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Abstract 

Background Scavenging indigenous village chickens play a vital role in sub‑Saharan Africa, sustaining the livelihood 
of millions of farmers. These chickens are exposed to vastly different environments and feeds compared to com‑
mercial chickens. In this study, we analysed the caecal microbiota of 243 Ethiopian village chickens living in different 
altitude‑dependent agro‑ecologies.

Results Differences in bacterial diversity were significantly correlated with differences in specific climate factors, top‑
soil characteristics, and supplemental diets provided by farmers. Microbiota clustered into three enterotypes, with one 
particularly enriched at high altitudes. We assembled 9977 taxonomically and functionally diverse metagenome‑
assembled genomes. The vast majority of these were not found in a dataset of previously published chicken microbes 
or in the Genome Taxonomy Database.

Conclusions The wide functional and taxonomic diversity of these microbes highlights their importance in the local 
adaptation of indigenous poultry, and the significant impacts of environmental factors on the microbiota argue 
for further discoveries in other agro‑ecologies.
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Background
Indigenous village chickens play a key role in sub-
Saharan African and Asian countries, sustaining the 
livelihood of millions of farmers. They predominantly 
comprise indigenous chicken genotypes well adapted to 
the local environment [1] and acquire all or a substantial 
proportion of their diet from scavenging (scavenging or 
semi-scavenging). As these birds are exposed to high pre-
dation and disease challenges [2], survival traits rather 
than production traits are favoured by natural selection 
and, to some extent, human selection. These chickens 
also contribute to the spread of zoonotic diseases such as 
campylobacteriosis and salmonellosis, which have a high 
disease burden in African human populations [3, 4]. By 
understanding the microbiota of these chickens, we may 
be able to suggest ways of improving their nutrition and 
disease resistance, and henceforth productivity.

Over 95% of poultry products sold in Ethiopia origi-
nate from indigenous village chickens [5]. Ethiopia is an 
ecologically diverse country with distinct environmental 
zones, ranging from the hot and arid climate of the low-
lands to the cold and humid climate of the highlands. 
These climatic zones, and a diverse geographical topogra-
phy, form naturally varied environmental conditions for 
smallholder crop-livestock farming systems. Geographi-
cal location [6], temperature [7] and altitude [8] have pre-
viously been demonstrated to impact the composition of 
the chicken microbiota using 16S rRNA gene amplicon 
sequencing.

The gut microbiota plays important roles in chicken 
health and productivity, contributing to nutrition, 
immune development and pathogen resistance [9]. The 
highest concentration of microbes in chicken can be 
found in the caeca. Here, the microbial communities play 
a vital nutritional role, fermenting fibre into short-chain 
fatty acids (SCFAs) that can be used as an energy source 
by the bird, as well as contributing to colonisation resist-
ance, and nitrogen recycling [10, 11].

Through the use of culturing techniques [12, 13], meta-
barcoding [14, 15] and metagenomics [13, 16, 17], there 
have been many recent advances in our understanding 
of the chicken caecal microbial ecosystems. However, 
most of these studies have examined grain-fed, com-
mercial chicken breeds that were hatched and housed 
in biosecure facilities without maternal contact. These 
commercial-like conditions aim to enhance productivity 
by standardising/controlling host-environment interac-
tions. Commercial chicken breeds, and by extension their 
microbiota, have also been shaped by human selection 
for high productivity traits. On the contrary, scaveng-
ing or semi-scavenging chicken populations are exposed 
to far greater predation and disease challenges [2], and 
therefore, survival traits have been selected for rather 

than production. Not only has this affected the chicken 
genome [1], but it would also reasonably be expected to 
have an impact on the gut microbiota.

To characterise the microbiota of indigenous chick-
ens in Ethiopia, we collected 243 chicken caecal con-
tent samples from 26 villages in 15 districts. Shotgun 
metagenomics was used to characterise the caecal 
microbiota. To profile all taxa, including low-abundance 
taxa, we constructed a catalogue of non-redundant 
genes. We identified three distinct enterotypes, one of 
which was particularly more abundant in the highest 
altitude samples. We also constructed metagenome-
assembled genomes (MAGs). Previously, MAGs have 
been constructed from chicken breeds, including Ross 
308s, Lohman Browns and Silkies [13, 16, 17]. We con-
structed 9977 high-quality, strain-level MAGs and 1790 
species-level MAGs, representing diverse taxonomies. 
We found that the vast majority of the MAGs were not 
present in a dataset of microbial genomes from previ-
ous chicken microbiota studies. The MAGs generated in 
this study contained genes encoding a large diversity of 
carbohydrate-active enzymes (CAZymes) and metabolic 
functions.

Results
After the removal of three samples during quality control, 
we characterised the microbiota of the caecal contents of 
240 indigenous Ethiopian scavenging chickens from 26 
sampling sites, aiming to further understand the impact 
of agro-ecology on the gut microbiota composition. The 
sampling sites were highly diverse, representing different 
latitudes, longitudes and altitudes (Fig. 1B). Five distinct 
climate zones were defined based on climate variation 
analysis, with altitude and annual mean temperature as 
major predictors (Fig. 1C).

Construction of an Ethiopian indigenous chicken 
microbiota gene catalogue
By constructing a gene catalogue, we can detect more 
rare taxa than by using MAGs alone and also identify 
taxa from which it is difficult to construct high-qual-
ity MAGs due to their large genome sizes or complex 
genome structures. We constructed a reference gene 
catalogue of 33,629,587 non-redundant genes (Addi-
tional file 3: Fig. S1). Rarefaction analysis of sampling size 
revealed that 90% of genes were captured with a sampling 
size of 60 individuals (Additional file  3: Fig. S2). Genes 
identified across many individuals within a population 
can be defined as “core genes”. Only 420,891 (1.2%) genes 
were shared amongst 80% of the samples. This may be 
due to the high inter-individual diversity of microbiota-
derived genes within the caecal samples or to insufficient 
sequencing depth to detect the total gene numbers.
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We next characterised the taxonomic origin of the 
genes in the gene catalogue. Fifty-five percent of the 
genes were assigned a taxonomic label. Of these genes, 
87.9%, 56.5% and 49.2% were assigned to a phylum, 
genus and species, respectively (Fig. 2A). After removing 
DNA that likely originated from the host diet (plants and 
insects), a total of 33,435,297 genes remained that were 
used for microbiota analysis.

