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Abstract 

Background Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecologi-
cal roles in marine environments are poorly understood.

Results Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal 
to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein com-
position and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different 
from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these 
marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxi-
dizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis 
across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, 
viruses associated with Gemmatimonadota have the potential to “hijack” and manipulate host metabolism, includ-
ing the assembly of the lipopolysaccharide in their hosts.

Conclusions This expanded genomic diversity advances our understanding of these globally distributed bacteria 
across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities.
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Introduction
Microorganisms are crucial components of ecosys-
tems on Earth, playing important roles in global food 
webs and driving biogeochemical cycling. Cultivation-
based research advanced our understanding of funda-
mental roles of microbes in the environment. However, 
our understanding of microbial ecology has dramati-
cally changed in recent years due to the application of 
high-throughput sequencing technologies [1]. Single 
gene-based surveys and metagenomic data from environ-
mental samples have greatly expanded the tree of life and 
changed our understanding of biogeochemical cycling in 
the environment. For example, these approaches have led 
to the expansion of the tree of life as seen in candidate 
phyla radiation (CPR) and Asgard archaea [2–4].

The Gemmatimonadota phylum (formerly BD group; 
KS-B group; Gemmatimonadetes) was initially described 
using isolates [5] and recovery of 16S rRNA gene 
sequences from deep-sea sediment, soil, and bioreactor 
sludge [5–9]. Both rRNA sequences and metagenomic 
data have revealed Gemmatimonadota are ubiquitous 
residents of various environments (soils, freshwater, 
wastewater treatment plants, and oceans) with relative 
abundances at around 1% [10]. Prior work on Gemma-
timonadota mostly focused on terrestrial environments 
and suggested that Gemmatimonadota prefer dry soil 
environments, with high proportions of Gemmatimon-
adota identified in semiarid/arid soil and deserts [11–13]. 
Their abundance increased during drought conditions 
[14], suggesting an active response to the change in soil 
moisture. In coastal sediments, Gemmatimonadota 
showed strong correlations with different key genes 
involved in sulfur, nitrogen, and oxygen metabolism [15]. 
At present, Gemmatimonadota contains six cultured spe-
cies which are chemoorganoheterotrophs, two of which 
have the purple bacterial reaction centers for anoxygenic 
photosynthesis [16, 17]. Gemmatimonadota auranti-
aca is capable of reducing  N2O, a potent greenhouse gas 
[18]. Gemmatimonadota isolates are naturally resistant to 
some antibiotics, such as ampicillin, penicillin, and chlo-
ramphenicol [17, 19, 20]. Moreover, metagenomic data 
from soil samples shows that they have many biosyn-
thetic gene clusters (BGCs) [21]. Collectively, these stud-
ies suggest Gemmatimonadota likely play a significant 
role in the environment.

Despite the previous findings about the metabolic 
potential and ecology of Gemmatimonadota, their eco-
logical patterns and metabolic diversity remain unclear 
in the ocean. To address this knowledge gap, we obtained 
495 Gemmatimonadota metagenome-assembled 
genomes (MAGs) from five different marine environ-
ments. An updated phylogeny revealed four distinct 
phylogenetic groups and seven distinct clusters based on 

protein composition. These marine Gemmatimonadota 
possess genes involved in different processes of biogeo-
chemical cycling, including carbon, nitrogen, and sulfur, 
as well as biosynthetic gene clusters (BGCs) for second-
ary metabolites to regulate the microbial community. 
This sheds new light on the genomic diversity and eco-
logical roles of Gemmatimonadota in marine environ-
ments, which are distinct from terrestrial genotypes.

Results and discussion
Phylogeny of newly constructed genomes and distribution 
of Gemmatimonadota
Gemmatimonadota is monophyletic with the Fibrobac-
terota, Chlorobi, and Bacteroidota (FCB) superphylum 
[22, 23]. In this study, 495 Gemmatimonadota MAGs 
with completeness > 50%, and < 10% single gene dupli-
cations (based on CheckM [24]) were reconstructed 
from coastal sediments in the Bohai Sea, China (BS, 427 
MAGs); coastal sediments in San Francisco Bay (SFB, 26 
MAGs), USA; hydrothermal sediments in Guaymas Basin 
(GB, 31 MAGs), Gulf of California, Mexico; biomat and 
Fe oxyhydroxide precipitating from low-temperature 
hydrothermal fluid (Fe oxyhydroxide) samples of Longqi 
hydrothermal vents in the Indian Ocean (IO, 7 MAGs); 
and cold-seep sediments in the South China Sea (SCS, 4 
MAGs), China (Supplementary Table  1). These bacteria 
represent < 5% relative abundance in the metagenomic 
assembled community in deep-sea environments (GB, 
SCS, and IO) (see “Methods,” Supplementary Fig.  1). 
However, they are more abundant in coastal environ-
ments, specifically up to ~ 11% and 16% in SFB and BS, 
respectively. This may correlate with their ability to cata-
lyze denitrification, which is known to be a dominant 
process in SFB and BS sediments [25]. Interestingly, the 
relative abundance of Gemmatimonadota increased 
with depth at all three sampling stations in BS, while it 
decreased with depth in GB (Supplementary Fig. 1).

The 495 MAGs were classified as Gemmatimonadota 
in Genome Taxonomy Database (GTDB) (Release 202, 
Supplementary Table  2), and this was confirmed by a 
maximum likelihood tree based on a concatenated align-
ment of 120 bacterial marker genes defined in GTDB-Tk 
(Supplementary Fig. 2). Glassbacteria, a phylum curated 
in NCBI, was classified as a class within Gemmatimon-
adota in GTDB. All Gemmatimonadetes genomes in 
NCBI are classified as Gemmatimonadetes class within 
the Gemmatimonadota phylum in GTDB. Based on 
the phylogenetic tree, these Gemmatimonadota MAGs 
were split into four groups: Group 1, Group 2, Group 
3, and Group 4. These correspond to the JACCXV01, 
Gemmatimonadales, KS3-K002, and Longimicrobiales 
orders in GTDB. The genome sizes of the 495 MAGs 
range from 1.43 to 9.92 Mbp (average 3.68 ± 1.15 Mbp) 
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(Supplementary Table  2). The wide range of genome 
sizes is likely associated with their evolution and ecol-
ogy, rather than genome completeness. In support of 
this, different genome size ranges are associated with 
distinct habitats. For example, Group 1 has the smallest 
average genome size and was only recovered from deep 
layers (30–62 cm) in BS samples (Supplementary Fig. 1). 
Group3 has a wider range of genome sizes than Group 1 
because of their prevalent distribution in different layers 
in BS samples, some GB samples, and Great Barrier Reef 
samples. Group 2 and Group 4 are distributed in diverse 
marine and terrestrial habitats and have a wider range of 
genome sizes than the other two groups, which were only 
recovered from marine environments (Supplementary 
Fig. 1).

We selected 245 MAGs which have completeness > 80% 
and contamination < 5%, ranging from 2.24 to 6.67 Mbp 
(average 3.91 ± 0.99 Mbp) for phylogenomic analyses 
(Supplementary Table 2). To further confirm the taxon-
omy of these MAGs, we constructed two phylogenetic 
trees (Fig. 1 and Supplementary Fig. 3) of the 245 MAGs 
and 211 reference genomes. The phylogenies were con-
structed based on the concatenated protein alignment 
of 120 single-copy markers in GTDB (Fig. 1) and 37 con-
catenated ribosomal protein encoding genes identified 
using PhyloSift (Supplementary Fig.  3; see “Methods”). 
Both trees supported the classification of the four groups, 
which contained 10, 85, 100, and 50 MAGs for Group 1, 
Group  2, Group  3, and Group  4, respectively. However, 
the 37 marker gene trees showed that Group 1 was phy-
logenetically closer to Glassbacteria than the rest of the 
three groups (Supplementary Fig. 3).

