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Abstract 

Background Despite rapid advances in genomic‑resolved metagenomics and remarkable explosion of metagen‑
ome‑assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon 
mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry.

Results In this study, we combined long‑read sequencing and metatranscriptomics‑guided metabolic reconstruc‑
tion to provide a genome‑wide perspective of carbon mineralization flow from polymers to methane in an anaerobic 
bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality 
of metagenomic assemblies, enabling the effective recovery of 132 high‑quality genomes meeting stringent criteria 
of minimum information about a metagenome‑assembled genome (MIMAG). In addition, hybrid assembly obtained 
51% more prokaryotic genes in comparison to the short‑read‑only assembly. Metatranscriptomics‑guided meta‑
bolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales‑affiliated bacteria 
and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular 
genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales 
were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methano‑
gens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate 
exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role.

Conclusion Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this 
complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic diges‑
tion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic 
guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems.

Keywords Anaerobic digestion, Long reads, Omics, Syntrophic bacteria, Reverse electron transfer

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

*Correspondence:
Tong Zhang
zhangt@hku.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-024-01830-z&domain=pdf


Page 2 of 18Yan et al. Microbiome          (2024) 12:121 

Introduction
Anaerobic digestion is regarded as a representative 
engineered biotechnology that contributes to creating 
a circular economy and combatting climate change by 
organic waste resource recovery and renewable meth-
ane production. The global operation of approximately 
132,000 digesters (≥ 100  m3 tank size) and the growth of 
biogas-based electricity generation from 64,854 GWh in 
2012 to 96,565 GWh in 2020, as reported by the World 
Gas Association and The International Renewable Energy 
Agency, highlight the significant global interest of anaer-
obic digestion biotechnology [1, 2]. Within methanogenic 
environments, multiple microbial trophic guilds collabo-
rate to convert organic matters into methane and carbon 
dioxide, playing a pivotal role in anaerobic carbon flux 
across both natural ecosystems and engineered bioreac-
tors [3]. Despite the widespread application of anaerobic 
digestion and well-known theories about a cascade of 
anaerobic degradation steps, knowledge about the uncul-
tured anaerobes, including their genetic diversity and 
ecological functions, is still relatively scarce not only due 
to their vast phylogenetic and metabolic diversity but also 
technical limitations, e.g., challenges in cultivating slow-
growing anaerobes [4, 5]. An improved understanding 
of the metabolic capability of uncultured anaerobes and 
their adaptations to environmental shifts will contribute 
to optimizing operational strategies of anaerobic waste 
treatment and deciphering the black box of anaerobic 
carbon transformation and the global carbon flux [6].

In recent years, genome-centric metagenomics has 
extensively been used to explore intricate microbial 
communities, offering crucial insights into the poten-
tial ecological functions of microbial populations 
within anaerobic environments [3, 7]. However, despite 
advancements in sequencing technologies and bioin-
formatic workflows, short-read-based genome-resolved 
metagenomics is still subject to substantive limitations 
partly owing to the challenges in reconstructing com-
plete/high-quality genomes and retrieving compre-
hensive genetic information [8]. Long-read sequencing 
approaches provide unique solutions for metagenomic 
assembly challenges by recovering rRNA operons and 
spanning the long repetitive regions [9, 10], enabling 
the retrieval of complete and previously unexplored 
metagenome-assembled genomes (MAGs) in diverse 
environments, e.g., activated sludge ecosystem [11] 
and rumen [12]. Several investigations have reported 
large collections of biogas microbiomes by short-read-
based metagenomics. Ma et  al. assembled 2426 draft 
MAGs from 56 full-scale biogas plants in China [13]. 
And Campanaro et  al. retrieved 1401 archaeal and bac-
terial genomes derived from 134 public metagenomes 
from various biogas reactors [14], which was further 

complemented to 4568 non-redundant anaerobic species 
by integrating 192 additional datasets [15]. However, only 
108 MAGs were shared in the collections between Ma 
et  al. and Campanaro et  al. [13], highlighting high por-
tion of undiscovered anaerobes inhabiting various meth-
anogenic environments and necessity of recovering the 
microbial wealth from anaerobic communities by long-
read metagenomics.