Our analysis focused on taxa averaging at least one 
count per million sequences. Each sample had an aver-
age relative abundance of 98% bacteria (± 1.22%), 0.86% 
archaea (± 0.54%), 0.98% Eukaryota (± 1.08%) and 0.16% 
viruses (± 0.13%). Bacteroidota represented the most 
abundant phylum (48.0%), followed by Firmicutes 
(32.9%), Proteobacteria (7.3%), Spirochaetota (4.2%), 
Actinobacteriota (1.9%) and Deferribacterota (1.1%). Six 
of the 10 most abundant phyla showed significant differ-
ences in abundance between climate zones (Fig. 2C). The 
most abundant genera were Bacteroides (31.9%), Alistipes 
(7.9%) and Prevotella (7.6%), all members of the Bacte-
roidota phylum. Prevotella, in particular, showed a high 
level of variation between climate zones (Fig.  2D–E). 
Notably, chickens from climate zone 1 (high altitude) 

had more than 2.5-fold higher abundance of Prevotella 
(17.6%) than chickens from other climate zones. Archaea, 
bacteria and Eukaryota showed significant differences 
in alpha-diversity between climate zones (Kruskal–Wal-
lis p value < 0.01), while viruses showed no significant 
differences (Fig.  2B). For bacteria, diversity gradually 
increased from climate zone 1 (> 3000  m, high altitude) 
to climate zone 4 (around 1300 m, medium altitude) and 
was slightly decreased in climate zone 5 (around 1000 m).

Indigenous Ethiopian chickens contain three enterotypes 
related to environmental distribution
Using bacterial genera abundances as estimated from 
the gene catalogue, the Ethiopian chicken caecal micro-
biota clustered into three enterotypes (Fig. 3A). Samples 
belonging to enterotype 3 were particularly distinct from 
enterotypes 1 and 2. Climate zone 1 is clearly dominated 
by microbiota of enterotype 3, which accounts for 62% 
of samples from this zone (Fig. 3B). Linear discriminant 
analysis effect size (LEfSe) analysis was carried out to 
identify differential enrichment of genera between ente-
rotypes. For enterotype 1, the top ten most discrimi-
nating genera were Alistipes, Treponema, Brachyspira, 

Fig. 1 Sample site information for Ethiopian indigenous chickens under scavenging production systems. A Examples of scavenging production 
systems in Ethiopia. B Geographic distribution of sampling sites within Ethiopia. C Five climate zones were defined based on climate factors. These 
included altitude, precipitation and temperature, as shown in the figure
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Mucispirillum, Muribaculum, Parabacteroides, Sutte-
rella, Acidaminococcus, Sphaerochaeta and Akkermansia; 
for enterotype 2, the top genera were Bacteroides, Lach-
noclostridium, Clostridium, Blautia, Pseudoflavonifrac-
tor, Flavonifractor, Erysipelatoclostridium, Azospirillum, 
Merdimonas and Gemmiger; and for enterotype 3, Prevo-
tella, Megamonas, Faecalibacterium, Olsenella, Lac-
tobacillus, Bifidobacterium, Mediterranea, Collinsella,  
Megasphaera and Dialister (Fig. 3C, D). Co-occurrence net-
works based on correlation analysis revealed that the abun-
dance of major discriminating genera had strong positive 
correlations with the abundance of other genera (Fig. 3E).

Agro‑ecological factors contributing to microbiota 
composition
We next wanted to identify which agro-ecological factors 
were correlated with differences in the beta-diversity of 
the caecal microbiota, using the bacterial gene catalogue 
data. Beta-diversity was significantly associated with 
supplementary diets provided by farmers and the loca-
tion’s topsoil characteristics. Significant differences in 

beta-diversity (Bray–Curtis dissimilarity: genera, species 
and strains) were associated with temperature, altitude, 
precipitation and seasonal cycles, followed by supple-
mentary diets, co-raising styles and local topsoil contents 
(adj-p < 0.01). Redundancy analysis was used to capture 
the driving factors contributing to bacterial microbiota 
diversity. For climate factors, altitude and seasonal pre-
cipitation (bio 15) were the major factors, explaining 10% 
of the total variation (Fig.  4A). Cation exchange capac-
ity of topsoil (CECSOL) and silt percentage of topsoil 
(SLTPPT) were identified as the major contributors to 
diversity, explaining 11% of the variation (Fig.  4B). The 
provision of supplementary diets to chickens was also 
considered. We found that three common grains (maize, 
wheat and barley) significantly impacted the bacterial 
microbiota diversity, explaining 8% of the total variation. 
Diversity significantly decreased as altitude increased 
(P < 0.01, Fig.  4C). Amongst the main taxonomic con-
tributors to enterotypes, Prevotella and Megamonas were 
significantly positively correlated to altitude (Fig. 4D, E), 
while Corallococcus was negatively correlated (Fig. 4F).

Fig. 2 Structure and phylogenetic diversity of the caecal microbiota from indigenous Ethiopian chickens. A Abundance distribution of taxa at each 
phylogenetic level. B Alpha‑diversity (Shannon index) of the archaea, bacteria, viruses and Eukaryota in caecal samples. C Relative abundance 
of microbiota at phylum level among climate zones (**p < 0.01, ***p < 0.001). D Genus relative abundance among climate zones. E Comparison 
of genera abundance among populations from distinct climate zones
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Assembly of 9977 microbial genomes from diverse 
taxonomies
Whilst gene catalogues can provide information about 
the taxonomies present in a dataset, including those that 
are present only in low abundances, it is also possible to 
generate genomic-level information about components 
of the microbiota by constructing metagenome-assem-
bled genomes (MAGs) from the more abundant taxa in 
the samples.

We constructed 9977 high-quality, non-redundant 
MAGs at strain-level, and 1790 at species-level (Addi-
tional file  4: Table  S1). For strain-level MAGs, 9815 
were identified as bacteria and 162 as Archaea (Addi-
tional file  4: Table  S2). Archaea comprised three phyla, 
Halobacteriota (n = 39), Methanobacteriota (n = 28) 
and Thermoplasmatota (n = 95). Bacteria belonged to 

19 different phyla, with the most abundant being Bacte-
roidota (n = 2846), Firmicutes_A (n = 2696), Proteobac-
teria (n = 985), Firmicutes (n = 970) and Spirochaetota 
(n = 842) (Figs. 5A and 6A).

Various bacteria of interest as potential food-borne 
pathogens or poultry pathogens were identified. 
Campylobacter spp. are a common cause of food-borne 
diarrhoeal disease in humans. Several species of Campy-
lobacter were identified amongst the MAGs, including 
Campylobacter avium (15 strains), Campylobacter coli 
(4 strains), Campylobacter jejuni (10 strains) and two 
novel species. Various strains of Escherichia and Shi-
gella can cause disease in humans through contaminated 
poultry meat. Surprisingly, only one strain of Escheri-
chia coli was identified among the MAGs, with most 

Fig. 3 Three enterotypes observed in the caecal microbiota of Ethiopian indigenous chickens. A Caecal microbiota enterotypes clustered by PCA, 
with discriminating genera highlighted. B Distribution of enterotypes as proportions of samples from different climate zones. C Top ten highest 
linear discriminant analysis (LDA) scores for genera contributing to the discrimination of each enterotype. D Abundance profiles of the main genera 
contributing to each enterotype, as defined by LEfSe (*p < 0.05, ***p < 0.001). E Co‑occurrence networks based on correlations between genera 
abundance. Red and grey lines indicated positive and negative correlations (p < 0.01, rho > 0.5 relative abundance > 0.01%). Yellow nodes 
represented the main genus contributors (LDA score > 4)
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Escherichia strains identified as Escherichia flexneri 
(n = 17, also known as Shigella flexneri), and one strain 
being identified as Escherichia dysenteriae. Members of 
the Helicobacter genus are common causes of gastroen-
teritis. Ninety-five strains of Helicobacter were identified 
amongst the MAGs; 40 of these MAGs were identified 
as Helicobacter pullorum, with the remaining MAGs 
defined as belonging to five separate “Helicobacter” gen-
era. Only one MAG was identified as belonging to the 
Chlamydia, Chlamydophila gallinacean.