Average amino acid identity (AAI) analysis revealed 
that Gemmatimonadota MAGs are distinct from other 
phylogenetically related phyla (at most 45.9% identity 
to Fibrobacterota and 49.8% identity to Glassbacteria) 
(Supplementary Table 3 and Supplementary Fig. 4). AAI 
supported the classification of the four groups, which 
share a maximum 59.7% AAI between each other (Sup-
plementary Table  4). The 16S rRNA gene phylogeny we 
constructed here is generally consistent with those pre-
viously reported [10] and the 37-marker ribosomal pro-
tein and 120-marker phylogenies from this study (Fig. 1). 
16S rRNA genes in Group1 are classified as the class 
AKAU4049 (JACCXV01 order in GTDB) (Supplemen-
tary Fig.  5). Group  2 and Group  3 16S rRNA genes are 
classified as classes Gemmatimonadaceae and PAUC43f 
marine benthic group, which correspond to GTDB 
orders Gemmatimonadales and KS3-K002, respectively. 
Group 4 16S rRNA genes belong to the BD2-11 terres-
trial group (Supplementary Fig.  5). However, based on 
our 37-marker ribosomal protein and 120-marker phy-
logenies, we suggest that Longimicrobiaceae, S0134 

terrestrial group, and BD2-11 are within the Longimicro-
biales order (Group 4, Fig. 1).

The recovery of Gemmatimonadota MAGs in this 
study further confirms their global distribution [10, 26–
33] (Fig. 2). As of Nov. 11, 2021, 324 Gemmatimonadota 
genomes were available in NCBI. One-hundred fifty-one 
of these have been recovered from marine environments, 
including the Pacific Ocean, Atlantic Ocean, and Indian 
Ocean; however, most Gemmatimonadota to date have 
been recovered from terrestrial environments (173 of 324 
genomes). Group 1 and Group 3 are primarily composed 
of MAGs recovered in this study.

Protein‑level comparison across the Gemmatimonadota
In order to resolve how these bacteria compare at the 
predicted protein level, we clustered all of the genomes 
based on their Pfam profiles (see “Methods”). This 
approach has proven to be an effective way to iden-
tify guilds of bacteria that share common ecological 
capabilities [34]. This revealed these bacteria fall into 
seven distinct protein clusters. Group  1 forms a unique 
Pfam cluster, while Group 2 is divided into three clus-
ters (Fig.  1). Half of Group 2 MAGs were deposited in 
the database, which were mainly recovered from ter-
restrial environments. However, Group  2 MAGs recov-
ered from this study were phylogenetically distinct with 
those recovered from terrestrial environments (Fig.  1). 
Moreover, the distribution of metabolic proteins based 
on the presence/absence of protein families in these 
newly recovered Group 2 MAGs was different from those 
curated in the database (Fig. 1). The interlaced Pfam clus-
ters in Group4 (Fig. 1) together with their diverse habi-
tats suggest more frequent horizontal gene transfer in 
Group 4 than the other three groups. The worldwide dis-
tribution of this phylum reveals they are overlooked and 
of ecological significance.

Metabolic flexibility of Gemmatimonadota enables their 
wide distribution in marine environments
To understand the metabolic potential of the 245 MAGs 
(completeness > 80% and contamination < 5%, Supple-
mentary Table 2), we compared their predicted proteins 
against six databases (see “Methods”). We determined 
that metabolic pathways for polysaccharide and detrital 
protein degradation, as well as sulfur, nitrogen, and iron 
utilization, are common in these bacteria.

Large molecule organic matter degradation
Gemmatimonadota MAGs encode over 21,000 poten-
tial carbohydrate-active enzymes (CAZymes) classified 
as glycoside hydrolases (GHs), carbohydrate esterases 
(CEs), polysaccharide lyases (PLs), glycoside transferases 
(GTs), and carbohydrate-binding modules (CBMs) 
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(Supplementary Tables  5 and 6 and Supplementary 
Fig. 6). Among ~ 11,100 glycoside hydrolases (GHs), car-
bohydrate esterases (CEs), and polysaccharide lyases 
(PL), 115 are predicted to be extracellular, contributing 

to the degradation of polysaccharides outside the cell. 
For example, extracellular CAZyme genes belonging to 
families/subfamilies CE1, GH16_3, and GH18, contrib-
uting to the degradation of xylan, chitin, and laminarin, 

Fig. 1 Phylogeny of Gemmatimonadota and an overview of their metabolic potential. A maximum likelihood phylogenetic tree (IQ-TREE, based 
on concatenation of 120 single-copy proteins in GTDB) of 456 genomes including the 245 metagenome-assembled genomes (MAGs) described 
in this study. The four groups are marked in different background colors with black dots indicating the newly recovered MAGs, the inner ring 
indicating the environmental source of each genome, and the outer ring indicating seven protein clusters derived by using metagenomic 
entropy-based scores (MEBS) protein (Pfam) content of each genome. The metabolic potential of newly reconstructed genomes is shown 
in the heatmap for nitrogen (N), iron (Fe), oxygen (O), carbon (C), and sulfur (S), determined by using MEBS. The outer bars represent the number 
of biosynthetic gene clusters (BGCs) per genome. Bootstraps are shown in grey circles (≥ 75)
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were commonly identified in Groups 2, 3, and 4. Several 
MAGs in Group 2 and Group 4 encode multiple types of 
extracellular CAZymes (CE1 and GH16_3 in Group  2; 
GH13_32 and GH16_3 in Group  4) for the degradation 
of different substrates, e.g., pectin and laminarin (Supple-
mentary Fig. 7). One MAG in Group 3 (M8-44_Bin_110) 
encoded five types of extracellular CAZyme genes 
(GH16_3, GH30_1, GH136, PL31, and GH0), enabling 
them to degrade both complex and relatively simple car-
bohydrates, e.g., degrading laminarin by laminarinase 
(GH16) or releasing lacto-N-biose from oligosaccharide 
by lacto-N-biosidase (GH136). The released monosac-
charides could benefit the community as a whole by sup-
plying organic matter to other microorganisms.

Similar to CAZyme genes, Group  1 encodes the least 
diversity of peptidases. Of over 41,000 identified pepti-
dase sequences, 1150 are predicted to be extracellular, 
suggesting that detrital proteins are degraded outside 
the cell and later taken up for consumption. Most of the 
MAGs recovered here have multiple extracellular pepti-
dase genes (Supplementary Fig.  8). For example, they 
have genes predicted to produce extracellular peptidases 
belonging to family M28 (aminopeptidase and carboxy-
peptidase) [35] and S8 (serine endopeptidase subtilisin) 
[36]. These are nonspecific peptidases that release amino 
acids for assimilation or dissimilation (Supplementary 
Fig.  8). Family M4, which are primarily secreted pepti-
dases [36], were identified across three groups (Groups 2, 

Fig. 2 The global and environmental distribution of Gemmatimonadota bacteria. a The global distribution of 819 Gemmatimonadota MAGs 
(324 publicly available genomes from NCBI and 495 MAGs recovered from this study). Colors represent habitats, shapes represent general types 
for habitats (circle: marine, triangle: terrestrial, and star: study sites in this study), and shape size represents number of genomes obtained from each 
site. b Distribution of Gemmatimonadota in different habitats with numbers in stars representing the number of genomes recovered from this 
study and numbers in circles representing the number of Gemmatimonadota genomes obtained from publicly available databases
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3, and 4) for degrading extracellular proteins and pepti-
dases. The wide distribution of extracellular peptidase 
genes in marine Gemmatimonadota suggests these bac-
teria are important players in the degradation of detrital 
proteins. Additionally, these marine Gemmatimonadota 
also encode key genes for the transport, activation, and 
cleavage of fatty acids through beta oxidation [37] (Fig. 3). 
The capability of degrading different types of large mol-
ecules, especially those extracellular degradations which 
release more readily degradable substrates, suggests that 
Gemmatimonadota may provide simple energy sources 
to support the entire microbial community.