Given the complicated nature of engineered and natu-
ral methanogenic environments, the majority of anaero-
bic digestion studies focused on a specific facet of the 
microbial communities, e.g., the methanogenic stage, 
using simplified model systems [16, 17] or long-term arti-
ficial enrichment of substrate specification experiments, 
such as syntrophic consortia enrichment [6, 18, 19]. 
Such pioneering studies provided important knowledge 
about the metabolic function of different flora and their 
metabolic trophic relationships. However, it is crucial to 
recognize that both natural and engineered ecosystems 
consistently harbor a complex mixture of different sub-
strates, rather than simple ones. These substrates col-
lectively determine the ecological niches of microbial 
populations and significantly influence their metabolic 
interactions. Therefore, to capture functionally important 
species and uncover their trophic interactions in complex 
methanogenic habitats, it is vital to incorporate individ-
ual-level functional assignment and community-level 
carbon mineralization routes. Up to date, few attempts 
have been made to unravel a genome-wide understand-
ing of carbon flow from sugars and amino acids (AAs) to 
central carbon metabolism, from syntrophic oxidation of 
long-chain fatty acids (LCFA) to short-chain fatty acids 
(SCFA), and finally to methanogenesis within the com-
plex anaerobic food web [20–22]. Furthermore, prior 
attempts in exploring the metabolic potential of keystone 
species were mainly based on the presence of targeted 
pathways or biomarker genes [22–24], with fewer inves-
tigations harnessing multi-omics approaches to provide 
expression-based evidence regarding the in  situ meta-
bolic activity of highly active microbes and their biogeo-
chemical functions in intricate ecosystems.

In this study, we investigated in situ metabolic activities 
and trophic interactions of uncultivated anaerobes by uti-
lizing a lab-scale anaerobic bioreactor as a methanogenic 
ecosystem. Using metatranscriptomics-guided metabolic 
reconstruction, we unraveled a community-level carbon 
flow based on high-quality genomes reconstructed by 
the hybrid assembly using short and long reads. Through 
this work, we connected microbial community structures 
to the functional potentials of individual populations, 
identified novel keystone lineages with previously unde-
scribed functions, as well as pinpointed specific genomic 
characteristics of active anaerobic lineages helping them 
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stand out from substrate competition and niche domi-
nance. Our study improves the understanding of meta-
bolic underpinnings and trophic interactions between 
uncultivated key anaerobic guilds, providing a founda-
tional framework to connect the metabolic attributes of 
uncultured anaerobic lineages with their ecological func-
tion within the intricate anaerobic ecosystems.

Materials and methods
Bioreactor operation and sample collection
A lab-scale 15-L anaerobic membrane bioreactor 
(AnMBR) was inoculated with the mixed anaerobic 
sludges collected from four full-scale anaerobic tanks, 
fed with fresh leachate from a refuse transfer station and 
operated for 215 days at 35 ± 1 °C, achieving a stable and 
high COD removal efficiency of over 98% (please refer to 
our previous publication [25] about the detailed opera-
tion conditions and the substrate properties).

This AnMBR had been stably operated from long HRT 
(hydraulic retention time, 20 days) to short HRT (1 day). 
The organic loading rates changed from low (under HRTs 
of 20 days, 15 days, and 10 days) to medium (7 days, 
5 days, and 4 days), and finally high (3 days, 2 days, and 
1  day). To obtain a comprehensive catalog of anaerobic 
lineages and accurately assess their functional activi-
ties, anaerobic digested slurry samples at the seeding 
phase (namely Raw) and at the time point with the high-
est methane-produced rates of each HRT (namely H20, 
H15, H10, H7, H5, H4, H3, H2, and H1) were collected to 
provide temporal metagenomics and metatranscriptional 
evidence for a more thorough analysis. All the collected 
samples were frozen by liquid nitrogen immediately and 
stored at −80 °C before DNA and RNA extraction.

