrieved from the PR2 database were 
used as outgroup. These sequences were aligned using 
MAFFT v.7 software [52] with the strategy G-INS-i, 
and the RT was constructed using the maximum likeli-
hood method in RAxML v.8.2.12 [53] with the GTR CAT I 
model considering 1000 trees for topology and 1000 trees 
for bootstrapping. Clades names of Picozoa were based 
on this tree.

To infer the phylogenetic positions of the pOTUs, 
the amplicon short sequences were placed into the RT. 
Briefly, the pOTUs sequences were added to the ref-
erence alignment using MAFFT with the –add and –
keeplength parameters. Then, a maximum likelihood 
phylogenetic tree was constructed using RAxML with the 
GTR CAT I considering 1000 replicates for topology and 
bootstrapping. All pOTUs were clearly placed within the 
lineages described in the reference tree.

Community structure and diversity
To investigate the community structure and diversity of 
Picozoa across the global ocean, we focused only on DNA 
samples (not RNA) sequenced by Illumina technology, 
belonging to marine water environment, from the pico-
size fraction (i.e., collected using filters with pore sizes 
ranging from 0.2 to 5  µm, or that have the information 
in sample description). For methodological consistency, 

a single sample per location was considered in the data-
set, excluding any times series or replicate samples. 
This refined dataset comprised 2366 samples collected 
from diverse locations, spanning from polar regions to 
the equator, and encompassing the sunlit (depth layer 
between 0 and 200 m, or as per sample description, com-
prising the surface and epipelagic) and dark ocean (depth 
layer deeper than 200  m, or as per sample description, 
comprising the meso- and bathypelagic).

To explore the difference in community composition 
between sunlit and dark ocean zones, we first conducted 
a PERMANOVA test [54]. Then, we calculated Shannon–
Weaver diversity (H′) and CHAO-1 richness indices from 
rarefied OTU tables (10,000 reads), and evaluated signifi-
cant differences (P < 0.01) among sunlit and dark ocean 
zones using a t-Student test.

To further analyze the structure of Picozoa communi-
ties in the sunlit ocean (1669 samples), we conducted a 
non-metric multidimensional scaling ordination plot 
(NMDS) based on the Bray–Curtis dissimilarity on rela-
tive abundance pOTU tables using the “Vegan” R package 
[49]. Then, we conducted a PERMANOVA analysis to 
test for significant differences in the assemblage structure 
among latitude ranks.

Picozoa biogeography and ecological niche
To study the Picozoa biogeography, we used two different 
approaches. First, we focused on field observations at the 
pOTU level in the sunlit ocean to gather comprehensive 
data on Picozoa abundance and distribution. Then, we 
employed Species Distribution Models (SDMs) to pre-
dict the potential distribution of each abundant pOTU 
(53 pOTUs with a total abundance > 150 reads and occur-
rence > 50; see results) at the global scale. Our analysis 
categorized Picozoa into four distinct groups. Finally, we 
investigate the ecological niche of each abundant pOTU, 
to determine their abiotic environmental preferences.

Field observations
Picozoa OTUs were classified into four categories based 
on abundance, occupancy, and statistical association to 
one or more oceans (IndVal.g function in the “Indicspe-
cies” R package [55]). We considered a pOTU to be sig-
nificantly associated with one ocean when the IndVal.g 
association value was 1 and p-value < 0.05 (9999 permu-
tations (55)). These categories included the following: (1) 
Low abundance (LA), (2) Widespread (W), (3) Polar (P), 
and (4) Non-polar (NP).

Species distribution modeling

Selection of environmental predictors To describe the 
predicted biogeographical patterns of Picozoa at the 
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global scale, we selected a set of mean yearly clima-
tologies for seven environmental variables  that better 
describe the biogeographical patterns of protists at the 
global scale (e.g., [21]). These predictors were obtained 
from the World Ocean Atlas 2018 (https:// www. ncei. 
noaa. gov/ produ cts/ world- ocean- atlas) and integrated 
into the standard 1 × 1 global grid. They included: mixed-
layer depth and multi-depth (0–5500  m) fields for tem-
perature, salinity, oxygen, conductivity, phosphates, and 
nitrates concentrations. Given the high spatial correla-
tion between phosphates and nitrates concentrations, 
and to reduce the total number of predictors in mod-
els, we computed the excess of nitrates over phosphates 
(N*) based on the Redfield ratio  [NO3−] −  16[PO4

3−] 
[56]. Higher values of this variable indicated areas with 
a clear excess of nitrates over phosphates. Finally, we 
ensured that none of the variables included in the models 
had a variance inflation factor higher than three. Multi-
depth climatologies were averaged across distinct depth 
layers to represent mean yearly conditions for sunlit 
(0–200  m), mesopelagic (> 200–1000  m), and bathype-
lagic (> 1000 m) ocean depth zones, respectively.