Nitrogen, sulfur, and hydrogen cycling
Metabolic inference using Multigenomic Entropy-Based 
Scores (MEBS) [38] (see “Methods”) indicates Gemmati-
monadota have pathways for nitrogen and sulfur utiliza-
tion (Fig. 1, Supplementary Table 9). Two-hundred three 
of 245 MAGs, belonging to all four groups, are capable 
of incomplete denitrification and encode genes for the 
reduction of nitrate, nitrite, and nitrous oxide  (N2O), but 
not nitric oxide, as well as the oxidation of hydroxylamine 
 (NH2OH) to nitric oxide (NO). Most MAGs (201/245) 
encode membrane-bound nitrate reductase (NarGHI, 
present in all four groups but only in over 50% MAGs 
in Group1) (Supplementary Fig.  9) and/or periplasmic 

nitrate reductase (NapAB, present in Group 2, Group 3, 
and Group 4) (Supplementary Fig. 10) suggesting Gem-
matimonadota play a key role in nitrate reduction, the 
first step of denitrification. MAGs that encode NarG were 
commonly recovered from deep BS sediments (below 
30  cm) and were rare at other depths. Some MAGs 
(40/201, belonging to Group 2, Group 3, and Group 4) 
encode both NarG and NapA, and these are predomi-
nantly from the BS (28–30 cm and 42–44 cm at M3 and 
42–44 cm and 56–62 cm at M8). A phylogeny of NarG in 
Gemmatimonadota MAGs indicates that NarG is mono-
phyletic and thus may have been present in the last com-
mon ancestor of Gemmatimonadota (Supplementary 
Fig.  9). In contrast to the widespread presence of genes 
for nitrate reduction in Gemmatimonadota, dissimila-
tory nitrite reduction via NirK/S (62/245 MAGs) for NO 
production and NrfAH (8/245 MAGs) for ammonia pro-
duction is less common in these bacteria (Supplementary 
Table 9). The 64 NirK/S genes occurred in all four groups 
from all the sampling sites, while NrfAH was mainly dis-
tributed in Group 4 recovered from BS and SFB (Sup-
plementary Table  9). For denitrification in BS and SFB, 
Gemmatimonadota likely relies on metabolic hand-
offs to complete denitrification, due to the lack of nitric 
oxide reductase, reducing nitric oxide to nitrous oxide. 
All Gemmatimonadota groups (125/245 MAGs) encode 

Fig. 3 Overview of biogeochemical metabolic pathways in the four phylogenomic groups of Gemmatimonadota. Within each color wheel, 
colored segments, gray, and blank segments represent gene presence in over 50%, less than 50%, and gene absence, respectively, within a group. 
Red-dashed arrows indicate only partial of the known subunits are present in the MAGs. Gene annotations were based on KEGG assignments 
as summarized in Supplementary Table 9. The number and letter inside each circle represent the pathways in Supplementary Table 9
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genes for periplasmic nitrous oxide reductase (NosZ), 
which reduces  N2O to  N2 (Supplementary Table  9). 
Phylogenetic analyses show that Gemmatimonadota 
NosZ are atypical type NosZ sequences (Supplementary 
Fig. 11), which are associated with microorganisms that 
are not complete denitrifiers [39, 40].  N2O is a potent 
greenhouse gas and degrades ozone in the atmosphere 
[41]. The wide distribution of Gemmatimonadota sug-
gests that they may have key roles in reducing  N2O fluxes 
in marine environments [42]. Moreover, Gemmatimon-
adota have different transporters for small molecules, 
including nitrate, nitrite, and ammonium (Fig. 3). Gem-
matimonadota has also been reported to hydrolyze urea 
as an energy source in wastewater treatment sludge [43, 
44]. However, we only identified urease (UreABC) from 
a single MAG in Group 4 (M3-22_Bin_219), suggesting 
this is not important in marine environments. Collec-
tively, our findings suggest Gemmatimonadota may play 
an important role in nitrogen cycling in marine sedi-
ments, especially in the coastal zones.

Unlike denitrification genes that are prevalent in all 
Gemmatimonadota groups, sulfur cycling genes are lim-
ited to specific Gemmatimonadota groups (Fig.  1). A 
clade within Group 3 (21/100 MAGs), which has a unique 
protein composition (cluster1 in Fig. 1), has gene clusters 
for sulfate reduction (including DsrAB, SAT, AprAB, and 
QmoABC). Some Group 2 MAGs (16/85) also appear to 
be capable of reducing sulfate. These DsrAB sequences 
were mostly associated with MAGs recovered from deep 
sediments (below 30  cm) in BS, where high concen-
trations of sulfate were detected (> 22  mmol/L in pore 
water) [15]. DsrAB genes (Supplementary Figs.  12 and 
13) do not appear to have been horizontally transferred 
from different phyla [45], suggesting sulfite reduction 
may be an ancient function within Gemmatimonadota.

Three deep branching groups, consisting of five 
MAGs from SFB, four from BS, and one from BS in 
Group 2 (10/85 MAGs), contain genes encoding sulf-
hydrogenase I complex (HydADGB) [46] for coupling 
sulfur reduction with  H2 oxidation (Supplementary 
Table  9). However, the majority of Gemmatimonadota 
are capable of oxidizing different sulfur substrates, 
e.g., sulfide and sulfite. Specifically, 167/235 MAGs 
(excluding 10 Group 1 MAGs) have sulfide-quinone 
oxidoreductase (SQR) for sulfide oxidation, and 14 of 
those 167 MAGs encode both DsrAB and SQR (Sup-
plementary Table  9). Phylogenetic analysis indicates 
that these SQRs belong to the membrane-bound type 
I, type II, and type III SQRs (Supplementary Fig.  14). 
Interestingly, 194/245 MAGs have homologs to eukary-
otic thiosulfate/3-mercaptopyruvate sulfurtransferase 
(TST) [47], which could transfer thiosulfate and cya-
nide to sulfite and thiocyanate. Group 1 (8/10 MAGs) 

has homologs to eukaryotic sulfite oxidase (SUOX) [48, 
49], a type of molybdopterin-dependent oxidoreduc-
tase, for sulfite oxidation with oxygen as the electron 
acceptor (Supplementary Table  9). However, Group 
1 was recovered from the deep layer of BS sediments 
(below 30 cm), suggesting that this sulfite oxidase may 
also use cytochrome c as the final electron acceptor 
[49]. Interestingly, all Group 1 MAGs (10/10), as well 
as 2/85 Group 2 and 5/100 Group 3 MAGs recov-
ered from deep layers of BS sediments (below 30 cm), 
encode methanethiol oxidase to aerobically oxidize 
methanethiol. Methanethiol is a key intermediate for 
global organosulfur compounds, e.g., dimethylsulfo-
niopropionate (DMSP) and dimethyl sulfide (DMS) 
cycling [50, 51]. Moreover, 34 (25/85 Group 1, 8/100 
Group 2, and 1/50 Group 4) MAGs are predicted to 
produce DMS via methanethiol S-methyltransferase 
(MddA) from methylate L-methionine or methanethiol 
(MeSH) under oxic conditions [52]. In addition, 117 
(62/85 Group 2, 42/100 Group 3, and 13/50 Group 4) 
MAGs encode genes for the large subunit of thiosulfate 
dehydrogenase (DoxD), which may convert thiosulfate 
to tetrathionate. Six (1/85 Group 2, 1/100 Group 3, and 
4/40 Group 4) MAGs also have genes for the catalytic 
subunit of tetrathionate reductase (TtrA), which may 
reduce tetrathionate to thiosulfate. Thus, Gemmati-
monadota likely play important roles in a variety of 
intermediate steps in marine sulfur cycling (Fig. 3).