DNA and RNA extraction, library construction, 
and sequencing
Total genomic DNA of anaerobic digested slurry sam-
ples was extracted using the  DNeasy®PowerSoil® Pro 
Kit (Qiagen, German) in accordance with the manufac-
turer’s instruction with a slight modification. Specifically, 
for the cell lysis step, the vortex at maximum speed was 
shortened to 8 min to avoid over fragmentation of DNA 
contents. The quantity and quality of the extracted DNA 
were checked and measured by NanoDrop ONE (Thermo 
Fisher Scientific, USA) and agarose gel electrophoresis. 
The extracted DNA was divided into two parts, and the 
first part was sequenced on the Illumina NovaSeq plat-
form (Illumina, CA, USA) by Novogene Co., Ltd. (Beijing, 
China) with 2 × 150 bp paired-end strategy while the sec-
ond part was prepared using the SQK-LSK109 Ligation 
Sequencing Kit for library construction and sequenced 
on the GridION X5 platform (Oxford Nanopore Tech-
nologies, Oxford, UK) with R9.4.1 flow cell in our lab.

Total RNA from the sludges, taken in three replicates, 
was extracted using the  RNeasy®  PowerSoil® Total RNA 
kit (Qiagen, German) with the addition of phenol: chloro-
form: isoamyl alcohol (25:24:1). The extracted RNA was 
checked for integrity and purity using agarose gel elec-
trophoresis and Agilent 2100 Bioanalyzer (Agilent, Santa 
Clara, CA, USA). Prior to metatranscriptomic sequenc-
ing, rRNA was depleted from the total RNA using the 
Ribo-Zero rRNA removal kit (Illumina, USA), and then 
the remaining mRNA was fragmented and reverse-tran-
scribed into cDNAs for subsequent sequencing. Illumina 
sequencing of cDNA samples was performed in Novo-
gene Co., Ltd. (Beijing, China). Detailed statistics of the 
sequencing data was provided in the Supplementary Data 
1.

Data quality control, metagenomic assembly, and binning
For Illumina sequencing data, fastp (v0.23.2) [26] was 
used to filter out low-quality and contaminated reads 
with the parameters “–cut_mean_ quality 20 --detect_
adapter_for_pe.” For Nanopore sequencing data, base 
calling was performed by Guppy (v5.0.11). Quality con-
trol of the basecalled reads was conducted using NanoP-
lot (v1.40.2) [27] with a quality threshold of Q ≥ 7. Only 
reads longer than 1000 bp were used for downstream 
analysis.

Four approaches with different assembled strategies 
were used to assemble the quality-controlled short and 
long reads to obtain high-quality contigs: two short-read-
based assemblers, metaSPAdes (v3.14.1) [28] and megahit 
(v1.2.9) [29], and two hybrid methods, Unicycler (v0.4.4) 
[30] and iterative haplotype-resolved hierarchical cluster-
ing-based hybrid assembly approach [31]. Details about 
the assembly approaches are provided in Supplementary 
Methods. The assembled contigs of each approach were 
imported into MetaWRAP (v1.3.2) [32] separately for 
metagenomic binning. The bin_refinement module from 
MetaWRAP was used to consolidate the binning results 
from MaxBin2 [33], metaBAT2 [34], and CONCOCT 
[35] to recover a single and improved bin set. The refined 
bins from each assembly approach were aggregated and 
dereplicated using dRep (v3.2.2) [36] at the 99% (strain 
level; Supplementary Data 2) and 95% (species level; Sup-
plementary Data 3) average nucleotide identity (ANI), 
respectively. The dereplicated bins were then manually 
checked to select the representative MAGs with high 
contiguity.

The quality of the recovered MAGs was evaluated using 
CheckM (v1.1.3) [37] based on the presence of lineage-
specific single-copy marker genes with default param-
eters. The taxonomy of MAGs was classified based on 
the Genome Taxonomy DataBase (GTDB) (214 version) 
using GTDB-Tk (v2.2.6) with the “classify_wf” workflow 
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[38, 39]. The relative abundances of the MAGs were 
calculated using CoverM (v0.6.1) (https:// github. com/ 
wwood/ CoverM) in “genome” mode with a minimum 
identity of 95% and a minimum aligned length of 75%.

Genome annotation, pathway curation, and metabolic 
reconstruction
The genome features of the recovered MAGs, including 
5S, 16S, 23S rRNA operons, and tRNA were predicted 
by Prokka (v1.13) [40] with the mode “--kingdom Bacte-
ria” and “--kingdom Archaea,” respectively. Open Read-
ing Frames (ORFs) were predicted using Prodigal (v2.6.3) 
[41] with the mode “-meta” and the completeness of each 
ORF was identified by the indicator “partial” in the gene 
coordinates file. The ORFs of each MAG labeled with the 
MAG name were merged to create an entire ORF cata-
log for metatranscriptomic analysis. The ORF catalog was 
functionally annotated with Kyoto Encyclopedia of Genes 
and Genome (KEGG) orthologous group ids (KO) using 
online GhostKOALA with the KEGG GENES database of 
“genus_prokaryotes” option [42, 43].