Species Distribution Models configuration and habitat 
suitability projections Species Distribution Models 
(SDMs) were used to predict the potential distribution of 
each abundant pOTU at the global scale based on a set 
of abiotic environmental conditions. SDMs are a widely 
used technique that contrasts environmental conditions 
between species occurrence and background data to 
estimate habitat suitability and predict species distribu-
tion across geographical space [57]. pOTU occurrences 
were compiled by discretizing read counts into pres-
ence/absence data, retaining only one observation for 
each cluster of reads collected within the same ocean 
depth zone. To minimize bias in the sampling effort, we 
employed a target-group approach [58], restricting the 
selection of background data to the spatial boundaries of 
our sampling. Specifically, locations where a pOTU was 
found were matched with depth-specific conditions and 
used as presence data. Meanwhile, depth-specific condi-
tions for all other sampling stations, where a pOTU was 
not found, served as background data. This approach 
implied dealing with different presence-to-absence 
ratios in the training data (mean = 0.17, range 0.02–0.83) 
for each modeled pOTU, reflecting the diverse relative 
abundance of pOTU in our global dataset [59, 60]. We 
included an average of 202.8 occurrences per pOTU in 
SDMs (range, 24–725).

The SDMs were fitted using an ensemble of 4 algo-
rithms: Generalized Linear Models (GLM), Random For-
est (RF), Artificial Neural Network (ANN), and Boosted 

Regression Trees (BRT) [61]. The models were calibrated 
using fivefold cross-validation to internally assess their 
performance based on the area under the receiving oper-
ator characteristic curve (AUC). For each pOTU, models 
with poor performance (AUC < 0.7) were discarded from 
the final ensemble model, which was calculated as the 
average of predictions across all successful algorithms 
[61]. Only 17 models were discarded, while the retained 
models exhibited an average performance across all 
pOTUs at 0.87 (range, 0.72–0.99). The calibrated SDMs 
were then projected onto the yearly sunlit conditions 
to generate global maps of the Habitat Suitability Index 
(HSI) for each pOTU. The HSI index helps to predict 
potential changes in species distribution across differ-
ent habitats. It ranges from 0 to 1, where 1 represents the 
maximum probability of finding a species in a given envi-
ronment, indicating the highest suitability for the species. 
This analysis was conducted using the “h2o” [62] and 
“raster” [63] R packages.

Ecological niche and niche overlap
The ecological niche was estimated for all abundant 
pOTUs by the canonical Outlying Mean Index analy-
sis (OMI) [64, 65]. OMI is an ordination technique that 
had been found to characterize the ecological niche more 
accurately than SDMs [66]. The OMI technique meas-
ures marginality, which is the distance between a species’ 
average environmental preferences and the overall con-
ditions available in the sampled area. This analysis was 
performed on the ecological space defined by a principal 
component analysis (PCA) applied to the table contain-
ing abiotic environmental variables. The analysis returns 
the linear combination of habitat variables that maxi-
mizes the mean marginality of the species. Consequently, 
each species is positioned in the gridded, multivari-
ate ecological space based on the deviation of its niche 
from that of a hypothetical species uniformly distributed 
across available environmental conditions [64, 65]. As we 
expected temperature to strongly structure environmen-
tal conditions, we used a slight modification of the clas-
sical OMI, called canonical OMI (CANOMI), which is 
specifically indicated in such situations ( “adehabitatHR” 
R package [65, 67]). We performed the CANOMI analy-
sis using information on the number of reads per pOTU 
counted at each sampling station. We represented avail-
able conditions by extracting, for each sampling station, 
the same variables included in SDMs for the sunlit ocean.

To quantify niche overlap between different pOTUs, 
we first used a kernel distribution (kernelUD func-
tion in “adehabitatHS” R package [68]) to determine the 
“smoothed” density of pOTU reads counted in each grid 
of the ecological space from the CANOMI analysis [66]. 
Then, we employed the Schoener’s D metric (calc.niche.

https://www.ncei.noaa.gov/products/world-ocean-atlas
https://www.ncei.noaa.gov/products/world-ocean-atlas
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overlap functions in “ENMeval” R package [69]), to com-
pute the niche overlap between each pair of pOTU. Sch-
oener’s D metric spans from 0, indicating no overlap, to 
1, representing complete overlap [66].

Phylogenetic community structure and phylogenetic niche 
conservatism
The phylogenetic community structure was assessed 
using the mean nearest taxon distance (MNTD) index, 
which calculates the mean phylogenetic distance sepa-
rating each species in the community from its closest 
relative [70]. A low MNTD value indicates closely related 
species, while a high MNTD value suggests more dis-
tantly related species [70]. This analysis was conducted 
using the “Picante” R package [71].

The PNC was estimated to test whether the environ-
mental preference of a given abundant pOTU was related 
to the phylogeny. We employed two different approaches. 
First, a Mantel correlogram analysis was run to assess the 
relationship between potential environmental traits and 
phylogenetic distances of pOTUs [72–76]. The poten-
tial environmental trait information for each taxon was 
obtained by calculating the average values of each envi-
ronmental variable (the same used in SDMs and OMI 
analyses) for the sites in which it was observed, weighted 
by the relative abundance of that taxon per site. The phy-
logenetic distance between pOTUs was calculated from 
the ML 18S rRNA tree using the cophenetic function in R 
environment (50). The Mantel correlogram analyses were 
run with 999 permutations using the “Vegan” R package 
[49], employing 50 phylogenetic distance bins and a pro-
gressive Bonferroni correction. Then, we also explored 

the correlation between pOTUs’ phylogenetic distance 
and their niche overlap.