Compared to using the gene catalogue, after mapping 
raw sequencing reads to MAGs, the proportion of reads 
annotated as bacterial and archaeal taxa increased from 
41.1 to 69.9% and from 0.4 to 1.3%, respectively (Addi-
tional file  3: Fig. S4). The relative abundance of MAGs 
in the samples was estimated, and the phylum abun-
dance profiles were highly correlated between mapping 
using the gene catalogue or MAG database (r = 0.98). 
Using species-level MAG abundances, the diversity and 
richness of the caecal microbiota of chickens from dif-
ferent climate zones were compared. Around 66% of spe-
cies were identified as core species, i.e., present in all 26 

sampling sites. Far fewer core species were found when 
comparing individual samples (present in at least 90% 
of samples), but despite their smaller numbers, these 
core species still accounted for around 50% of the aver-
age microbiota composition of samples (Fig.  5E). The 
richness (Fig.  5C, p = 1.8e − 09) and diversity (Fig.  5D, 
p = 0.038) of the MAGs differed significantly between cli-
mate zones. No significant differences were observed in 
the alpha-diversity of the core species between climate 
zones (Fig.  5F). However, for non-core members of the 
microbiota, there were clear differences in alpha-diversity 
between climate zones (p = 8.7e − 6), with diversity tend-
ing to decrease with altitude, except in climate zone 5 
(Fig. 5G).

We next wanted to identify whether any of our MAGs 
were differentially abundant in the three enterotypes 
that we had previously defined using our gene catalogue 
data. Of our 1790 species-level MAGs, 1404 were differ-
entially abundant between enterotypes (Kruskal–Wal-
lis adj-p < 0.05, Additional file  4: Table  S3). In total, 114 
of these MAGs were found at tenfold higher abundance 
in enterotype 1 compared to the other enterotypes. In 

Fig. 4 Bacterial microbiota composition exhibited significant geographic and ecological diversity. A RDA analysis on the bacterial microbiota 
composition of samples (gene catalogue) and climate factors including altitude, temperature and precipitation. B RDA analysis on the bacteria 
composition and ecological factors including common topsoil characteristics. C Bacterial diversity (Inverse Simpsons index) decreases 
with altitude gradient. The best polynomial fit in blue was determined on the basis of the corrected Akaike information criterion (AIC) of the order 
polynomial models. The ANOVA test was used to test for significance. D–F Spearman correlation was performed to test the relationship 
between the abundance of genera and altitude
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contrast, only eight MAGs were found at tenfold higher 
abundance in enterotype 2. Thirty-six significantly dif-
ferently abundant MAGs were found at tenfold higher 
abundance in enterotype 3 compared to the other ente-
rotypes; these MAGs originated from a wide diversity 
of taxa (eight phyla, Table  1). Previously, we identified 
Prevotella as being highly variable in abundance between 
climate zones and enterotypes. Of the 14 Prevotella spe-
cies that were differentially abundant between entero-
types, 12 were more abundant in enterotype 3 than in the 
other two enterotypes, with two MAGs at tenfold higher 

abundance (Prevotella sp000431975 and Prevotella 
copri).

Comparing Ethiopian chicken MAGs to taxonomies found 
in non‑scavenging chickens
The microbes identified in this study originate from 
indigenous scavenging chickens that are very distinct 
from commercial breeds in terms of genetics, diets and 
environments. As such, it may be expected that many 
of the microbes we have identified would be taxo-
nomically and functionally distinct from those found in 

Fig. 5 Species‑level MAG taxonomy and diversity between samples and climate zones. To aid readability, all phyla classed as Firmicutes 
(Firmicutes_A, Firmicutes_B, etc.) have been concatenated under the label “Firmicutes”. A Phylogenetic tree of species‑level MAGs. B 
Abundance of phyla between climate zones (**p < 0.01, ***p < 0.001). C Richness of MAGs between climate zones. D Shannon diversity of MAGs 
between climate zones. E The prevalence and relative abundance of core MAGs shared between 100% of sampling sites and at least 90% 
of individual samples. F Shannon diversity of core MAGs between climate zones. G Shannon diversity of non‑core MAGs between climate zones
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non-scavenging chickens. We therefore compared our 
MAGs to microbial genomes from a non-scavenging 
chickens (NSCs) dataset and to the Genome Taxonomy 
Database (GTDB).

The majority of our strain-level and species-level 
MAGs were absent in either the NSC dataset or GTDB 
(Fig. 6B, C, E, F, Additional file 4: Table S4). For the strain-
level MAGs, only 268 were identified in the NSC dataset 
and 47 in the GTDB, leaving 9682 strains not identified in 
either. At the species-level, 423 of our MAGs were iden-
tified in the NSC dataset, and 291 were identified in the 
GTDB, leaving 1242 species that were not identified. We 
clustered MAGs into 373 genus-level clusters, accord-
ing to their amino acid identities (AAI). Of these genera, 
163 were found in the NSC dataset, while 266 were found 
in the GTDB, leaving 84 genera that were not identified 
in either (Fig. 6D, G). Genera found to be unique to our 
dataset originated from a wide variety of taxa.

The majority of species-level MAGs carried at least 
one antimicrobial resistance (AMR) gene (n = 783), with 
tetracycline being the most common class of drugs tar-
geted by the AMR genes. Tetracycline resistance was also 
the most commonly targeted drug class among the NSC 
genomes. One MAG in particular, identified as Escheri-
chia flexneri, was noted as containing a large number of 
AMR genes (n = 54) in comparison to other MAGs. Five 
NSC genomes also contained large numbers of AMR 
genes: Pseudomonas aeruginosa (n = 59), Escherichia sp. 
Cla-CZ-1 (n = 56), Escherichia whittamii (n = 49), Entero-
bacter roggenkampii (n = 35) and Klebsiella pneumonia 
(n = 34).

Functional characterisation of MAGs isolated 
from Ethiopian indigenous chickens
The caecal microbiota plays an important role in the 
fermentation of carbohydrates that are not able to be 

Fig. 6 Comparison of Ethiopian chicken caecal MAGs to microbial genomes from non‑scavenging chickens and the GTDB. A Barplot showing 
the number of MAGS assigned to different phyla at both strain and species‑level. The number of strain‑level MAGs (B and E), species‑level MAGs (C 
and F) and genus‑level clusters (D and G) that were assigned as “unique” to our dataset according to the following criteria: Strain and species‑level 
MAGs were not unique based on GTDB (“not_unique_gtdb”) if the average nucleotide identity (ANI) between the query and GTDB reference 
genome were > 99% or > 95%, respectively. Genus‑level clusters were not unique based on GTDB if any MAGs within that cluster were assigned 
taxonomy at genus level. MAGs were defined as not unique when compared to previous chicken microbial datasets (“not_unique_drep”) if they 
clustered at 99% (strain) or 95% (species) ANI with any NSC microbial genome. Genera were defined as not unique when compared to previous 
chicken microbial datasets (not_unique_comparem) if they clustered at 60% AAI with any NSC microbial genome
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digested and absorbed in the small intestine of the host. 
SCFAs are produced through the fermentation of these 
fibrous compounds. These SCFAs can be absorbed by the 
host and used as an energy source. Scavenging chickens 
likely consume different fibrous compounds and a greater 
diversity of fibre than non-scavenging chickens.