A total of 90 anaerobic pathways are summarized, elab-
orating the carbon flux from sugars and AAs to central 
carbohydrate metabolism, from LCFA to SCFA oxida-
tion, and finally to methanogenesis (Supplementary Data 
4). To ensure the accuracy of genes associated with a spe-
cific pathway, KOs in each step’s reactions were manu-
ally checked in the KEGG and MetaCyc databases [43, 
44]. Due to the lack of modules for some pathways, the 
modules were constructed based on rules referred to the 
KEGG existing modules (Supplementary Methods). To 
accurately assign the metabolic abilities with a MAG, a 
specific pathway is considered to exist in a MAG only 
if 100% of its key reactions were identified within that 
MAG, with the exception of the methylmalonyl-CoA 
pathway (MMC) for syntrophic propionate oxidation. 
Considering the imperfection in MAGs and 11 steps 
involved in this pathway, the presence of MMC pathway 
in a MAG was defined as the identification of ≥ 90% of 
key steps (10 of 11 steps).

Genome‑centric metatranscriptomic analyses
After quality control, SortMeRNA (v4.3.4) [45] was used 
to remove non-coding RNA sequences from metatran-
scriptomic reads according to the multiple rRNA data-
bases for bacterial, archaeal, and eukaryotic sequences. 
Resulting mRNA reads were mapped to the entire ORF 
catalog collected from all the recovered MAGs using 
RSEM (v1.3.3) [46] to calculate the read count of each 
ORF. To make a comparison between samples, the unit of 
transcripts per million (TPM) was employed to quantify 
the transcriptional expression level of each gene, which 

were normalized by the length of each gene and the 
sequencing depth per sample [47].

To identify the active populations at different stages of 
carbon mineralization, we calculated the transcriptional 
expression of targeted pathway in each MAG and con-
ducted a comparative analysis of transcriptional activi-
ties within a specific pathway between different MAGs. 
The transcriptional expression of targeted pathway in 
one MAG was calculated as the average transcriptional 
expression of all the steps. Moreover, the transcrip-
tional expression level of a particular step was deter-
mined through the following criteria: (1) if a step could 
be catalyzed by a single enzyme complex, the average 
transcriptional expression of each subunit was employed; 
(2) if a reaction could be catalyzed by multiple enzymes 
or multiple copies of an enzyme encoded by a genome, 
their summed transcriptional expression was utilized as 
the expression value of that step [47]. The overall anal-
ysis workflow is shown in Supplementary Fig.  1, and 
additional methodological details are provided in Supple-
mentary Methods.

Results
Hybrid assembly improves the quality 
of metagenome‑assembled genomes
After 215-day operation of the anaerobic reactor, 10 
anaerobic digested slurry samples under increased 
organic loadings from HRT of 20 to 1 day were sampled 
for sequencing. In total, we obtained 109 Gb Illumina 
short-read data (average 10.9 Gb per sample) and 58 Gb 
Nanopore long-read data (average 14.5 Gb per sample) 
(Supplementary Data 1). Then short-read-only assembly 
and hybrid assembly strategies were utilized, followed 
by a comprehensive assessment of assembly contiguity, 
genetic information recovery, and MAG quality.

The comparison results showed that hybrid assem-
bly significantly improved the contiguity of assemblies, 
having fewer contig counts in a MAG (averagely 241 vs 
397) and remarkably longer (13 times) N50 length (aver-
agely 342.37 kbp) (Fig.  1A–C, Supplementary Data 5). 
In addition, it has been demonstrated that long reads 
could considerably span the challenging regions, such 
as rRNA operons and repetitive regions. In this study, 
366 full-length 16S rRNA genes were identified in 243 
MAGs (45% of the total MAGs) by hybrid assembly, 
while the short-read-based assembly only recovered 15 
full-length 16S rRNA genes (Supplementary Data 5). 
For repetitive regions, 441 in 204 MAGs were obtained 
with hybrid assembly while only 230 using short-read 
assembly (Fig.  1D). Regarding predicted genes, hybrid 
assembly not only retrieved 51% more prokaryotic genes 
(1,402,354 vs 929,116) but also possessed a higher pro-
portion (86% vs 75%) of full-length prokaryotic genes 