Results
Global distribution, diversity, and phylogeny of Picozoa
In the Eukbank 18S rRNA amplicon dataset (Supplemen-
tary Table S1), Picozoa ranked among the ten most abun-
dant supergroups (Supplementary Fig. S1), contributing 
to 0.5% of total eukaryotic reads, comprising 179 pOTUs. 
The predominant groups in terms of abundance can be 
observed in Supplementary Fig. S1. Notably, Picozoa 
occurred systematically in marine environments, being 
found in 85.1% of marine samples, contributing signifi-
cantly, up to 37%, to the total eukaryotic abundance. Its 
presence was very scarce in continental environments 
(Fig.  2 and Supplementary Fig. S2). They were found in 
only 35 of 2876 continental samples, and they contrib-
uted very little to read abundance, as almost all Picozoa 
reads (99.9%) originated from marine water samples.

Among samples from marine water environments 
(n = 7886), Picozoa constituted more than 5% of the total 
eukaryotic reads in 174 samples, with the majority of 
these samples originating from polar regions (Supple-
mentary Fig. S3). Picozoa reads were distributed across 
the pico-, nano-, and micro-sized fractions. The pico-
sized fraction displayed the highest number of taxa and 
reads among the three fractions. There was consider-
able overlap between the three size fractions in terms of 
pOTUs, with all pOTUs from the nano- and micro-sized 
fractions also being present in the pico-size fractions. 
However, 116 out of 179 pOTUs were exclusive to the 
pico-size fraction (Supplementary Table S2).

Fig. 2 The spatial distribution of Picozoa. This figure shows the presence and absence of Picozoa sequences in different environments 
within the EukBank database, encompassing 12,570 georeferenced samples
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Based on these results, we focused exclusively on pico-
size marine samples (2394 samples, after excluding time 
series and replicates). PERMANOVA analysis indicated 
substantial assemblage differences between sunlit and 
dark ocean zones (sum of SS = 43.44; p.adjusted = 0.001). 
Notably, the sunlit ocean exhibited significantly higher 
abundance, richness, and diversity (t-Student, p < 0.001; 
Supplementary Fig. S4). Also, it was observed that 54 
pOTUs were exclusive to the dark ocean (Supplementary 
Table S2). However, these pOTUs accounted for no more 
than 0.03% of the total reads, and showed a low occur-
rence across the samples. Notably, only 2 pOTUs exhib-
ited an occurrence exceeding 5%: pOTU65 at 6.7%, and 
pOTU57 at 8.8% (Supplementary Table S2).

Phylogenetic tree reconstruction using almost com-
plete 18S rRNA gene reference sequences showed that 
the diversity of Picozoa is composed of a main lineage 
(PIC-1) that could be subdivided into three subclades and 
four additional basal groups (Fig. 3A and Supplementary 
Fig. S5). Several of the basal branches in previous trees 
were chimeras. Interestingly, all the branches of the refer-
ence tree get populated by the pOTUs from the EukBank 
database (Fig. 3B and Supplementary Fig. S5). The clades 
PIC-2 and PIC-1A exhibited the highest number of taxa 
(57 pOTUs and 34 pOTUs, respectively), with PIC-1A 
being the most abundant clade. PIC-1B (18 pOTUs) 
and PIC-5 (11 pOTUs) were predominantly absent in 
polar regions, whereas PIC-3 (26 pOTUs) and PIC-4 
(6 pOTUs) showed greater abundance in the Southern 
Ocean (Fig.  3B). PIC-1C and PIC-1A tend to display 
a cosmopolitan distribution (Fig.  3B). The 54 pOTUs 
exclusive to the dark ocean were dispersed across differ-
ent clades (Supplementary Table S2).

Picozoa biogeography
Community structure in the sunlit ocean (118 pOTUs 
in 1669 samples) showed a clear latitudinal pattern, with 
polar communities (60–90° N and 60–90° S) tending to 
cluster separately from non-polar communities (Fig. 4A). 
PERMANOVA analysis indicated substantial assemblage 
structure between latitudes ranks (p.adjusted < 0.05; 
Supplementary Table  S3). The maximum abundance of 
pOTUs was detected in polar regions, with slightly lower 
richness in tropical and subtropical regions. In contrast, 
the diversity did not show a clear latitudinal pattern 
(Fig. 4B).

Based on the observed abundance and occupancy pat-
tern in the sunlit ocean, the pOTUs were classified into 
four categories: Low-abundant (LA), Widespread (W), 
Polar (P), and Non-polar (NP) (Supplementary Table S2). 
The LA category comprised pOTUs with a total abun-
dance of less than 150 reads and occurrence in fewer 
than 50 samples. The majority of pOTUs (65 pOTUs) 

belonged to this category, but these contributed very lit-
tle to total read abundance, less than 1%. The other three 
categories included fewer but more abundant pOTU (53 
OTUs, total abundance > 150 reads, occurrence > 50 sam-
ples) and contributed similarly to the total read abun-
dance (Supplementary Table  S2). This classification was 
validated by calculating the statistically significant asso-
ciation of each pOTU to the oceans (IndVal.g; p < 0.05; 
Supplementary Table  S2). The W category was repre-
sented by 8 pOTUs that were significantly associated 
with both polar and non-polar oceans (Fig. 5 and Supple-
mentary Fig. S6). The P category consisted of 16 pOTUs 
that displayed significant association with the Arctic and/
or the Southern Ocean and non-significant association 
with non-polar oceans (Fig.  5 and Supplementary Fig. 
S6). Lastly, the NP category showed a significant associa-
tion only with non-polar oceans representing the largest 
group with the highest number of taxa (29 pOTUs).