Our MAGs contained a large diversity of CAZymes (Addi-
tional file 3: Table S1, Supplementary table - MAGs metabo-
lism strain (dx.doi.org/10.6084/m9.figshare.22154597) 
and Supplementary table - MAGs metabolism species  
(dx.doi.org/10.6084/m9.figshare.22154627)). CAZymes 
are enzymes involved in the synthesis, metabolism and 
binding of carbohydrates. As such, it would be expected that a 
microbe that was rich in CAZymes would be able to thrive on 
a more diverse set of carbohydrates and would be more of a 
nutritional generalist than a microbe with a less rich CAZyme 
profile [18]. Phyla clustered significantly by CAZyme com-
position for all domains (ANOVA, p = 1e − 05, Fig. 7).

Overall, MAGs from the Bacteroidota and Verrucomi-
crobiota contained the highest numbers of CAZyme 
genes, both by total CAZyme gene count (Bacteroidota, 
92 ± 39; Verrucomicrobiota, 127 ± 84) and the num-
ber of unique CAZyme families (Bacteroidota, 44 ± 18; 

Verrucomicrobiota, 49 ± 15). For the Verrucomicrobiota, 
41 MAGs contained over 250 CAZyme genes and there-
fore represent some of the most CAZyme-rich genomes 
in our dataset. These genomes belong to either of two 
families, Victivallaceae and UBA1829, and 16 were not 
identified in the GTDB or NSC dataset.

MAGs from the three Archaeal phyla had particu-
larly low numbers of CAZymes: Thermoplasmatota 
(total CAZyme genes: 6 ± 3, unique CAZyme families: 
4 ± 1), Halobacteria (total CAZyme genes: 9 ± 3, unique 
CAZyme families: 7 ± 2) and Methanobacteriota (total 
CAZyme genes: 24 ± 8, unique CAZyme families: 10 ± 2). 
The MAGs with the lowest CAZyme richness (< 1 
CAZyme genes) were members of the Mycoplasmatales 
(phylum: Firmicutes).

The average numbers of CAZymes per genome were 
similar between our dataset (60.08 ± 40.99) and the NSC 
dataset (68.24 ± 45.97) (Additional file 3: Fig. S5). In total, 
266 CAZymes were shared between the two datasets,  
while nineteen were unique to the NSC dataset. A fur-
ther nineteen CAZymes were identified in our MAGs 
but not in the NSC genomes: four carbohydrate- 
binding molecules (CBM11, CBM65, CBM68 and CBM79), 

Table 1 Species‑level MAGs that differed significantly in abundance between enterotypes

* adj-p < 0.05, species-level MAGs
a Relative abundance in comparison to other enterotypes. Only includes MAGs that were significantly differentially abundant

Phylum Total differentially 
abundant MAGs (n)*

Enterotype 1: tenfold higher 
abundance (n)a

Enterotype 2: tenfold higher 
abundance (n)a

Enterotype 3: tenfold 
higher abundance 
(n)a

Actinobacteriota 35 1 0 4

Bacteroidota 218 0 1 4

Campylobacterota 4 0 0 0

Cyanobacteria 129 19 0 3

Deferribacterota 5 0 0 0

Desulfobacterota 14 0 1 0

Elusimicrobiota 23 4 1 0

Eremiobacterota 2 1 0 0

Firmicutes 180 16 1 6

Firmicutes_A 510 48 3 11

Firmicutes_B 1 0 0 0

Firmicutes_C 14 0 0 4

Firmicutes_G 1 0 0 0

Halobacteriota 1 0 0 0

Methanobacteriota 1 0 0 0

Proteobacteria 147 21 1 3

Spirochaetota 52 2 0 1

Synergistota 1 0 0 0

Thermoplasmatota 9 1 0 0

Verrucomicrobiota 56 1 0 0

Verrucomicrobiota_A 1 0 0 0
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five glycoside hydrolases (GH47, GH86, GH107, GH119  
and GH160), eight glycosyltransferases (GT13, GT15, 
GT40, GT44, GT60, GT74, GT75 and GT103) and two 
polysaccharide lyases (PL25 and PL32). These CAZyme 
genes originated from MAGs from a wide range of tax-
onomies. For example, for the glycoside hydrolases: 
GH47 (α-1,2-mannosidases) originated from two Bac-
teroidales strains, GH86 (β-agarase/β-porphyranase) 
originated from 8 strains of the family UBA1829 (phylum 

Verrucomicrobiota), GH107 (endo-α-1,4-L-fucanase) 
originated from one strain of the family UBA3636 (phy-
lum Verrucomicrobiota), GH119 (α-amylase) originated 
from 2 Succinivibrionaceae strains, and GH160 origi-
nated from one Parabacteroides strain. Our MAGs also 
showed a wide diversity of predicted growth rates. These 
were found to significantly relate (P < 0.05) to CAZyme 
richness (Additional file 2).

Fig. 7 Boxplots showing the number of CAZyme genes per strain‑level MAG by phylum. A Total unique CAZyme families. B Total unique glycoside 
hydrolases (GH) families. C Total CAZyme genes. D Total GH genes
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As well as identifying individual CAZyme genes pre-
sent in MAGs, we can also use CAZyme data to identify 
which forms of carbohydrate are likely to be able to be 
digested by these strains by reconstructing metabolic 
pathways. Our MAGs demonstrated the capacity to 
degrade various carbohydrates (Fig.  8, Additional file  3: 
Fig. S6 and Additional file  4: Table  S5). The most com-
monly encoded carbohydrate degradation pathway was 
for chitin, a polysaccharide commonly found in fungi 

and arthropods (6828 of 9977 strain-level MAGs), which 
reflects the findings of the distilled and refined annotation 
of metabolism (DRAM) developers (48). This is closely 
followed by arabinose cleavage, present in 6648 MAGs.