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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compared to the short-read-only assembly (Fig.  1E, F). 
Following the stringent criteria of MIMAG [48], 132 of 
the reconstructed MAGs using the hybrid assembly were 

designated as high-quality genomes, much more than 
that (only 3 MAGs) from the short-read-based assembly 
(Supplementary Data 5). Of the eight assembled circular 

Fig. 1 Long‑read sequencing improved metagenomic assembly and recovered hidden genetic information in the methanogenic community. A–C 
The log‑scale distribution of contig number and lengths for short‑reads‑only approach (SR‑only) and hybrid assembly (Hybrid). The dashed lines 
indicate median values. D–F The recovery of repeat regions and predicted genes as well as the proportion of full‑length genes in the assembled 
metagenome‑assembled genomes (MAGs) by short‑reads‑based method (SR‑only) and hybrid assembly (Hybrid). G The genomic information 
of MAG at strain‑level by hybrid assembly. H The cumulative relative abundances of high‑quality genomes in the anaerobic community. I 
Unclassified MAGs at different taxonomic levels by GTDB (214 version)



Page 6 of 18Yan et al. Microbiome          (2024) 12:121 

MAGs, three were proposed as potential a new genus, a 
new family, and a new order based on their full-length 
16S rRNA gene identity (Supplementary Note 2, Sup-
plementary Data 6). Overall, hybrid assembly plays a 
crucial role in improving the genome quality of MAGs, 
which will largely facilitate the exploration of complete 
metabolic processes by capturing the genetic information 
missed in the short-read-only assembly.

High‑quality MAGs represent the majority 
of methanogenic community
After dereplication at 99% ANI threshold, a total of 542 
MAGs with a median N50 length of 104 kbp and median 
completeness of 79.2% were recovered (Fig.  1G). By 
using 95% ANI and further quality filtration, there were 
197 species-level MAGs with a completeness of ≥ 90%, 
among them 132 were high-quality genomes, and 20 out 
of the 132 genomes with one contig being nearly com-
plete (Supplementary Data 3). Remarkably, the abun-
dances of high-quality genomes accounted for ~64% of 
anaerobic microbiomes in the reactor at HRT of 1 day 
(Fig.  1H, Supplementary Data 3), indicating that these 
high-quality MAGs could provide a high characterization 
of encoded metabolic potentials and hidden genomic fea-
tures in the methanogenic community of this study.

Phylogenetic analyses revealed a broad taxonomic 
diversity of the 197 genomes, encompassing four archaeal 
(15 MAGs) and 23 bacterial phyla (182) (Fig. 2, Supple-
mentary Data 3). And the majority of 197 MAGs were 
affiliated with the Chloroflexota (30), Bacillota_A (25), 
Bacteroidota (25), Acidobacteriota (20), and Desulfobac-
terota (18). Of note, 87 of the 197 MAGs (44.16%) did not 
match any of the reference species genomes in the GTDB 
(214 version), implying that they belong to unknown 
populations at the species level or higher taxa (Fig.  1I, 
Supplementary Data 6). We also performed a species-
level comparison of 197 MAGs to two public large sets of 
anaerobic MAGs from full-scale biogas plants and reac-
tors [13, 14], unveiling the significant MAGs uniqueness 
(65.5%) in our study and a substantial improvement in 
quality (94.1%) for the aligned 68 MAGs in previous pub-
lic dataset (Supplementary Note, Supplementary Data 6). 
This result emphasized the vast phylogenetic and meta-
bolic traits of unexplored anaerobic lineages in diverse 
intricate ecosystems, warranting further investigation.