Picozoa distributions predicted via SDMs provided 
further support for the classification of the abundant 
pOTUs into their respective category by revealing their 
distinct latitudinal distributions. The Widespread pOTUs 
displayed relatively high HSI index values across latitude 
ranges without a clear latitudinal pattern (Fig. 5 and Sup-
plementary Fig. S6). Among P pOTUs, 7 had the high-
est HSI values in both polar regions, whereas 5 pOTUs 
tended to be highest in the Antarctic and for 4 pOTUs in 
the Arctic (Fig. 5 and Supplementary Fig. S6). NP pOTUs 
also showed different distribution patterns. Some of 
them exhibited high HSI values across the entire latitude 
range within non-polar limits, while others displayed a 
bimodal pattern, with the highest HSI values in the trop-
ics decreasing in low latitudes near the equator (Fig.  5 
and Supplementary Fig. S6).

Ecological niche of Picozoa taxa
We were further interested in exploring the realized 
environmental niche of each abundant pOTU. The 
CANOMI analysis revealed that pOTUs showing simi-
lar latitudinal patterns occupied similar positions in the 
ecological space (Fig. 6A). The analysis returned groups 
mainly partitioned by contrasting values of potential 
temperature, nitrates, phosphates, and oxygen con-
centrations (Fig. 6A). Salinity and conductivity showed 
a somewhat weaker contribution. Thus, the first 
CANOMI axis (eigenvalue = 1.55) explained about 58% 
of the total variance in the data, and it showed a strong 
positive correlation with temperature and a negative 
correlation with oxygen and phosphate concentrations. 
The CANOMI2 axis (eigenvalue = 0.83) explained about 
31% of the total variance and was positively correlated 
with salinity and nitrates. The niches of Non-polar 
pOTUs were mostly associated with positive values of 
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CANOMI1, corresponding to warmer waters with a 
lower concentration of nutrients (i.e., nitrates, phos-
phates). In contrast, Polar pOTUs showed a negative 
correlation with CANOMI1 and a broader distribution 
across CANOMI2 axis. Niches of all Polar pOTUs were 
associated with lower temperatures but segregated dif-
ferently along the gradient of nitrate concentrations 

and salinity. Widespread pOTUs showed no clear seg-
regation in the ecological space, although they seemed 
distributed mostly along gradients of oxygen and phos-
phate concentrations (Fig.  6A). Three Widespread 
pOTUs had niches closer to Non-polar taxa, whereas 
the remaining ones were associated with more temper-
ate waters.

Fig. 3 Maximum likelihood tree of Picozoa. A 18S rRNA reference tree constructed using 50 almost complete Picozoa sequences retrieved 
from the PR2 database (release v. 5.0.1). The tree was constructed in RAxML v.8.2.12 [53] with the GTR CAT I model considering 1000 replicate trees 
for topology and 1000 trees for bootstrapping. Clades of Picozoa were based on this tree. B Phylogenetic representation of Picozoa and abundance 
distribution of clades across different oceans (AO Arctic Ocean, IO Indian Ocean, MS Mediterranean Sea, NAO North Atlantic Ocean, NPO North 
Pacific Ocean, SAO South Atlantic Ocean, SO Southern Ocean, SPO South Pacific Ocean) based on pOTU assignments (indicated in each clade)
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In the ecological space, we estimated the ecological 
niche breadth for each pOTU (see Fig. 6B for examples of 
pOTUs in the three categories). Overall, clear differences 
were observed among the three latitudinal groups, with 
members within each group displaying more ecologi-
cal similarities than those from other latitudinal groups 
(Supplementary Fig.  7). As anticipated, Widespread 
pOTUs exhibited a broader estimated niche size com-
pared to Polar and Non-polar pOTUs. However, a nota-
ble variability in the estimated niche breadth was also 
observed among pOTUs with similar latitudinal patterns, 
particularly for Polar and Widespread groups (Supple-
mentary Fig. 7).

Using the estimated density data, we calculated niche 
overlap (Schoener’s  D  index) among pOTUs (Fig.  6C). 
The highest niche overlap was observed among Non-
polar pOTUs. However, when comparing niche overlap 
values among Polar species, we found contrasting results. 
Higher overlap was observed for pOTUs distributed 

exclusively in the Arctic, Antarctic, or both polar regions. 
The distribution of Widespread pOTUs in the environ-
ment displayed diverse niche overlap patterns. Notably, 
pOTU004, pOTU005, and pOTU059 demonstrated a 
higher degree of overlap with Non-polar pOTUs, while 
pOTU036 exhibited overlap with Polar pOTUs. In con-
trast, the remaining pOTUs showed comparable levels of 
overlap with all pOTUs.