Pathways to digest common fibrous plant compounds 
that are indigestible by chickens were present in many 
of the MAGs. Pathways for digestion of hemi-celluloses 
were very common, with mixed linkage glucan degra-
dation encoded by 4689 MAGs, xyloglucans by 4420, 

Fig. 8 Heatmap showing the percentage of species‑level MAGs within each “unique” genera with particular metabolic pathways. Genera were 
clustered at 40% AAI using the output from CompareM. Genera were classified as “unique” if no MAGs within that genus cluster were assigned 
a taxonomy at genus‑level by GTDB and if no NSC genomes clustered at > 60% AAI with MAGs within that cluster



Page 12 of 21Glendinning et al. Microbiome          (2024) 12:138 

xylans by 4151, beta-mannan by 3056 and alpha-man-
nan by 621. As expected from the diversity of CAZymes, 
members of the Bacteroidota were found to be the 
most likely to digest hemi-cellulose. In comparison to 
hemi-cellulose, the capacity to degrade amorphous  
cellulose (n = 3567) was less common. In general, those 
phyla that contained more strains that could degrade amor-
phous cellulose were also more likely to contain strains that 
degraded hemi-cellulose and pectin. As well as plant/diet-
derived carbohydrates, microbes in the caeca have access 
to host-derived carbohydrates such as mucin. Only 1.3% 
of strains showed the potential to degrade mucin.

Pathways for nitrogen metabolism were far less abun-
dant amongst the MAGs than those for fibre degradation. 
MAGs from phyla that frequently harboured nitrogen 
metabolism pathways were rarely able to degrade plant 
carbohydrates. For example, the majority of the mem-
bers of the Desulfobacterota, Deferribacterota and 
Campylobacterota phyla harbour the dissimilatory nitrite 
reduction to ammonia (DNRA) pathway and/or were 
able to convert nitrate into nitrite, but less than 1% of 
these MAGs show any cellulose/hemi-cellulose degrad-
ing capacity. In contrast, members of the Spirochaetota 
were commonly able to metabolise nitrite to nitric oxide 
while also showing the capacity to degrade plant-derived 
carbohydrates.

While chickens produce little methane in compari-
son to other livestock, such as ruminants, members of 
their gut microbiota can carry out methanogenesis. Of 
the MAGs, 132 contained the key functional metha-
nogenesis gene (methyl-coenzyme M reductase: mcr). 
Of those MAGs with the mcr gene, 22 were identified 
as having genes for all eight steps required for metha-
nogenesis, with a further 25 having at least four of the 
required steps. Interestingly, none of the genomes from 
the NSC dataset had genes for all eight steps required for 
methanogenesis, and only five genomes had > 50% of the 
required genes.

Gut microbes produce short-chain fatty acids, princi-
pally butyrate, acetate, and propionate, by the fermen-
tation of indigestible polysaccharides. These SCFAs can 
then be used as an energy source by the host animal. 
While it is difficult to be certain using metagenomic data 
whether a particular strain produces SCFAs, we can pre-
dict the potential for SCFA production using DRAM. The 
potential to produce SCFAs was widely encoded across 
taxonomies (Additional file  4: Table  S5). We visualised 
which SCFA/lactate encoding potentials occurred most 
together within the MAGs (Fig. 9). By far, the most com-
mon was the sole production of acetate, followed by the 
coproduction of acetate and lactate, then the coproduc-
tion of acetate and butyrate.

Discussion
In this study, we examined the caecal microbiota of 240 
indigenous Ethiopian scavenging chickens originating 
from farms exposed to diverse climatic and geographic 
conditions. We constructed a gene catalogue contain-
ing 33 million genes and 9977 high-quality, strain-level 
MAGs originating from diverse taxonomies and with 
diverse functional capacities. We found that Ethiopian 
chicken caecal microbiota clustered into three distinct 
enterotypes, with one of these enterotypes being charac-
terised by a high abundance of Prevotella and being par-
ticularly abundant in chickens living at high altitudes.

The chicken caecal microbiota is commonly domi-
nated by bacteria, with low proportions of archaea and 
eukaryotes [19, 20], which was reflected in our findings. 
Bacteroidota was the most abundant bacterial phylum 
in our samples, followed by Firmicutes, Proteobacte-
ria and Spirochaetota. This reflects what has previously 
been found in scavenging/feral birds and adult hens, but 
contrasts with taxa commonly found in intensively raised 
commercial broilers and young birds raised in biosecure 
poultry facilities. Commercial, intensively raised chicken 
breeds are reared without contact with older chickens 
in highly biosecure poultry facilities. They are therefore 
exposed to a lower diversity of microbial species than 
if they were raised by a maternal hen or exposed to an 
outdoor environment. As such, these birds usually have 
a low-diversity gut microbiota dominated by Firmi-
cutes until around 2 months of age, before developing a 
microbiota composition more similar to our findings by 
30–50  weeks of age [21, 22]. Commercial broilers are 
commonly slaughtered at 5–6  weeks of age and there-
fore do not have time to develop a “mature” microbiota. 
This is frequently also true for chickens that are part of 
microbiota studies, which often include only young birds. 
As such, the microbiota of these birds usually does not 
develop beyond a Firmicute-dominated composition [14, 
23, 24]. This is in contrast to chicks raised by a hen or 
exposed to adult caecal/faecal contents, which have cae-
cal microbiota more similar to our findings within a few 
days of hatch [25].

At an inter-country level, geography has been dem-
onstrated to significantly impact the chicken caecal 
microbiota [6]. We found significant differences in the 
alpha-diversity of the caecal microbiota between cli-
mate zones, with bacterial diversity generally decreasing 
as altitude increased. Our samples were also found to 
cluster into three enterotypes. Enterotypes are generally 
defined as a stratification of the gut microbiota based on 
similarities in terms of taxonomic compositions between 
samples [26]. Interestingly, one of our three enterotypes, 
characterised by a high prevalence of Prevotella, was 
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predominantly associated with the highest altitude (cli-
mate zone 1).

Decreases in gut microbiota diversity have also been 
observed in a study of Tibetan chickens raised at differ-
ent altitudes [8]. Tibetan chicken from high altitudes also 
had a greater abundance of Prevotellaceae in their caeca, 
in agreement with our findings. This increase in Prevo-
tella at high altitudes has also been noted in house mice 
[27], and cranes adapted to high altitudes have lower gut 

microbiota diversity than cranes that normally reside at 
low altitudes [28].

Gut microbiota samples from pigs and humans living at 
high altitudes were also found to be significantly lower in 
diversity than those from low altitudes [29]. In contrast, 
the diversity of the gut microbiota of rhesus macaques 
was increased in high altitudes, and members of the 
Prevotellaceae were found in lower abundance [30]. The 
microbiota of humans living in high-altitude areas of 

Fig. 9 UpSet plots showing the number of MAGs with production potential for SCFA and lactate production, as defined by DRAM. Only includes 
intersections with ≥ 10 MAGs. A Strain‑level MAGs. B Species‑level MAGs
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China have also been associated with increased microbi-
ota diversity [31]; however, as in our samples, Prevotella 
abundance was found to increase at high altitudes.

In chickens, while the reasons for this low diversity 
microbiota at high altitudes are currently unknown, it 
may be related to the effects of hypoxia [32], decreased 
temperature [33], decreased humidity, available crops 
(e.g., wheat and barley in high elevations and maize and 
finger millet at moderate elevations) or the relative lack 
of diversity in feed present at these elevations. Our study 
also found correlations between the gut microbiota com-
position and factors such as dietary components and 
soil characteristics. Further studies in these areas, along-
side investigations of temporal dynamics within climate 
zones, would contribute to an even greater understand-
ing of the factors influencing the gut microbiota in small-
holder systems of different altitudes.