Metatranscriptomic and metabolic reconstruction 
of anaerobic community
The 197 MAGs showed good representativeness of the 
active populations in the anaerobic community, with 
81.4% ± 1.9% of the metatranscriptomic reads in each 
experimental condition mapping to them (Supplemen-
tary Fig. 2, Supplementary Data 3). Notably, a significant 

shift in transcriptional expression was observed from 
bacterial to archaeal clades as substrate concentrations 
increased, highlighting an intriguing pattern of gene 
expression dynamics (Supplementary Fig. 3). At low sub-
strate concentrations (HRT=15 days), approximately 75% 
of the mapped transcriptomes was attributed to the bac-
terial clades, with Mesotoga cluster (20.3% bin.190 and 
1.4% bin.512) accounting for 21.7%, followed by Bacte-
roidales-related cluster at 48.3% (17.4% bin.334, 13.1% 
bin.202, and 12.3% bin.267) and Cloacimonadaceae-
affiliated bin.480 at 2.1%. In contrast, under HRT of 2 
days, Methanoregulaceae bin.74 accounted for the high-
est proportion (15.8%) of the mapped transcriptomes, 
followed by two Methanothrix-affiliated species bin.206 
and bin.266 (13.9%) and Desulfobacterota clade (11.4%), 
mainly including Smithellaceae bin.332 (6.9%), Syntro-
phobacteraceae bin.487 (2.7%), and Syntrophales bin.292 
(1.8%) (Supplementary Fig. 4).

By further metabolic reconstruction, we connected 
each anaerobic lineage with their catabolic abilities, 
unveiling versatile metabolic potentials of the whole 
anaerobic microbiota in assimilating carbohydrates, 
proteins, and LCFAs (Fig. 3, Supplementary Data 7). To 
further confirm substrate-assimilating function, we pro-
vide multiple HRT-dependent transcriptional evidence 
to identify novel microorganisms and their specific path-
ways as well as microbes with previously uncharacterized 
functions. Based on community-level metabolic recon-
struction, the genome-wide carbon flux was depicted 
to track the biotransformation from (poly)monomers to 
 CH4 and  CO2 along the organic loading gradients (Fig. 4). 
Moreover, we conducted a comparative analysis of tran-
scriptional activities within a specific pathway between 
different MAGs to identify the active populations at 
different stages of carbon mineralization (Supplemen-
tary Data 8). The sections below focused on catabolic 
pathways, substrate transport, and energy conservation 
strategies of the representative active species-level popu-
lations within their respective anaerobic guilds.

Carbohydrate depolymerization and sugar degradation
Consistent with the carbohydrate removal rates of over 
98% (Supplementary Fig.  5), the anaerobic microbiota 
expressed a wide group of enzymes for the carbohydrate 
depolymerization (Supplementary Data 9). Specifically, 
129 glycoside hydrolase (GH, EC 3.2.1.-) families were 
identified, some of which displayed high transcriptional 
expression responding to various organic loadings, such 
as GH13 and GH23 involved in the degradation of starch 
and peptidoglycan (Supplementary Fig.  6, Supplemen-
tary Data 9). Taxonomically, the members of phylum 
Bacteroidota were the dominant contributors (28.5 ~ 
67.6%) of the transcriptionally expressed genes encoding 
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Fig. 2 Phylogenetic genome tree showing the diversity, abundance, and genome quality of the bacterial lineages. The tree is constructed 
based on the concatenated alignment of 120 single‑copy bacterial‑specific marker genes by GTDB‑Tk. Outer bands with different colors show 
the phyla of all the bacterial lineages. Inner heatmap indicates the maximum relative abundance of the MAGs in different sampling points. Bar 
charts and heatmap strips from the inner to the outer sections indicate the genome quality of each MAG. Other detailed information is provided 
in Supplementary Data 3



Page 8 of 18Yan et al. Microbiome          (2024) 12:121 

carbohydrate-active enzymes (CAZymes) across all con-
ditions, in accordance with prior metagenomic studies 
highlighting their potential metabolic capacities for car-
bohydrate utilization [49].

Transcriptional analysis revealed the most active popu-
lations in CAZymes for Bacteroidota as three uncultured 
family-level lineages: Petrimonas sp. bin.267 (circular 
genome, 98.9% completeness), Bacteroidales bin.334 
(contig=1, 95.4% completeness), and VadinHA17 bin.202 
(contig=1, 93.0% completeness), and for Thermotogota, 
Mesotoga sp. bin.190 (contig=49, 99.8% completeness) 
(Supplementary Fig.  4). Transcriptomics-based meta-
bolic reconstruction revealed their similar metabolic 
utilization of disaccharide (lactose and sucrose), mono-
saccharide (xylose) and central carbon metabolism, i.e., 
glycogen degradation, glycolysis, and/or pyruvate oxida-
tion, confirming the overlapped functional traits within 