Phylogenetic community structure and phylogenetic niche 
conservatism
We evaluated if pOTUs sharing the same ecological niche 
were also evolutionarily close. First, we used the MNTD 
index to assess the relatedness of pOTUs within com-
munities. Interestingly, the analysis revealed that com-
munities in high-latitude regions exhibited significantly 
higher MNTD values compared to those in medium and 
low latitudes (Kruskal–Wallis test, p < 0.05, Supplemen-
tary Table  S4 and Supplementary Fig. S8). This finding 

Fig. 4 Picozoa community structure in the sunlit global ocean. A Sample ordination in a non-metric multidimensional scaling (NMDS) plot 
according to the similarity in Picozoa community structure (based on pOTUs relative abundance). Different oceans are indicated with color 
and latitudinal rank with symbols (AO Arctic Ocean, IO Indian Ocean, MS Mediterranean Sea, NAO North Atlantic Ocean, NPO North Pacific Ocean, 
SAO South Atlantic Ocean, SO Southern Ocean, SPO South Pacific Ocean). B Latitudinal variation of the Abundance, Richness, and Shannon–Weaver 
diversity index H′ of local Picozoa communities
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suggests that pOTUs in polar communities are more dis-
tantly related than those in lower latitudes, indicating a 
potential link between evolutionary relatedness and eco-
logical niche differentiation across latitudinal gradients.

Next, we examined phylogenetic niche conserva-
tism. Analyzing the 18S rRNA tree, we observed a lack 
of clear correspondence between latitudinal patterns 

and phylogenetic relationships at the taxa level (Fig.  7). 
Additionally, pOTUs exhibiting high niche overlap were 
not segregated into a particular clade (Fig.  7). Notably, 
the correlation between phylogenetic distance among 
pOTUs and their niche overlap did not reveal any sig-
nificant pattern (Supplementary Fig. S9a). To further 
investigate this relationship, we ran a Mantel correlogram 

Fig. 5 Latitudinal Distribution of Abundant pOTUs. This figure shows the habitat suitability index (HSI) of 53 abundant pOTUs for the global sunlit 
ocean, organized by their associated category based on the observed abundance and occupancy patterns (refer to Supplementary Fig. S6). Highest 
HSI index values indicate a higher probability of finding a pOTU in a given environment. Widespread pOTUs are indicated in green, Polar in blue, 
and Non-polar in red

Fig. 6 Ecological Niche and Niche Overlap of Abundant pOTUs. A Mean niche position of Polar (blue), Non-polar (red), and Widespread (green) 
pOTUs in the ecological space derived from the analyzed samples; grey dots represent the position of each sampling point in the ecological space. 
Arrowed lines depict canonical weightings of significant environmental factors contributing to the observed patterns. B Examples of estimated 
niche breadth using kernel density (colored lines represent 95% of probability distribution) in the environmental space for Widespread (green), Polar 
(blue), and Non-polar (red) pOTUs (refer to Supplementary Fig. S7); grey dots represent the position of each sampling point in the ecological space. 
C Schoener’s D index values representing niche overlap among pairs of abundant pOTUs. Highest Schoener’s D values indicate a higher niche 
overlap. Widespread pOTUs are indicated in green, Polar in blue, and Non-polar in red. Darker circles indicate higher overlap

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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analysis between pOTU environmental traits and phylo-
genetic distances which showed no significant correlation 
at any phylogenetic distance (Supplementary Fig. S9b).

Discussion
Our results provide new insights into the diversity, 
distribution, ecological niches, and phylogenetic rela-
tionships of Picozoa, one of the most abundant micro-
eukaryotic group in the global ocean. The phylum was 
represented by 179 Picozoa’s OTU, predominantly 

inhabiting marine environments. Phylogenetic analy-
sis revealed that these pOTUs belonged to five distinct 
Picozoa clades. The assemblage structure showed a dis-
tinct latitudinal pattern, with polar assemblages show-
ing a tendency to cluster separately from non-polar 
ones. Surprisingly, pOTUs occupying similar ecologi-
cal niches were not closely related, suggesting a phy-
logenetic overdispersion within Picozoa. This could 
be attributed to competitive exclusion and the strong 
influence of the seasonal amplitude of variations in 

Fig. 7 Phylogeny, Niche Similarity and Phylogenetic Overdispersion of Picozoa. 18S rRNA maximum likelihood circle tree (inverted) delineating 
Picozoa phylogenetic clades (refer to Fig. 3). The tree was constructed using reference sequences (highlighted in bold) and pOTUs considering 1000 
replicates (refer to Fig. 3 and Supplementary Fig. S5). The colored circles inside indicate the category associated with each pOTU based on their 
abundance and occupancy pattern in the sunlit ocean (refer to Fig. 5 and Supplementary Fig. S6). Abundant pOTU are connected across the central 
circle by their niche overlap values, showing non-phylogenetic niche conservatism (only Schoener’s D values higher than 0.6 were considered, refer 
to Fig. 6). The colors of connecting lines indicate the niche overlap between pOTUs within the same clades (by corresponding color clades: strong 
pink for PIC-1A, soft green for PIC-1C, violet for PIC-2, greenish-brown for PIC-3, cyan for PIC-5) and from different clades (dark green)
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environmental factors, such as temperature, shaping 
physiological and ecological traits.