Hydrogen metabolism is crucial in energy cycling in 
marine environments [53]. Gemmatimonadota, except 
for Group 1, have different types of [NiFe] hydrogenases 
(Supplementary Fig.  15) and few [FeFe] hydrogenases 
(mainly in Group 2) (Supplementary Fig. 16), suggesting 
hydrogen is coupled to metabolic pathways in these bac-
teria [54, 55]. Hya hydrogenase (HyaABCD, [NiFe] type) 
was widely distributed in Group 2, Group 3, and Group 
4 (Supplementary Table  9). Hya hydrogenase is resist-
ant to oxidative stress (e.g., superoxide and hydrogen 
peroxide), which may enable Gemmatimonadota to oxi-
dize  H2 in the presence of oxygen [56, 57]. A subgroup 
of Group 3 and Group 2 also have the F420-nonreducing 
hydrogenase (MvhADG), belonging to Group 3c [NiFe] 
hydrogenase (Supplementary Fig.  17). This F420-nonre-
ducing hydrogenase links with heterodisulfide reductase 
(HdrABC), by providing reducing equivalents without 
reacting with F420, i.e., transporting electrons using  H2 
as an electron donor [58]. Additionally, 10/100 Group 
3 MAGs have the HoxFHUY operon (Supplementary 
Fig.  17), a bidirectional [NiFe] hydrogenase mainly 
described in Cyanobacteria. The Hox operon serves as a 
regulator for maintaining a proper redox state in the cell 
[59], which could be important for the metabolic versatil-
ity of Gemmatimonadota.
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Iron, mercury, and arsenic utilization
Microbially mediated iron cycling has been linked with 
many crucial marine processes, such as carbon stor-
age, greenhouse gas emission, and primary produc-
tion in the ocean [60]. We identified a variety of genes 
potentially involved in cryptic iron cycling in marine 
Gemmatimonadota, including iron acquisition, stor-
age, oxidation, and reduction. Specifically, we identified 
two clusters of MAGs in Group 3 and Group 4 recov-
ered from a wide range of depths (ranging from 0 to 
62  cm) in BS sediments encoding genes for sulfocyanin 
[61, 62] (Supplementary Fig. 18), a putative iron oxidase. 
These bacteria may link iron oxidation via sulfocyanin 
with nitrate reduction via periplasmic nitrate reductase 
(NapAB) or nitrous oxide reduction via nitrous oxide 
reductase (NosZ) (Supplementary Fig.  18). We also 
identified three MtrABC operons [63] (M3-44_Bin_97, 
M3-38_Bin_128, and M3-30_Bin_133) in Group 2, sug-
gesting they may be capable of reducing iron in anoxic 
sediments (Supplementary Fig.  18). Other widely anno-
tated potential iron cycling gene homologs, such as 
cytochrome-c Cyc2 and DFE_461-465, in these MAGs 
suggest that Gemmatimonadota may actively partici-
pate in iron cycling; however, it is difficult to distinguish 
iron reduction and iron oxidation based on the current 
annotation.

Gemmatimonadota also encodes mercury and arsenic 
detoxification systems. They are capable of transforming 
the extremely toxic Hg(II) to metallic Hg(0) via mercu-
ric reductase (MerA), potentially detoxifying mercury 
(Fig. 3). All four groups are capable of reducing arsenate 
to arsenite via arsenate reductase (ArsC) through thiore-
doxin [64] (Fig. 3). Resistance and detoxification of heavy 
metals may enable Gemmatimonadota to be widely dis-
tributed from coastal sediments to deep oceans [65], 
where Hg and As have accumulated from anthropogenic 
pollution [66, 67] or released via hydrothermal activity 
and volcanic eruptions [68, 69].

Extensive genetic potential for secondary metabolite 
biosynthesis in Gemmatimonadota
Microorganisms produce secondary metabolites to 
interact with other community members and their envi-
ronment. The importance of biosynthetic gene clusters 
(BGCs) in Gemmatimonadota has been described in 
soil environments [21]. This has not been examined in 
marine Gemmatimonadota [70] due to the limited rep-
resentatives in public databases. We identified a diverse 
genetic potential for secondary metabolite biosynthe-
sis, including nonribosomal peptide synthetase (NRPSs) 
and polyketide synthases (PKSs) (Fig. 1). Combined gene 
clusters consisting of different NRPS, PKS, and hybrid 
NRPSs/PKS were identified in 69 MAGs in four groups 

(Fig. 1). NRPS and PKS are known to synthesize a diver-
sity of antibiotics, antifungals, and immunosuppressants 
with pharmaceutical potential [71], while the majority of 
these NRPS and PKS have unknown end products [72].

The most common type of BGCs identified in Gem-
matimonadota is involved in the biosynthesis of ter-
penes, including carotenoid, isorenieratene, and 
N-tetradecanoyl tyrosine, and was found in 174 MAGs 
in these bacteria. Terpenes can have antibacterial prop-
erties [73], participate in bacterial-fungal interactions 
[74], and provide colorful pigments [75]. However, the 
ecological functions of different terpenes remain poorly 
understood. BGCs encoding lasso peptides, a class of 
ribosomally synthesized and posttranslationally modified 
peptides (RiPPs) [76, 77], were identified in 29 MAGs 
mainly from Group 3 (Fig.  1). The antibacterial proper-
ties of lasso peptides produced by Gemmatimonadota 
suggests a potential role of affecting the abundance of the 
other community members. Bacteriocins (TIGR03798, 
Nif11-related peptide) experience intensive posttransla-
tional modifications to generate antimicrobial peptides 
which are toxic to the strains of closely related species 
[78]. Genes encoding bacteriocin have been particularly 
prominent in Gemmatimonadota in soil environments 
[79]. We annotated genes for microcin, a type of bacteri-
ocin [80], in 20 MAGs exclusively within Group 2 (Fig. 1). 
Specifically, six MAGs (recovered from below 30  cm at 
station M3 and M8, BS) within a monophyletic group in 
Group 2, have multiple copies of microcin genes that may 
mediate Gemmatimonadota population size [81].

A broad diversity of Gemmatimonadota have the 
potential to produce different secondary metabolites, 
which may play a critical role in the survival and adapta-
tion of the microbial community and result in their prev-
alence across different habitats. Perhaps most strikingly, 
there are clades in Group 4 associated with corals that are 
enriched in bacteriocin, terpene, and type I polyketide 
synthase (T1PKS) genes (Fig.  1). These genotypes have 
unique protein composition comprising Pfam Cluster 
7, suggesting these bacteria use secondary metabolites 
to interact with other organisms in reef communities. 
BGCs with low levels of similarity to known databases 
can be used to mine novel BGCs and point to new com-
pounds [82]. The Gemmatimonadota phylum may thus 
represent a reservoir for the discovery of secondary 
metabolites, which could also be useful in medicine and 
biotechnology.