the community (Fig.  3, Supplementary Data 10). How-
ever, the dominant pathway activities within genomes 
indicated the function-specific differences between these 
populations. Specifically, Mesotoga sp. bin.190 had higher 
transcriptional level of fructokinase to degrade fruc-
tose, whereas Petrimonas sp. bin.267 expressed more 
beta-galactosidase (lacZ) homologs for lactose cleav-
age, and VadinHA17 bin.202 showed higher transcrip-
tional expression level of genes (xylA and xylB) in xylose 
isomerase pathway. In addition, these three populations 
were highly engaged in glycolysis to convert glucose into 
pyruvate, while Bacteroidales bin.334 showed a prefer-
ence for downstream pyruvate oxidation to produce 
acetate, supported by its absence of the complete gly-
colysis pathway and higher transcriptional expression 
of pyruvate:ferredoxin oxidoreductase (PFOR), phos-
phate acetyltransferase (pta), and acetate kinase (ack) 

Fig. 3 The distribution of metabolic pathways and profiles of functional systems in the top 26 species representatives with a relative transcriptional 
expression of over 1% in at least one sample of metatranscriptomics. Pathways are considered present only if 100% of steps were identified 
in a MAG (except 90% for methylmalonyl‑CoA pathway). Bar chart demonstrates the number of MAGs encoding the metabolic pathways 
and energy modules. Heatmap indicates the variation of relative transcriptional expression of each MAG across increased organic loadings

Fig. 4 Carbon flux from (poly) monomers to  CH4 and  CO2 across the organic loading gradient. Headers in the boxes and the line chart represent 
degradation modules and specific pathways, respectively. Line chart shows the variations in transcriptional activity of anaerobic populations 
responding to organic loadings. The lines colors represent the species in different phyla. The large circles under line charts colored by organic 
loadings encompass smaller circles (MAG abundance colored by phylum) represent MAGs encoding the targeted pathways. Circle size indicates 
MAG relative abundance. Thickness of lines connecting different modules represents the summed transcriptional expression of specific pathways 
in different MAGs

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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(Supplementary Data 10). These results suggested that 
bacteria with a similar metabolic repertoire exhibit sub-
strate preference to avoid excessive competition and 
foster interactions within the community. Furthermore, 
these active taxa utilized different sugar transportation to 
create specific functional niches. For example, Thermot-
ogota-related bin.190 highly transcriptionally expressed 
gene (glcEFH) encoding ABC-type transporter for glu-
cose uptake, whereas Bacteroidota-affiliated bin.267 uti-
lized the electrochemical potential-driven transporter 
(glcU) (Supplementary Data 10), indicating the distinct 
functional adaptations for substrate competition among 
different taxonomic lineages.

Protein hydrolysis and amino acid degradation
The high removal efficiencies of proteins (over 98%, 
Supplementary Fig. S5) suggested that protein and its 
subsequent hydrolysate amino acids (AAs) were one of 
the major organic carbon sources within this anaerobic 
food web. In agreement with this, microbial community 
members transcriptionally expressing a wide range of 
peptidases involved in the breakdown of peptide bonds 
were observed, some of which were predicted to be 
extracellular (Supplementary Data 11). Notably, Bacte-
roidota-affiliated bin.334 and bin.267, along with Ther-
motogota-affiliated bin.190 and Thermovirgaceae bin.148 
(contig=8, 100% completeness) showed high proteolytic 
activity, as evidenced by the high transcriptional expres-
sion of genes encoding extracellular and/or intracellular 
cysteine, serine peptidases, and metallopeptidases in 
their genomes (Supplementary Data 11). This result is in 
accordance with findings from 16S rRNA gene sequenc-
ing and omics-based method [50, 51], reinforcing the 
ecological significance of Bacteroidota, Thermotogota, 
and Synergistota members in protein hydrolysis and 
AA degradation. Furthermore, Bacteroidota-affiliated 
bin.334 and bin.267, Thermotogota-affiliated bin.190 and 
Thermovirgaceae bin.148 encoded and expressed 12, 16, 
13, and 13 pathways for the intracellular AAs breakdown, 
respectively (Fig. 3). Specifically, bin.190 and bin.148 also 
transcriptionally expressed numerous AAs transporters, 
i.e., ABC-type transporter for polar and branched-chain 
AAs, tryptophan/tyrosine transportation, and glycine 
betaine/proline transport system (Supplementary Data 
11).