What is the global distribution and diversity of Picozoa?
The presence of Picozoa has consistently accrued in 
molecular surveys since its initial discovery [7, 15, 19, 
20, 25]. The EukBank database, targeting Eukaryotic 
communities across diverse types of environments, ena-
bles us to define Picozoa as a highly abundant, strictly 
marine group characterized by worldwide distribution 
in the ocean. Our findings align with previous surveys 
(e.g., in the Malaspina survey [21]) that have consistently 
observed Picozoa as one of the most abundant eukaryotic 
phyla despite its relatively low taxonomic diversity. The 
phylogenetic analysis of 18S rRNA genes from Picozoa 
sequences confirmed the existence of five distinct robust 
clades (PIC1-PIC5). This topology shows substantial con-
gruence with previously published 18S rRNA gene trees, 
with PIC-1 corresponding roughly to BP1 plus BP3 (this 
being PIC-1C), PIC-2 to BP2 plus DB1, and PIC-3 to DB2 
[14, 15]. Many of the deep branches shown in Schön et al. 
[13] were chimeras, except the two basal clades PIC-4 
and PIC-5. Importantly, all of the pOTUs were clearly 
positioned within the established PIC clades, supporting 
the validity and representativeness of our Picozoa clades 
classification.

We observed a clear decline in diversity and abun-
dance with depth, as reflected by distinct Shannon values 
between the surface and bathypelagic zones. This trend 
aligns with earlier observations in Picozoa and other het-
erotrophic lineages (e.g., Obiol et al. [21]). When exam-
ining assemblage compositions across global oceans, a 
clear latitudinal pattern emerges consistent with previous 
research highlighting variations in taxonomic composi-
tion within bacterial, archaeal, and protist communities 
in the Southern Ocean, Arctic Ocean, and non-polar 
oceans [77–83].

Recent studies have significantly advanced our under-
standing of the diversity and biogeography of specific 
protist groups, such as diatoms, green algae, and cili-
ates [84–87]. In particular, a recent study targeting the 
HF assemblage revealed clear biogeographic patterns in 
surface samples, with temperature and ocean basin iden-
tified as the primary factors influencing heterotrophic 
flagellates community variation [21]. Notably, the authors 
described Picozoa as one of the dominant groups in sur-
face marine systems, with different taxa exhibiting varied 
distribution patterns, some displaying relatively constant 
abundances across samples, while others showing pref-
erences for warmer or colder waters [21]. Here, expand-
ing the geographic coverage of sampling, we observed 
similar distribution patterns. The classification of Picozoa 
into Widespread, Polar, and Non-polar groups unveiled 

distinct distribution strategies for different taxa within 
the phylum. Widespread taxa were found across various 
habitats, meaning they may be well-adapted to a wide 
range of environmental conditions, being not dependent 
on specific resources or interactions with other species. 
In contrast, Polar taxa demonstrated an affinity for cold 
polar environments, and Non-polar taxa were distrib-
uted only in warm and temperate waters. One surprising 
result was the distinct distribution patterns among Polar 
pOTUs, with some displaying high abundance in both 
polar regions, while others were exclusive to either the 
Arctic or Antarctic. These findings may provide evidence 
of endemic Picozoa taxa, indicating different evolution-
ary trajectories to thrive in polar conditions. However, 
dispersal limitation may substantiate the observed dis-
tribution patterns by the inability of pOTUs to colonize 
both poles due to physical or ecological barriers.

Variable levels of endemicity have been documented in 
microorganisms from the Antarctic and Arctic regions, 
including cyanobacteria, diatoms, and other bacterial and 
fungal species [77–83].  The unique and harsh environ-
ment of the polar regions, characterized by low tempera-
tures, the lack of organic nutrients, liquid water, and high 
solar radiation, has led to the development of distinct 
microbial communities, with biodiversity being most 
prominent in the coastal regions, especially the Antarctic 
Peninsula [88]. However, as mentioned above, the effect 
of dispersal limitation may not be dismissed as an impor-
tant factor influencing the observed distribution pat-
terns, particularly in polar regions. Dispersal limitation 
refers to the inability of organisms to colonize new areas 
due to physical or ecological barriers [27]. The vast dis-
tance between the North and South polar regions results 
in geographical isolation, which limits the exchange of 
Picozoa between both polar regions. Besides, the ocean 
currents and environmental conditions as well as other 
biogeographic barriers such as continental landmasses 
and bathymetric features can also influence the dispersal 
of marine microbes between the North and South polar 
regions [89–91]. At this point, it is fair to consider that 
the observed distribution patterns could potentially be 
influenced also by technical limitations such as sequenc-
ing depth and the choice of clustering algorithms for 
defining pOTUs that might lead to an underrepresenta-
tion of certain taxa. Additionally, research campaigns 
targeting polar ecosystems frequently occur during the 
brief polar summers, potentially omitting crucial insights 
into the temporal variation of polar microbial com-
munities. Previous studies have revealed that seasonal-
ity significantly influences Arctic marine life, including 
photoautotrophic organisms and bacterial communities. 
Factors like light availability, temperatures, water col-
umn properties, and sea ice coverage play substantial 
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roles in molding the structure of microbial populations 
[22, 23, 92, 93]. Ignoring this intricate interplay could 
result in underestimating certain crucial components. 
For instance, specific OTUs might go undetected if their 
presence coincides solely with seasons outside the time-
frame of current surveys.