We compared our MAGs to a dataset made from 
microbial genomes previously constructed from the 
chicken gastrointestinal tract [13, 16, 34, 35] (NSC data-
set) and to the Genome Taxonomy Database [36]. The 
number and diversity of taxa identified in our data-
set but not in the GTDB or NSC dataset emphasise the 
importance of studying the microbiota of indigenous 
livestock as well as commercial breeds. Our results also 
demonstrate the need to include microbial genomes 
isolated from indigenous livestock in commonly used 
genetic databases such as GTDB, as many of our MAGs 
were unable to be identified by GTDB-tk at the level of 
taxonomic order (n = 39), family (n = 204) and genus 
(n = 2252).

Despite the taxonomic novelty observed in our data-
set, the functional novelty was less apparent. While 
there were significant differences between the types of 
CAZymes found in the NSC dataset vs our MAGs, the 
vast majority of CAZymes were found in both. This cor-
relates with previous studies that found that differences 
in taxonomy tend to be greater than changes in the func-
tion of the microbiota [37]. Particularly high numbers 
of CAZymes were found in the phyla Bacteroidota and 
Verrucomicrobiota, these phyla having been previously 
shown to have a high percentage of their total proteins 
being identified as CAZymes in comparison to other taxa 
[17, 38]. Several CAZymes were found in our MAGs, but 
not in the NSC dataset. These included several enzymes 
linked to the breakdown of algae: PL25 (ulvan lyase: 3 
Sphaerochaetaceae MAGs), PL32 (poly(β-mannuronate) 
lyase/M-specific alginate lyase: 2 Paludibacteraceae 
MAGs), GH86 (β-agarase/β-porphyranase: 8 UBA1829 
MAGs) and GH107 (endo-α-1,4-L-fucanase: 1 UBA3636 
MAG) [39]. It is possible that this is due to the chickens 
consuming algae from local stagnant water sources.

As well as examining specific carbohydrate-degrading 
enzymes, we also characterised the metabolic pathways 
in our MAGs. The caeca is the main site of fibre fermen-
tation in the chicken gastrointestinal tract. Both our 
MAGs and genomes from the NSC dataset contained 
pathways for the fermentation of a wide variety of fibrous 
compounds, including various forms of hemi-cellulose 
and amorphous cellulose. However, the ability to degrade 
crystalline cellulose was rare, being encoded by only 6 
MAGs. The result of fibre fermentation is the production 
of SCFAs, which can used by the host as an energy source 
and can also play a role in pathogen resistance [10, 11].

The SCFAs that had the most potential for produc-
tion amongst our MAGs were acetate, then butyrate, 
then propionate, similar to the human gut [40] and the 
NSC dataset. Several MAGs also showed the capacity to 
degrade mucin. Mucin degradation by gut microbiota 
can be related to a lack of dietary fibre, leading bacteria to 
rely on host-derived glycans [41]. However, some mucin-
degrading species, such as Akkermansia muciniphila 
in humans, are often also common members of healthy 
microbiota [42]. The caecal microbiota also plays an 
important role in the nitrogen nutrition of the chicken, 
particularly when the bird is consuming little protein 
[43], due to the reflux of urine into the caeca [11]. The 
capacity for nitrogen metabolism was present amongst 
our MAGs but far less so than plant fibre fermentation.

We have identified a wide functional and taxonomic 
diversity of microbes originating in the caecal contents 
of Ethiopian scavenging chickens under smallholder 
settings. The vast majority of these microbes were not 
identified in either the GTDB or a dataset of publicly 
available microbial genomes isolated from predominantly 
non-scavenging chickens. We detected differences in the 
alpha and beta diversity of the chicken caecal microbi-
ota relating to various climate and geographical factors. 
These findings highlight the potential hidden micro-
bial diversity amongst indigenous scavenging chickens 
that may be missed when examining only commercially 
reared animals. They also highlight the potential limita-
tions of extrapolating results from microbiota studies 
in commercial animals to smallholder settings and the 
urgent need for more microbiota research in these small-
holder systems.

Methods
Sample collection
Two hundred forty-three indigenous chickens were 
included in this study. They originated from 26 sites 
across 15 districts of Ethiopia that represent diverse agro-
climatic conditions (Fig. 1A, B, Additional file 4: Table S6 
and S7). Samples were collected from smallholder farms 
within 3  km2 of the sampling site centre (within 0.03° 
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of longitude or latitude). In order to avoid bias associ-
ated with households, each bird collected from a single 
site belonged to a different smallholder. Whole genome 
sequences had previously been produced for the majority 
of chickens in our study except for samples from Argin-
jona and Dehina_Maria that were mapped following 
previously described methods to the chicken reference 
genome GRRCg6a [44]. Principle coordinate analysis 
was conducted using PLINK v1.9 [45] to show the clus-
tering of chickens by autosomal single-nucleotide poly-
morphisms (SNPs). SNPs were pruned for LD in PLINK 
(using PLINK option –indep-pairwise 50 10 0.1), then 
principle component analysis (PCA) plots were con-
structed in R. The chickens in our study did not belong 
to specific breeds; indigenous Ethiopian chickens do not 
constitute distinct breeds, instead weak sub-structuring 
of populations is observed based on geographic closeness 
[1] (Additional file 3: Fig. S7).

Climate predictors were identified from the DIVA-GIS 
database based on a single geographic coordinate taken 
from the sampling site by GPS, as previously described 
[1]. Chickens were raised in a typical low-input system, 
acquiring most of their food from scavenging and occa-
sional supplementary feeding. Data was collected on 
rearing conditions, supplementary feeding and local cli-
mate (Additional file  4: Table  S7). Most chickens lived 
in simple poultry houses, often constructed with a stone 
wall and grass roof, and with limited cleaning frequency 
(Fig.  1A). All farmers practised supplementary feed-
ing, which included items such as kitchen waste, grains 
or vegetables (for more details on the feeding condi-
tions of Ethiopian smallholder chickens, see Additional 
file 1). Chickens acquired most of their nutrition through 
scavenging on food sources located near the household, 
including vegetation, insects, worms, wasted grains and 
animal faeces. Chickens frequently co-habited with other 
domestic animal species and are also likely to have come 
into contact with wild animals.

Clustering of climate zones
Climate predictions were obtained from WorldClim 2.0 
Beta version 1 (June 2016). Clustering of climate zones 
was produced in R using the K-means cluster method 
based on annual temperature, annual precipitation and 
precipitation of the driest quarter of the sampling loca-
tions, during the years 1970 to 2000 (Fig. 1C and Addi-
tional file  3: Fig. S8). This resulted in the clustering of 
sampling areas into five climate zones. A similar method 
for climate regionalization has previously been used by 
Yang et al. [46].