Potential Gemmatimonadota viruses
In total, 6,611 double-stranded DNA (dsDNA) viral 
metagenome-assembled genomes (vMAGs) of high- 
and medium-quality were identified from 15 BS sam-
ples (see “Methods”). We identified three CRISPR-Cas 
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systems (Supplementary Fig. 19) and 639 CRISPR spacer 
sequences (Supplementary Table 10) in 156 of 245 Gem-
matimonadota MAGs. However, only one Gemmati-
monadota could be linked with vMAGs via the CRISPR 
spacer sequences. Using CRISPR spacers, tRNA match-
ing, 6-mer oligonucleotide frequency, and whole genome 
matching, we identified 32 vMAGs ≥ 10 kilobases in 
length that potentially infected Gemmatimonadota (see 
“Methods”) (Fig. 4 and Supplementary Table 11). Among 
these are 15 viruses that could not be assigned taxon-
omy, while the other 17 of the 32 viruses were classified 
as Caudovirales belonging to Myoviridae (12), Podoviri-
dae (2), and Siphoviridae (3) (Supplementary Table  12). 
However, none of these viruses was clustered with known 
viral genomes at the genus level based on shared-gene 
content (Fig.  4). To understand the viral roles in host 
metabolism, we assigned functions to the gene content 
of these 32 vMAGs, revealing a variety of putative aux-
iliary metabolic genes (AMGs) that may “hijack” and 
manipulate host metabolism (Fig.  4 and Supplemen-
tary Table 13). We identified D-beta-D-heptose 7-phos-
phate kinase in three Myoviridae viruses from different 
BS samples, mainly associated with Group 3 and Group 
2, suggesting these viruses may contribute to the assem-
bly of the lipopolysaccharide in their hosts [83]. In addi-
tion, one unknown taxonomy virus and four Myoviridae 
viruses encode heptosyltransferase, a class of glycosyl-
transferases (GTs) that may modify heptose residues on 
lipopolysaccharides to affect viral-host interactions [84, 
85].

We also identified viral genes involved in genome rep-
lication, nucleotide metabolism, and posttranscriptional 
modifications, including ribonuclease H (RNaseH-like 
domain), ATP-dependent DNA ligase (ligD) [86], and 
peptidases (Supplementary Table 14). Four vMAGs con-
tain genes predicted to encode ribonucleotide reductase, 
which is important for nucleotide metabolism in nucleo-
cytoplasmic large DNA viruses (NCLDVs) [87]. Putative 
Gemmatimonadota viruses also contain genes for DNA 
methylation and glycosylation that may be important 
for host interactions. We identified genes for methyl-
transferase and endonuclease (Supplementary Table 14), 
suggesting the viruses may be involved in epigenetic 
modification via autonomous DNA methylation [88]. 
Finally, we identified genes encoding pyruvate-ferredoxin 

oxidoreductase in one vMAG (Supplementary Table 14), 
suggesting that this virus may contribute to host anaero-
bic metabolism by generating acetyl‐coenzyme A, carbon 
dioxide, and reduced ferredoxin  (Fd2-) [89].

Potential phototrophic and autotrophic capabilities 
in Gemmatimonadota
Gemmatimonadota in order Gemmatimonadales have 
recently been shown to possess photosynthetic gene 
clusters (PGCs) [16]. However, none of the newly recon-
structed MAGs recovered here codes for PGCs, sug-
gesting horizontal gene transfer of PGCs is not common 
among Gemmatimonadota [16] (Supplementary Fig. 20). 
We did not identify any key genes for the type II photo-
synthetic reaction center (puf, bch, and acsF genes) in 
our MAGs, as found in terrestrial environments, e.g., the 
isolate from freshwater Swan Lake in the Gobi Desert 
in China, the Cock Soda Lake, and Lake Baikal in Sibe-
ria [16, 90, 91]. Therefore, marine Gemmatimonadota 
appear to lack phototrophic metabolism. However, as 
stated above, Gemmatimonadota encode bacteriocins 
(TIGR03798, Nif11-related peptide) and carotenoids, 
which are associated with photosynthetic Cyanobacteria 
[80, 92], and the latter is thought to contribute to adap-
tation to low light conditions [93] or UV exposure [94]. 
Thus, the phototrophic metabolism may be occurring in 
shallow marine environments.

Carbon fixation genes via Calvin–Benson–Bassham 
(rbcS, rbcL, and prk) have been reported in Gemmati-
monadota from soda lakes [91, 95]. However, the soda 
lake Gemmatimonadota MAGs are phylogenetically dis-
tinct from our marine groups (Supplementary Fig.  20). 
Moreover, only the large subunit of ribulose 1,5-bispho-
sphate carboxylase/oxygenase-like protein (RLP, form IV 
RuBisCO), potentially important for sulfur metabolism 
rather than  CO2 fixation (Supplementary Fig.  21), was 
annotated in 43 MAGs in this study. Additionally, we 
did not find any complete autotrophic pathways (Wood-
Ljungdahl pathway, Calvin–Benson–Bassham, reduc-
tive tricarboxylic acid, 3-hydroxypropionate bicycle, 
3-hydroxypropionate-4-hydroxybutyrate, and dicarbox-
ylate-4-hydroxybutyrate cycles) in our marine Gemma-
timonadota MAGs (Supplementary Table  9). There has 
been no physiological confirmation of autotrophic 

(See figure on next page.)
Fig. 4 Genomic diversity and composition of viruses that have infected Gemmatimonadota. a, b vMAG statistics, including sampling location, 
quality, length, lifestyle, and number of genes. c A gene-sharing network of viral sequences between vMAGs from this study and prokaryotic 
virus genomes in the GenBank database. Nodes represent individual genomes, and edges indicate similarity among genomes within a viral 
cluster. d Number of vMAGs identified using different tools. e Annotation of AMGs in 27 vMAGs. f Potential association between vMAGs 
and Gemmatimonadota genomes
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Fig. 4 (See legend on previous page.)
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metabolism in Gemmatimonadota, and thus, they are 
likely heterotrophs.

Ecology of Gemmatimonadota
Gemmatimonadota is estimated to be the eighth most 
abundant bacterial phylum in soils, with relative abun-
dance of ~ 1% of soil bacteria worldwide [26]. They 
are globally distributed with low abundance (< 2%) in 
marine environments [96, 97] and are estimated to be 
over 10% relative abundance in deep-sea sediments [98]. 
Marine clades are phylogenetically distinct from ter-
restrial clades, where Group 1 and Group 2 members 
described in this study are distinct from their terrestrial 
sister groups, and Group 1 was only recovered from deep 
sediments (38–62  cm) in two sampling sites. This sug-
gests a potential unique ecological role of marine Gem-
matimonadota. The marine genotypes described here are 
metabolically diverse, and many are capable of partial 
denitrification and organic carbon degradation. A diver-
sity of nitrous oxide reductases suggests marine Gem-
matimonadota may mediate the reduction of nitrous 
oxide to nitrogen gas for the removal of the most potent 
greenhouse gas, which is increasing due to increased 
anthropogenic activities [41, 99, 100], and a vital pro-
cess in ocean biogeochemistry. These organisms encode 
proteins for the degradation of different complex carbon 
compounds, including pectin, laminarin, and fatty acids. 
Marine pectin and laminarin are produced by photosyn-
thetic marine microalgae [101], diatoms, macrophytes 
[102], and terrestrial plants [103]. Thus, Gemmatimon-
adota are likely players in organic matter degradation in 
the oceans. Also, the protein repertoire of these MAGs 
suggests they participate in arsenic and mercury cycling/
detoxification. Interestingly, there are clades associated 
with coral reefs that are enriched in BGC genes; these 
genotypes also have unique protein profiles (Pfam Clus-
ter 7, Fig. 1). This suggests that they produce metabolites 
for interactions in reef ecosystems.

The prevalence of Gemmatimonadota across vari-
ous terrestrial environments has been shown in several 
studies [9, 11–14]. However, the metabolic potential 
and ecological roles of Gemmatimonadota in the ocean 
are poorly understood due to a lack of genomic sam-
pling. Gemmatimonadota have versatile metabolisms 
and high abundance in coastal areas where they appear 
to be involved in the degradation of complex organic car-
bon, denitrification, sulfate reduction, and sulfide/sulfite 
oxidation. Interestingly, marine genotypes are distinct in 
their numbers of BGCs, as well as sulfur and iron meta-
bolic genes. The expanded genomic biodiversity provided 
in this study is a framework to understand the roles of 
Gemmatimonadota on a global scale.