Does geographical distribution match ecological niches?
An intriguing question that follows the previous discus-
sion is as follows: does the geographical distribution of 
pOTUs match their ecological niches? Abundant pOTUs 
were influenced by factors such as temperature, salinity, 
conductivity, oxygen, and nutrients, which determine 
their positions in the ecological space and, in general, 
aligned with latitudinal patterns. As anticipated, Wide-
spread Picozoa demonstrates a broad ecological niche, 
indicating their ability to thrive across a diverse range 
of environmental conditions, similar to other protist 
groups. In contrast, Non-polar taxa tend to aggregate 
within a narrow environmental space, resulting in a 
comparatively high niche overlap. Polar OTUs segregate 
within the ecological space based on low-temperature 
conditions, with niche overlap varying between taxa, 
potentially influenced by specific adaptations to either 
the Arctic or Southern Oceans. Despite comparable cli-
mate drivers shaping the microbiome, the two polar 
oceans exhibit dissimilarities in salinity, water tempera-
ture, nutrient concentration, oceanic currents, and the 
influence of adjacent oceans [94–97]. These distinc-
tive features in polar ecosystems likely propel the diver-
sification of pOTUs functional traits, giving rise to a 
spectrum of ecological strategies finely tuned to exploit 
specific niches. Some studies have demonstrated that 
marine eukaryotic groups can exhibit differential dis-
tributions in the polar regions, with some species being 
more abundant in the Arctic and others in the Southern 
Ocean [77, 94, 95]. However, the differential taxa distri-
butions within the same protist phylum, as presented in 
this work, are not usually reported in the literature. By 
employing an environmentally driven perspective, this 
study offers novel insights into divergent patterns of pro-
tist microbial diversity spanning from north to south.

It is important to acknowledge the limitations of the 
ecological niche analysis employed in this study. Our 
approach attempted to quantify the realized environmen-
tal niche of Picozoa by considering only abiotic environ-
mental variables, such as temperature, salinity, nutrients, 
and oxygen. However, the niche of a species is influenced 
by a broader set of factors that determine its geographic 
distribution [98]. The realized niche encompasses three 
main classes of factors: (1) abiotic conditions, which 
impose physiological limits on a species’ ability to persist 
in an area; (2) biotic interactions, such as competition, 

predation, or mutualism, which further refine a species’ 
ability to maintain viable populations; and (3) disper-
sal and accessibility, which constrain a species’ ability to 
colonize suitable habitats. In the case of heterotrophic 
protists like Picozoa, biotic factors, particularly the avail-
ability and distribution of prey species, are likely to play 
a key role in shaping the realized niche. However, we 
were unable to include prey availability data in our niche 
models due to the lack of comprehensive information 
on the distribution and abundance of potential Pico-
zoa prey organisms. The ecology of Picozoa, and in par-
ticular, their role in the microbial loop as heterotrophic 
organisms, is still poorly understood. By focusing solely 
on abiotic environmental variables, our niche modeling 
approach may have provided an incomplete characteri-
zation of the factors driving the geographic distribution 
of different Picozoa lineages. Future analyses incorporat-
ing biotic data, such as the distribution and abundance 
of prey organisms (e.g., bacteria, and small eukaryotes) 
into the species distribution modeling framework, would 
likely yield a deeper understanding of the underlying 
mechanisms driving the observed geographic distribu-
tion of Picozoa and that of other heterotrophic protists. 
Acknowledging these limitations is crucial for properly 
interpreting the conclusions drawn from the ecological 
niche analysis presented in this study. This is an impor-
tant area for future research, as accounting for trophic 
relationships and community-level dynamics could 
improve the predictive power and ecological realism of 
distribution models of marine microbes.

What are the eco‑evolutionary processes that structure 
Picozoa communities?
The study of the relationship between the environmental 
preferences of Picozoa taxa and their phylogenetic com-
munity structure has revealed several intriguing insights 
on the eco-evolutionary processes that structure Picozoa 
communities. First, our assessment of the MNTD index 
shed light on the relatedness of pOTUs within commu-
nities. Communities in high latitudes displayed higher 
MNTD values, suggesting that pOTUs in polar commu-
nities are more distantly related compared to those in 
communities from medium and low latitudes [72]. This 
observation aligns with the results obtained from eco-
logical niche analysis, reinforcing the concept of the dis-
tinctive ecological dynamics of polar ecosystems. Such 
environments frequently foster a diverse array of life 
forms that have adapted to thrive in challenging environ-
mental conditions [96, 97]. Interestingly, the examination 
of the 18S rRNA phylogenetic tree revealed that pOTUs 
sharing a similar ecological niche were not closely 
related. The mantel test correlogram between pOTU 
environmental optima and pOTU phylogenetic distances 
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confirmed this result. Furthermore, no clear correla-
tion was observed when comparing the niche overlap 
between pOTUs with their phylogenetic distance [99]. 
Taken together, these results indicate that Picozoa com-
munities exhibit phylogenetic overdispersion, a phenom-
enon that is opposite to phylogenetic niche conservatism. 
However, it cannot be ignored that the slow evolution 
rate of the 18S rRNA gene may not be sufficient to cap-
ture rapid changes between two operational taxonomic 
units (pOTUs), particularly in the context of phyloge-
netic niche conservatism. Despite this limitation, the 18S 
rRNA gene continues to serve as a valuable instrument 
for exploring evolutionary changes and biogeographic 
patterns. Thus, while many researchers consider PNC to 
be common, a review of case studies indicates that eco-
logical and phylogenetic similarities are often not related. 
Consequently, ecologists should not assume that PNC 
exists but rather should empirically examine the extent 
to which it occurs. Considering the complexity involved, 
future efforts in studying Picozoa genomes will provide 
new insights to better understand the lack of PNC in 
Picozoa communities.