DNA extraction and shotgun metagenomic sequencing
Caecal contents were collected at the farm from freshly 
slaughtered scavenging chickens, and stored in RNAlater 
solution (Ambio). Samples were kept on ice for a maxi-
mum of 24 h before being stored at − 80 °C prior to DNA 
extraction. DNA was extracted using the QIAamp Fast 
DNA Stool Mini Kit (Qiagen) following the manufac-
turer’s instructions, with some adjustments as described 
previously [47], including the addition of a bead beating 
step and increasing the cell lysis temperature from 70 to 
95  °C to increase the likelihood of lysing Gram-positive 
bacteria. DNA sequencing libraries were prepared using 
the Nextera XT DNA Library Prep Kit (Illumina) and 
sequenced with an Illumina Novaseq (2 × 150 bp) (Berry 
Genomics Co.). All 243 samples were sequenced in a sin-
gle run, yielding up to 10 Gb per sample. Adapter trim-
ming and quality filtering were performed using Fastp 
[48] (v.0.1.24). Host reads were removed by mapping the 
Gallus gallus genome (GRCg6a) to the trimmed sample 
fastq files using BWA-MEM (v.0.7.15) [49], followed by 
SAMtools (v.1.3.1) [50] to select reads where both paired-
end reads were unmapped. Three samples contained high 
host contamination and were thereby not taken forward 
for further metagenomic analysis (except for the con-
struction of MAGs), leaving a total of 240 samples.

Gene catalogue construction and analysis
After quality control and host removal, a gene catalogue 
was constructed from non-redundant genes. Firstly, sin-
gle-sample assembly was conducted using MEGAHIT 
(v.1.2.9) (contig length > 500  bp) [51]. Then, MetaGen-
eMark-1 [52] (GeneMark.hmm v.3.38: gmhmmp -a -d 
-f G -m; MetaGeneMark_v1.mod; gene length > 200nt) 
was used to predict open reading frames (ORFs). Non-
redundant genes were clustered using CD-HIT [53] 
(v.4.6.6) at 95% identity over 90% of the shorter ORF 
length (-c 0.95 -aS 0.9 -M 0 -T 0), resulting in 33,629,587 
genes. As many as 97.9% (95.2 ~ 98.5%) of the sequenc-
ing reads could be included in the non-redundant gene 
catalogue. Dual-BLAST least common ancestor strate-
gies were used for microbiome taxonomic annotation. 
Diamond [54] (v.2.0.2; diamond blastp -c 1 -k 5 -f 6) was 
used to search for homologous genes in the Uniprot data-
base (version 2019_03) using the protein sequences in 
the non-redundant gene catalogues. Then, the aligned 
Uniprot regions (E-value < 10 − 5) were used in a second 
alignment against the Uniprot database, resulting in the 
identification of homolog neighbourhoods of the ini-
tial query genes by reporting e-values that were equal to 
or less than the e-value from the first alignment. Query 
genes were then assigned the taxonomy of the least 
common ancestor of the neighbourhood. Sequencing 
reads were directly mapped to the non-redundant gene 
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catalogues by BWA-MEM (v.0.7.12—default options) 
[49]. The relative abundance of genes in the samples was 
calculated based on the count of aligned reads, normal-
ized to the gene length and sum of the abundance of all 
genes. Based on the taxonomic annotation of the gene 
catalogue, aligned reads were used to quantify taxonomic 
abundance profiles within samples. Relative taxonomic 
abundance was normalized to sequencing depth and the 
length of the genes originating from the same level of tax-
onomic classification.

Enterotype clustering
Gut enterotype analysis was performed by multidimen-
sional cluster analysis and PCA on genus abundance, 
according to previously described methods [55], using 
Jensen–Shannon divergence. All genera from the gene 
catalogue were used to define enterotypes in order to 
include taxa from all kingdoms. LEfSe was used to deter-
mine the microbiota features that most likely explained 
differences between enterotypes [56]. Spearman corre-
lations were performed between the main genera con-
tributing to enterotype clustering and all other genera. 
Genus networks were visualized using the Cytoscape 
[57] platform by transforming Spearman correlations 
(p < 0.01, rho > 0.5) into links. Mantel tests (Spearman 
correlation) were performed between our previously 
identified non-redundant environmental factors and gen-
era and phyla. Spearman pairwise correlations between 
continuous metadata variables were calculated (SparCC) 
[58]. P values were corrected for multiple tests using Ben-
jamini–Hochberg false discovery rate (FDR) correction. 
Significant features were used as input for building linear 
models using stepwise regression based on the Akaike 
information criterion [59]. The Shannon diversity index 
and inverse Simpsons index were used to compare alpha-
diversity between groups (Kruskal–Wallis). Bray–Curtis 
dissimilarity values were calculated to assess beta-diver-
sity, and PERMANOVA was used to compare groups.

Metagenome‑assembled genome assembly
Metagenomic bins were constructed using two different 
methods:

Method 1: Coassemblies and single-sample assem-
blies were performed using MEGAHIT (v1.1.3) with 
a minimum contig length of 500  bp. Using MEGA-
HIT, five separate co-assemblies were performed on 
samples from each climate zone. BWA MEM was 
used to map reads from each sample to the assembly 
from the same sample. MetaBAT2 (option -m 1500) 
was applied for contig binning.
Method 2: All 243 samples were used for sequence 
assemblies. IDBA-UD (v.1.1.3) [60] was used for sin-

gle sample assembly (options: –num_threads 16 –
pre_correction –min_contig 300). BWA MEM was 
used to map reads from each sample to the assembly 
from the same sample. SAMtools was used to create 
BAM files, and coverage for each assembly was calcu-
lated by running the command jgi_summarize_bam_
contig_depths on these files. MEGAHIT was used for 
coassembly of all samples (v.1.1.1) (options: –kmin-
1pass -m 100e + 10 –k-list 27,37,47,57,67,77,87 –
min-contig-len 1000), in six randomised batches of 
samples. Contigs were filtered to a minimum length 
of 2 kb and mapped as single assemblies. MetaBAT2 
(v.2.11.1) [61] was used to construct metagenomic 
bins for both single sample assemblies and coassem-
blies (options: –minContigLength 2000, –minCon-
tigDepth 2).

The completeness and contamination of bins were 
assessed using CheckM [62] (v.1.1.3; options: line-
age_wf -t 30 -x fa –nt –tab_table). Bins with complete-
ness ≥ 80% and contamination ≤ 5% were concatenated 
and used as an input for DAS Tool [63] (v1.1.2; option: 
–search_engine diamond -c merge.contigs.fa –threads 12 
–write_bins 1), as an additional quality control step. The 
bins output by the DAS tool were dereplicated using drep 
[64] at 99% average nucleotide identity (ANI), which is 
equivalent to a microbial strain, and at 95% ANI, equiva-
lent to a microbial species. Dereplication is the process 
of reducing a set of genomes based on their sequence 
similarity. Mapping rates for our strain and species-level 
MAGs can be found in Additional file 4: Table S8. GTDB-
Tk [65] (v.0.3.2, Database release 95) was used to assign 
taxonomy to MAGs. The taxonomic names of phyla used 
throughout the text of this manuscript are based on those 
used in this version of GTDB-Tk. Phylogenies were con-
structed using Phylophlan 3.0 [66] (v.3.0.60; options:-d 
phylophlan –min_num_markers 60 –subsample phy-
lophlan -f tol_config.cfg –diversity high –fast –genome_
extension fa –nproc 2). Phylogenetic trees were visualised 
using Graphlan [67] (v.1.1.3.1) and iTOL [68] (Interactive 
Tree Of Life; v.5). The Table2itol package (https:// github. 
com/ mgoek er/ table 2itol) was used for phylogenetic tree 
annotations.