Materials and methods
Sampling procedures
The 495 Gemmatimonadota MAGs in this study were 
reconstructed from five marine environments includ-
ing the following: coastal sediments in the Bohai Sea 
(BS), China (427 MAGs); coastal sediments in the San 
Francisco Bay (SFB), USA (26 MAGs); hydrothermal 
vents in the Guaymas Basin (GB), Gulf of California, 
Mexico (31 MAGs); biomat and Fe oxyhydroxide pre-
cipitating from low-temperature hydrothermal fluid (Fe 
oxyhydroxide) samples of Longqi hydrothermal vents 
in the Indian Ocean (IO) (seven MAGs); and cold-seep 
sediments in the South China Sea (SCS), China (four 
MAGs) (Supplementary Table 2). BS samples were col-
lected from sediments at three stations: BHB10, M3, 
and M8 in the BS, China. Details of sampling sites and 
procedures were described previously [15]. SFB sam-
ples were collected from sediments in the San Fran-
cisco Bay, USA, across four seasons (July, October, 
January, and May) between July 2011 and May 2012 
[104]. GB samples were collected from sediments in the 
Gulf of California, Mexico, during cruises in 2008 and 
2009. Backgrounds of GB and the sampling details were 
described previously [34]. Details of the procedure of 
obtaining hydrothermal vent mat and Fe oxyhydroxide 
samples from the Indian Ocean and cold seep sediment 
samples from the SCS were described by Gong et  al. 
[105]. Information about the samples from each envi-
ronment is summarized in Supplementary Table 1.

DNA extraction, metagenomic sequencing, assembly, 
and binning
Total DNA was extracted from each sample and 
sequenced after quality control as described in the cor-
responding references [15, 34, 104, 105]. The sequences 
were assembled and binned with different protocols 
based on the batch of the samples [34, 105]. In total, 
495 MAGs with completeness greater than 50% and 
contamination less than 10% with CheckM lineage_wf 
v1.0.5 [24] were identified as Gemmatimonadota based 
on the taxonomy assigned using GTDB-Tk v1.5.1 [106] 
with release 202. The relative abundance of each MAG 
was calculated using MetaGaia with default settings 
(https:// github. com/ valde anda/ MetaG aia). All recon-
structed MAGs were grouped into five genome datasets 
based on five study sites. Raw reads from each sample 
were mapped to the matched genome dataset. The rela-
tive abundance of Gemmatimonadota in each sample is 
the ratio of reads mapped to Gemmatimonadota to the 
reads mapped to the genome dataset with normalized 
genome size.

https://github.com/valdeanda/MetaGaia
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Phylogenetic analyses
A concatenated protein sequence alignment of 120 
marker genes was generated with GTDB-Tk v1.5.1 [24] 
from a set of genomes consisting of 495 Gemmatimon-
adota MAGs in this study and 356 reference genomes 
downloaded from NCBI (Supplementary Table  2). All 
selected reference genomes for phylogenetic analy-
sis were with completeness greater than 50% and con-
tamination less than 10% confirmed with CheckM 
lineage_wf v1.0.5 [24]. The alignment was refined using 
MAFFT v7.471 [107] with option –auto and trimmed 
using TrimAL v1.4 with the option − gappyout [108]. 
The alignment was manually checked to ensure the short 
sequences with large gaps were removed before the con-
struction of the phylogenetic tree. A maximum likeli-
hood tree was built using IQ-TREE v1.6.12 [109] with 
the parameters: -m LG + C60 + F + R -bb 1000 -nt AUTO 
-bnni -alrt 1000.

Only MAGs and reference genomes (defined here as 
MAGs and reference genomes with completeness > 80% 
and contamination < 5%) were used for further phylo-
genetic and metabolic analyses. In the end, 245 MAGs 
in total, i.e., 228, 9, 5, 2, and 1 MAGs from the BS sedi-
ments, the SFB sediments, GB sediments, biomat and Fe 
oxyhydroxide from the IO, and cold-seep sediments from 
the SCS, respectively, and 211 reference genomes were 
used for downstream analysis. To further resolve the phy-
logeny of Gemmatimonadota, the concatenated align-
ment of 120 marker genes was generated with GTDB-Tk 
v1.1.1 from the 245 Gemmatimonadota MAGs and ref-
erence genomes, except for a genome of Longimicrobium 
terrae strain: CB-286315 (GCA_013000925.1) with a 
completeness of 98.90%, and contamination of 7.69% was 
included due to the lack of representatives for this group. 
The alignment was refined and trimmed, and the phylo-
genetic tree was built the same way as described above. 
Another set of alignment with 37 universal single-copy 
marker genes encoding proteins was extracted using Phy-
loSift v1.0.1 [110] to further confirm the phylogenetic 
placement of the MAGs. The alignment was refined and 
trimmed, and the phylogenetic tree was built the same 
way as described above.

16S rRNA gene sequences were extracted from MAGs 
using Barrnap v0.9 (https:// github. com/ tseem ann/ 
barrn ap) with the following parameters: –reject 0.03. 
Sequences with length over 700  bp were uploaded to 
ARB v6.0.6 [111] and aligned with the reference database 
(release 138) [112]. The alignment was manually checked, 
exported from ARB v6.0.6, and trimmed using trimAl 
v1.4. The alignment with 184 sequences in total: 35 16S 
rRNA sequences from MAGs and 149 from the reference 
database was used to build a maximum likelihood tree 
using IQ-TREE v1.6.12 with the following parameters: -m 

MFP -bb 1000 -bnni -nt AUTO. Trees were uploaded to 
Interactive Tree Of Life (iTOL) v5 [113] for visualization.

The average amino acid identity (AAI) values of 245 
MAGs and 211 reference genomes were calculated using 
CompareM v0.1.2 (https:// github. com/ dpark s1134/ 
Compa reM) to create an AAI matrix.

The distribution and habitat of Gemmatimonadota 
genomes were based on metadata of genomes down-
loaded from NCBI (Supplementary Tables 1 and 2).

Metabolic annotations
Gene predictions were performed using Prodigal v2.6.3 
[114] with the default settings. Predicted genes were 
annotated using standalone version KofamScan v1.3.0 
with the settings: –e-value 1e-5 [115] and further using 
the KAAS (KEGG Automatic Annotation Server) web 
server [116] with the “complete or draft genome” setting 
with parameters: GHOSTX, custom genome dataset, and 
BBH assignment method. Multigenomic Entropy-Based 
Score (MEBS v1.0) [38] was used with the mebs.pl script 
using the -comp option to scan against the Pfam v3.0 
database to determine the presence/absence of a protein. 
The hierarchical cluster was based on the mebs_clust.
py script with the parameters: –method ward –cutoff 
0.5. The score of metabolism of sulfur, carbon, oxygen, 
iron, and nitrogen was calculated using the mebs_vis.py 
scripts in MEBS and visualized by importing the output 
to the iToL. To visualize the sharing of genomic contents 
between the genomic cluster and taxonomic classifica-
tion, a Sankey chart was generated online (https:// power 
bi. micro soft. com/) based on the cluster produced by 
MEBS.

Iron-related genes were further identified using FeG-
enie v1.0 with default settings [117]. Biosynthetic gene 
clusters (BGCs) were identified using antiSMASH v5.1.2 
[118] with the following parameters: –cb-general –cb-
knownclusters –cb-subclusters –asf –pfam2go –smcog-
trees –genefinding-tool prodigal. Carbohydrate-active 
enzymes (CAZymes) were annotated using dbCAN2 
[119] against database v9 [120] with default settings. 
Peptidases were annotated using DIAMOND v2.0.11 
[121] with the parameters: -e 1e-10 –subject-cover 80 –
id 50 against the MEROPS database (release 12.2) [122]. 
Prediction of the localization of CAZymes and pepti-
dases was performed with PSORTb v.3.0 [123] with the 
parameters: -n -o terse.