Several scenarios may explain why communities do 
not show PNC [38]. The first is competitive exclusion: if 
closely related species within a regional species pool are 
ecologically similar but there is a limit of resources, only 
distantly related species can coexist [100, 101]. The sec-
ond is ecological divergence: closely related species might 
evolve different ecological traits to minimize resource 
overlap when living together [100, 101]. This divergence 
reduces ecological similarity among closely related spe-
cies and diminishes or eliminates niche conservatism 
within a community [101]. The third is convergent adap-
tation: distantly related species might independently 
develop analogous traits or characteristics (like tempera-
ture tolerance) adapted to particular ecological features, 
despite having separate ancestral origins [101]. This 
adaptation can be repeated across many clades, resulting 
in distantly related species that are convergently adapted 
to the same ecological conditions. If only species with 
specific ecological attributes can coexist in a community, 
the community may exhibit phylogenetic overdispersion.

While the dataset used in this study does not permit a 
direct test of the mechanisms driving phylogenetic over-
dispersion, experimental evidence for heterotrophic pro-
tist species suggests that competition, particularly with 
phylogenetically related species, may lead to quicker 
exclusion, linked to phylogenetically conserved traits 
(e.g., mouth size [101]). Thus, it could be hypothesized 
that competitive exclusion plays an important role in 
driving a phylogenetic overdispersion in Picozoa assem-
blages. The observed patterns may also be linked to the 
influence of temperature, which plays a pivotal role in 

shaping physiological and ecological traits across various 
organizational levels. Temperature not only affects the 
behavior and performance of both predators and prey but 
also governs the ecological dynamics, ultimately molding 
the structure and function of ecological communities at 
diverse latitudes.

Expanding on recent studies, our work highlights the 
importance of understanding the species-level ecology 
and genomics of tiny ocean predators. The categorization 
of Picozoa into Widespread, Polar, and Non-polar groups 
unveils distinct distribution strategies for different taxa 
within the phylum, providing evidence of endemic Pico-
zoa taxa with potentially different evolutionary histories 
adapted to polar conditions. The observed phylogenetic 
overdispersion challenges the concept of phylogenetic 
niche conservatism, indicating that closely related spe-
cies do not necessarily share similar ecological niches. 
This deviation may be attributed to various factors, 
including competitive exclusion and the influence of tem-
perature in shaping physiological and ecological traits 
across organizational levels. Thus, the hypothesis that 
drove our work was half fulfilled, since PNC could not be 
proven for Picozoa. However, it is important to highlight 
that technical biases of our dataset, previously discussed, 
could lead to misinterpretations of our results. Over-
all, this work contributes to advance our understanding 
of the evolutionary dynamics and ecological strategies 
employed by protists, underscoring the importance of 
future phylogenomic studies. The study highlights the 
need for continued research to unravel the mechanisms 
driving the observed patterns in protist communities.
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1000 replicate trees for topology and 1000 trees for bootstrapping using 
reference sequences and amplicon pOTUs. Fig. S6. Latitudinal Distribution 
of Abundant pOTUs. This figure shows the abundance patterns (log-
transformed) of each abundant pOTU across latitudes, organized by their 
associated category based on abundance and occupancy patterns in the 
sunlit ocean. Widespread pOTUs are indicated in green, Polar in blue, and 
Non-polar in red. Fig. S7. Estimated niche breadth using kernel density for 
Widespread (green), Polar (blue), and Non-Polar (red) pOTUs. Fig. S8. MNTD 
values by latitudinal rank for Picozoa Communities (see Supplementary 
Table S4 for pairwise comparison statistical test). Fig. S9. (a) Relationships 
between niche overlap (Schoener’s D index) and phylogenetic distance 
(normalized to vary between 0 and 1) for abundant pOTUs, confirming the 
absence of niche conservatisms in Picozoa. Specific color dots highlight 
pairwise relationships among pOTUs within the same clade, while grey 
dots represent pairwise relationships between pOTUs from different 
clades. (b) Mantel correlograms (Pearson correlations) between pOTU 
environmental optimal distances and phylogenetic distances with 9 999 
permutations. Significant correlations (P < 0.05) were not detected over 
phylogenetic distances. For each phylogenetic distance, bin phylogenetic 
distances were normalized to vary between 0 and 1 before analysis.
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