MAG genes were identified using Prodigal [69] 
(v.2.6.3). CD-HIT [53] (v.4.6.8) was used to cluster all 
MAG proteins at 100% similarity and 90% similarity. 
The relative abundance of MAGs in the samples was 
estimated using the quant_bins module of MetaWRAP 
(v.1.3) with default parameters [70]. Kruskal–Wallis with 
Benjamini–Hochberg FDR correction was used to iden-
tify species-level MAGs that were differentially abundant 
between enterotypes.

https://github.com/mgoeker/table2itol
https://github.com/mgoeker/table2itol
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Comparing MAGs to previous chicken microbiota datasets
We constructed a dataset of chicken-derived microbial 
genomes from previously published chicken microbi-
ota studies (Additional file  4: Table  S9): including 5595 
MAGs and 41 genomes of representative cultured iso-
lates of novel species from Gilroy et al. [13], 469 MAGs 
from Glendinning et  al. [16], 133 genomes of cultured 
isolates from Medvecky et  al. [34], and 16 genomes of 
cultured isolates from Zenner et al. [35]. These genomes 
were dereplicated using dRep (v.3.2.2) (options: -comp 
80 -con 10 -str 100 -strW 0) at 99% ANI (strain-level) 
and 95% ANI (species-level) to produce two datasets 
of dereplicated, high-quality genomes. The vast major-
ity of samples from which these genomes were isolated 
originated from non-scavenging chicken (except 22 
(prior to dereplication) sampled from NCBI Bioproject 
PRJNA616250). We therefore labelled these datasets NSC 
(non-scavenging chickens) and compared our MAGs to 
these datasets to assess whether they were taxonomically 
and functionally distinct.

To calculate whether our MAGs were taxonomically 
distinct at strain and species-level, dRep was used on our 
MAGs and the NSC datasets at 99% and 95% ANI. Any 
MAG which did not cluster at 99% ANI with any genome 
from the NSC dataset was classed as distinct at strain 
level. Any MAG which did not cluster at 95% ANI with 
any genome from the NSC dataset was classed as distinct 
at species-level. Species-level genomes from both our 
dataset and the NSC dataset were compared using Com-
pareM [71] (v.0.1.2) aai_wf to generate average AAI. Gen-
era were clustered at > 60% AAI; genera were defined as 
distinct if they contained no NSC genomes. Our MAGs 
were also compared to the GTDB [65]. MAGs were 
defined as distinct strains in comparison to genomes in 
the GTDB if the ANI output by GTDB-Tk was < 99%, and 
distinct species if the ANI output by GTDB-tk was < 95%. 
Genera clusters (> 60% AAI) were defined as distinct 
from those in the GTDB if no MAG within that cluster 
was assigned a genus by GTDB-Tk.

Functional annotation of MAGs
Our MAGs and genomes from the NSC dataset were 
annotated in order to understand the potential metabolic 
function of these microbes. Genomes were annotated 
using DRAM [40] (v.1.2.2) with the “annotate” command; 
these annotations were then curated and summarised 
using the “distill” command. DRAM is a tool for annotat-
ing MAGs, using various databases, including UniRef90 
[72], PFAM [73], dbCAN [74], RefSeq viral [75], VOGDB 
(http:// vogdb. org/) and the MEROPS peptidase data-
base [76], and a user-supplied version of the KEGG [77] 
database (downloaded Sep 15, 2018). This tool provides 

information on the overall metabolic pathways encoded 
by the genomes, as well as specific information on the 
presence of CAZymes, rRNA genes and tRNA genes. 
Permutational multivariate analysis of variances (PER-
MANOVAs) was conducted using the adonis com-
mand from Vegan [78] (v.2.5.7), to compare the types of 
CAZymes present between groups. The Kruskal–Wal-
lis test was used to compare the abundance of CAZyme 
genes between groups. Microbial growth rates were pre-
dicted using gRodon [79] (v.0.0.0.9). This tool estimates 
maximal microbial growth rates by comparing codon 
usage patterns in highly expressed genes versus other 
genes. We first used prokka [80] (v.1.14.6) (options: –
centre X –compliant) to identify genes, including highly 
expressed genes (genes annotated as ribosomal proteins). 
Predicted genes and highly expressed genes were used 
as input for the gRodon “predictGrowth” command, 
which was run in partial mode to account for incom-
plete genomes. As suggested by the gRodon creators [79], 
copiotrophs were defined as having a < 5 h doubling time, 
whereas oligotrophs were defined as having a > 5 h dou-
bling time. AMR genes were identified in species-level 
MAGs using the resistance gene identifier (v. 5.1.1), and 
comprehensive antibiotic resistance database reference 
sequences downloaded on March 30, 2021 [81].

Selection of environmental variables
The relationships between environmental variables and 
the abundance of microbial taxa were estimated. In order 
to reduce model complexity by limiting the amount of 
environmental variables included in our analyses, vari-
ance inflation factors (VIF) were calculated for a set of 
environmental variables (Additional file 4: Table S10), to 
identify collinearity among explanatory variables (VIF 
value less than 20). The highest contributing set of uncor-
related environmental variables was identified. This led 
to the selection of 24 variables that were included in our 
analyses: eight climate/geographical variables (altitude, 
bio2, bio3, bio13, bio14, bio15, bio18, bio19), ten soil/land 
cover factors (CULT, FOR, SNDPPT, SLTPPT, CRFVOL, 
BLDFIE, CECSOL, ORCDRC, PHIHOX, WATCAP) and 
the dominance of five feeding crops (Wheat, Maize, Bar-
ley, Millet, Teff), and Ingera (a food derivative from Teff). 
Redundancy analysis (RDA; Vegan 2.6.2 package) was 
used to identify environmental variables that contributed 
to microbiota variation.

Graphical analyses
Graphs were created in R. Plots were constructed using 
the packages ggplot2 [82], Cowplot [83], UpsetR [84], 
cluster, clusterSim, ggpurb and corrplot. Heatmaps were 
constructed using heatmap.2 from gplots [85] (v. 3.0.1).

http://vogdb.org/
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of contigs. Fig. S4. The proportions of annotated read after mapping raw 
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(B). Fig. S5. Violin plot showing the number of CAZyme genes per strain‑
level MAG by dataset. A) Total unique CAZyme families. B) Total unique 
Glycoside Hydrolases (GH) families. C) Total CAZyme genes. D) Total GH 
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NSC dataset. Table S10. Environmental variables included in our analysis.
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