Characterization of different functional genes
Nitrate reductase (NarG and NapA), nitrous oxide 
reductase (NosZ), dissimilatory sulfite reductase 
(DsrAB), sulfide-quinone oxidoreductase (SQR), flavo-
cytochrome c sulfide dehydrogenase (FCCD), and hydro-
genase were identified using DIAMOND v2.0.11 against 

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://github.com/dparks1134/CompareM
https://github.com/dparks1134/CompareM
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
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corresponding curated databases [34, 124, 125]. Identi-
fied sequences were manually checked with the anno-
tation in KofamScan and KAAS. Hydrogenases were 
further confirmed with the web-based hydrogenase clas-
sifier (HydDB) [125]. The large subunit of ribulose-1,5-bi-
sphosphate carboxylase-oxygenase (RuBisCO) (RbcL) 
sequences were downloaded from NCBI based on pre-
viously published data [126]. RbcL sequences in newly 
reconstructed MAGs were annotated using KofamScan 
and KAAS confirmed by manually BLASTp in NCBI. 
Sequences for each gene were aligned with the refer-
ence sequences using MAFFT v7.471 or Clustalw v2.1 
[127] and trimmed using trimAl v1.4 or BMGE v1.12 
[128] (Supplementary Table  15). Maximum likelihood 
trees were built using IQ-TREE v2.1.2 for each gene. A 
neighbor-joining phylogenetic tree of hydrogenases was 
constructed using MEGA 11 [129] as described previ-
ously [130]. All phylogenetic trees were visualized using 
the iTOL. Detailed software and parameters for generat-
ing the phylogenetic trees were listed in Supplementary 
Table 15.

Virus identification, classification, annotation, 
and virus‑host match
We identified viral contigs with length ≥ 10  kb in the 
assemblies from BS samples using VIBRANT v1.2.1 [131] 
and VirSorter2 v2.2.3 [132] with settings (-min-score 0.5, 
-min-length 10,000). Quality of virus genomes was esti-
mated using CheckV v0.8.1 [133]. In total, 6611 high- 
and medium-quality (> 50% completeness) viral contigs 
were identified as viral metagenome-assembled genomes 
(vMAGs) from BS samples. CRISPR arrays and Cas cas-
sette genes in the MAGs were detected using CRISPR-
CasFinder v4.2.20 [134] with default settings. We further 
linked the vMAGs with Gemmatimonadota MAGs using 
four different methods. The first method to predict the 
virus-host interactions is based on CRISPR spacer match. 
Briefly, CRISPR arrays in MGAs were identified using 
CRISPRDetect v2.4 [135], CRISPR Recognition Tool 
(CRT) v1.2 [136], and CRISPRidentify v1.1.0 [137] with 
the default parameters. The identified spacer sequences 
in MAGs were subjected to search using BLASTn 
v2.11.0 + against the identified viral sequences with the 
blastn-short algorithm and parameters: identity ≥ 95%, 
coverage = 100%, word size = 8, and e-value ≤  10−5). The 
second way to link the vMAG with MAG is based on the 
6-mer oligonucleotide frequency match between MAGs 
and vMAG using VirHostMatcher v1.0 [138] with the 
default settings. The virus-host pairs were selected with 
the threshold of  d2* < 0.15. The third way is based on the 
tRNA matching. Briefly, tRNAs in MAGs and vMAGs 
were predicted using tRNAScan-SE v2.0.11 with the 
bacterial mode. The recovered tRNAs were compared 

using BLASTn v2.11.0 + with the threshold (100% iden-
tify and 100% coverage). The fourth method to link MAG 
and vMAGs is based on nucleotide sequence homology 
between MAGs and vMAGs using BLASTn with the 
thresholds: coverage of viral contig length ≥ 75%, similar-
ity ≥ 70%, bit score ≥ 50, and maximum e-value ≤ 0.001 
[139, 140]. Open reading frames (ORFs) in identified 
vMAGs were predicted using Prodigal v2.6.3 [114]. 
All predicted viral protein sequences were annotated 
using eggNOG-mapper (eggNOG database v5.0.0 
[141]), KofamKOALA [115], DRAM-v v.1.2.2 [142], and 
VIBRANT v1.2.1 [131]. vMAGs were classified using 
vConTACT2 v0.11.3 [143] with standard parameters: 
-rel-mode Diamond and -db ProkaryoticViralRefSeq211-
Merged. Networks based on shared protein sequences 
between identified vMAGs and reference prokaryotic 
viruses were visualized using Cytoscape v3.9.1 [144]. 
The taxonomy of each vMAG was also assigned using 
VPF-Class v1.0 [145] with the thresholds: membership 
ratio ≥ 0.5 and confidence score ≥ 0.2. The viral lifestyle 
was predicted using PhaTYP [146]. Viral AMGs were 
identified using DRAM-v v.1.2.2 [142] with the criteria 
as follows: “M” or “F” flags and auxiliary scores < 4. The 
heatmap shown in Fig.  4 was generated using TBtools 
v2.001 [147].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 024- 01871-4.

Supplementary Material 1: Supplementary figures: Supplementary Fig. 1 
Normalized relative abundance of Gemmatimonadota recovered from five 
different sites and genome sizes of Gemmatimonadota. Normalized 
relative abundance of 427, 26, 31, 4, and 7 genomes recovered from 15 
sediment samples in Bohai Sea (a), 11 sediment samples in San Francisco 
Bay (b), 14 sediment samples in Guaymas Basin (c), 4 sediment samples in 
South China Sea (d), and 4 biomat and oxide samples in Indian Ocean (e), 
respectively. Genome sizes of all Gemmatimonadota genomes (f ) and 245 
high-quality MAGs in this study (g) in four groups. Genome size vs 
estimated completeness of each Gemmatimonadota genome in four 
groups with different shapes showing their habitats (h) and sources (i). 
Supplementary Fig. 2 Phylogeny of Gemmatimonadota. A maximum 
likelihood phylogenetic tree of 851 genomes including the 495 
metagenome-assembled genomes (MAGs) (completeness > 50% and 
contamination < 10%) described in this study. The phylogeny is based on 
concatenated protein alignment of 120 single-copy markers in GTDB. The 
four groups are marked in different background colors with black dots 
indicating the newly recovered MAGs. Bootstraps are shown in purple 
circles (≥ 75). Supplementary Fig. 3 Phylogeny of Gemmatimonadota. A 
maximum likelihood phylogenetic tree of 456 genomes including the 245 
metagenome-assembled genomes (MAGs) (completeness > 80% and 
contamination < 5%) described in this study. The phylogeny is based on 37 
concatenated ribosomal protein encoding genes identified using 
PhyloSift. The four groups are marked in different background colors with 
black dots indicating the newly recovered MAGs. The outer ring indicates 
the taxonomy assigned by GTDB-Tk v1.5.1 with release 202. Bootstraps are 
shown in purple circles (≥ 75). Supplementary Fig. 4 Average amino acid 
identity (AAI) of genomes including Gemmatimonadota. Heatmap using 
pheatmap package in R based on AAI for each genome pair. Fibrobacte-
rota and Glassbateria genomes were used as reference genomes in the 
heatmap to show the distinct AAI of four Gemmatimonadota groups 

https://doi.org/10.1186/s40168-024-01871-4
https://doi.org/10.1186/s40168-024-01871-4
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compared to other genomes. Genome self-comparisons are presented 
in blue. Supplementary Fig. 5 Maximum likelihood phylogenetic tree of 
16S rRNA genes in these novel bacteria. Sequences recovered from the 
genomes in this study are shown in bold. The four groups are marked 
in different background colors. The tree was generated using RAxML in 
the ARB software package. Supplementary Fig. 6 Carbohydrate-active 
enzymes (CAZyme) and peptidase encoded by genomes in this study. 
(a) CAZymes, including carbohydrate esterase (CE), glycoside hydrolase 
(GH), and polysaccharide lyase (PL), identified in the four Gemmatimon-
adota groups. (b) Peptidases, classified as family aspartic (A), cysteine 
(C), unassigned inhibitors (I), metallo (M), asparagine (N), mixed (P), 
serine (S), threonine (T), and unknown (U) by the MEROPS database 
identified in the four Gemmatimonadota groups. Colors filled in the 
circle denote the percentage of genomes within one group encode 
the gene. Sizes of the circle denote the average number of gene copies 
identified in the genome within one group. Asterisk denotes the family 
identified with potential secretion signal, with a number on top of the 
circle representing the number of sequences identified with potential 
secretion signal using PSORTb v3.0. Numbers in brackets denote the 
total number of genomes in each group. The cluster using pheatmap 
package in R is based on the normalized data considering the equal 
contribution by the percentage of genome containing the enzyme and 
the average copy number per genome in the group. Supplementary 
Fig. 7 Distribution of predicted extracellular CAZymes in each genome. 
The backbone is the maximum likelihood phylogenetic tree of 456 
genomes including the 245 MAGs as shown in Fig. 1. The four groups 
are marked in different background colors with black dots indicating 
the newly recovered MAGs. The outer bar represents the number of 
genes in each MAG. Supplementary Fig. 8 Distribution of predicted 
extracellular peptidases in each genome. The backbone is the 
maximum likelihood phylogenetic tree of 456 genomes including the 
245 MAGs as shown in Fig. 1. The four groups are marked in different 
background colors with black dots indicating the newly recovered 
MAGs. The outer bar represents the number of genes in each MAG. 
Supplementary Fig. 9 Maximum likelihood phylogenetic tree of genes 
encoding for membrane-bound nitrate reductase (NarG). Bootstrap 
values ≥ 80 are shown in circles. Sequences were aligned using MAFFT 
v7.471, trimmed using trimAl v1.4. The phylogenetic tree was 
constructed using IQ-TREE v2.1.2. Supplementary Fig. 10 Maximum 
likelihood phylogenetic tree of genes encoding for periplasmic nitrate 
reductase (NapA). Bootstrap values ≥ 80 are shown in circles. Sequences 
were aligned using MAFFT v7.471, trimmed using trimAl v1.4. The 
phylogenetic tree was constructed using IQ-TREE v2.1.2. Supplemen-
tary Fig. 11 Maximum likelihood phylogenetic tree of genes encoding 
for nitrous oxide reductase (NosZ). Bootstrap values ≥ 80 are shown in 
circles. Sequences were aligned using MAFFT v7.471, trimmed using 
trimAl v1.4. The phylogenetic tree was constructed using IQ-TREE v2.1.2. 
Supplementary Fig. 12 Maximum likelihood phylogenetic 94 tree of 
genes encoding alpha subunit of dissimilatory sulfite reductase (DsrA). 
Bootstrap values ≥ 80 are shown in circles. Sequences were aligned 
using MAFFT v7.471, trimmed using BMGE v1.12. The phylogenetic tree 
was constructed using IQ-TREE v2.1.2. Supplementary Fig. 13 Maximum 
likelihood phylogenetic tree 98 of genes encoding for beta subunit of 
dissimilatory sulfite reductase (DsrB). Bootstrap values ≥ 80 are shown 
in circles. Sequences were aligned using MAFFT v7.471, trimmed using 
BMGE v1.12. The phylogenetic tree was constructed using IQ-TREE 
v2.1.2. Supplementary Fig. 14 Maximum likelihood phylogenetic 102 
tree of genes encoding for sulfide-quinone reductase (SQR). Bootstrap 
values ≥ 80 are shown in circles. Sequences were aligned using MAFFT 
v7.471, trimmed using trimAl v1.4. The phylogenetic tree was 
constructed using IQ-TREE v2.1.2. Supplementary Fig. 15 Neighbour 
joining phylogenetic tree 106 of NiFe hydrogenases from Gemmati-
monadota MAGs. Bootstrap values ≥ 80 are shown in circles. Sequences 
were aligned using Clustalw v2.1. The phylogenetic tree was 
constructed using MEGA 11. Supplementary Fig. 16 Neighbour joining 
phylogenetic tree of FeFe hydrogenases from Gemmatimonadota 
MAGs. Bootstrap values ≥ 80 are shown in circles. Sequences were 
aligned using Clustalw v2.1. The phylogenetic tree was constructed 
using MEGA 11. Supplementary Fig. 17 Distribution of NiFe hydroge-
nase 112 in each genome. The backbone is the maximum likelihood 

phylogenetic tree of 456 genomes including the 245 MAGs as shown in 
Fig. 1. The four groups are marked in different background colors. The 
outer bar represents the number of genes in each MAG. Supplementary 
Fig. 18 Distribution of genes associated w 116 ith oxygen, nitrogen, and 
iron cycling in each genome. The backbone is the maximum likelihood 
phylogenetic tree of 456 genomes including the 245 MAGs as shown in 
Fig. 1. The four groups are marked in different background colors with 
black dots indicating the newly recovered MAGs. The outer bar represents 
the number of genes in each MAG. The red branches and names 
represent MAGs, mainly in Group3 and Group4, containing sulfocyanin. 
Bootstrap values ≥ 75 are shown in circles. Supplementary Fig. 19 
CRISPR-Cas identified in three 123 Gemmatimonadota MAGs. Supplemen-
tary Fig. 20 Distribution of genes for photosynthesis 124 in each genome. 
The backbone is the maximum likelihood phylogenetic tree of 456 
genomes including the 245 MAGs as shown in Fig. 1. The four groups are 
marked in different background colors with dots indicating the newly 
recovered MAGs. Red represents MAGs containing RbcL in this study. Blue 
represents five MAGs, recovered from Soda Lakes, containing Calvin–Ben-
son–Bassham cycles (RbcS, RbcL, and PRK). Yellow represents four MAGs, 
recovered from lakes, containing photosynthetic gene clusters (PGCs). 
Bootstrap values ≥ 75 are shown in circles. Supplementary Fig. 21 
Maximum likelihood phylogenetic tree 131 of genes encoding for large 
subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO, 
RbcL) and RbcL like proteins. Sequences identified in this study are 
marked in purple (Group2) and yellow (Group4). Bootstrap values ≥ 80 are 
shown in circles. Sequences were aligned using MAFFT v7.471, trimmed 
using trimAl v1.4. The phylogenetic tree was constructed using IQ-TREE 
v2.1.2.

Supplementary Material 2. Supplementary tables: STable 1: Metadata of 
samples that recovered Gemmatimonadota genomes and sample that 
were used to recover genomes in this study. STable 2: Information of the 
genomes used and described in this study, including genomic statistics 
using checkM and taxonomy affiliations from GTDB-Tk as described in 
methods. STable 3: Average of Amino Acid Identity (AAI) of the genomes 
from this study and phylogenetically closely related and publicly available 
genomes. STable 4: Comparison of average of Amino Acid Identity (AAI) of 
the genomes in different groups. STable 5: Carbohydrate activate enzymes 
(CAZymes) identified using dbcan2 in the 245 genomes described in this 
study. STable 6: Statistics of the identified CAZyme families found in four 
Gemmatimonadota groups. STable 7: Peptidases identified in the 245 
genomes described in this study against the MEROPS database. STable 8: 
Statistics of the identified peptidase found in four Gemmatimonadota 
groups. STable 9: Gene counts of the annotated sequences in the 245 pro-
teomes described in this study. Combined annotations from KofamScan 
and KAAS are shown. ND: Not detected. STable 10: CRISPR spacer identi-
fied in 245 Gemmatimonadota genomes. STable 11: Viral-host matches 
identified in this study. STable12 Statistics of 32 high- and medium-
quality vMAGs identified in this study. STable 13: Annotation of auxiliary 
metabolic genes (AMGs) identified in 32 vMAGs. STable 14: Annotation of 
genes identified in 32 vMAGs. STable 15: Parameters for the construction 
of phylogentic tree of each marker gene
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