In addition, a recent study revealed the previously 
underestimated but crucial role of uncharacterized fam-
ily, i.e., VadinHA17, in the AA degradation [52]. Our 
study found that two VadinHA17-affiliated genomes, 
bin.479 (contig=9, 97.1% completeness) and bin.61 (con-
tig=150, 93.1% completeness), exhibited ANI values over 
98% with two previously identified AA degraders [52] 
(Supplementary Data 6). The two populations in this 

study encoded several AA degradation pathways and 
dipeptide/tripeptide transporters, in line with their pre-
viously known AA degradation capabilities. Yet, the path-
ways responsible for AA degradation exhibited relatively 
low transcriptional expressions in these two genomes, 
indicating the limited involvement of these known AA 
degraders in AA degradation in this study (Supplemen-
tary Data 10). By contrast, another VadinHA17-affiliated 
lineage bin.202 (contig=1, 93.0% completeness) that 
shared a low ANI of 79.1% with those known AA degrad-
ers exhibited high abundance (5.2% of total abundance) 
and transcriptional expressions (13.0 % of total metatran-
scriptome) in AA degradation under HRT of 7d (Supple-
mentary Fig.  4). Genomic feature analysis has revealed 
that this previously undescribed genome transcription-
ally expressed genes encoding 190 peptidase and 9 intra-
cellular AA degradation pathways for alanine, asparagine, 
aspartate, glycine, proline, serine, threonine, and tryp-
tophan, as well as transporters, i.e., sodium ion:proline 
symporter (10), proton/sodium ion:glutamate/aspartate 
symporter (2), and lipoprotein transporters (9) (Sup-
plementary Data 10 and Data 11). This finding revealed 
the novel species in AA degradation and implied that 
metabolic versatility and diversity of family VadinHA17 
remain understudied, particularly with regard to proteo-
lytic activity and AA-scavenging functions.

Novel bacteria for long‑chain fatty acid degradation
The substantial increase in transcriptional level observed 
in the LCFA pathways with the increased organic load-
ings (Fig.  4) indicated the presence of potential LCFA 
degraders within this anaerobic microbiota. A total of 64 
MAGs was proposed as the potential LCFA degraders via 
the complete beta-oxidization pathway, including mem-
bers of Desulfobacterota, Pseudomonadota (previously 
known as Proteobacteria), and Bacillota (formerly known 
as Firmicutes) (Fig. 4), consistent with results from stud-
ies on the anaerobic LCFA-degrading communities based 
on 16S rRNA gene or metagenomic sequencing [53–56]. 
Specifically, two populations in family Smithellaceae: 
bin.332 (contig=26, 92.9% completeness) and bin.167 
(contig=26, 96.1% completeness), and one Syntrophales 
population, bin.292 (contig=13, 90.3% completeness), 
were identified as the key active LCFA-degraders, as 
strongly evidenced by their increased activities and rela-
tively high transcriptional expression (42.1 ± 8.8%, 9.6 ± 
0.7%, and 9.1 ± 1.4%) in the beta-oxidation pathway under 
the highest organic loading (Supplementary Data 8  and 
Data 12). This finding further provided transcriptomic 
evidence for the vital role of family Smithellaceae in 
LCFA breakdown [56]. Moreover, Smithellaceae bin.332 
and Syntrophales bin.292 were recognized as the novel 
LCFA-degrading bacteria (discussed in Supplementary 
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Note 6.2), highlighting the incomplete characterization 
of microbial genomes involved in LCFA breakdown and 
the importance of omics-based approaches in discover-
ing novel anaerobic microbes with unidentified functions 
from complex environments.

The above three key active LCFA-degrading bacteria 
harbored and/or transcriptionally expressed gene encod-
ing a protein FadL to transport fatty acids into the bacte-
rial cytoplasm [57]. And the transported fatty acids were 
activated by high transcriptional expression of the gene 

(ACSL, fadD) encoding long-chain acyl-CoA synthetase 
to form fatty acyl-CoA. Subsequently, the fatty acyl-
CoA undergoes repetitive beta-oxidation cycles, which is 
facilitated by the high transcriptional expression of spe-
cific enzymes encoded by acyl-CoA dehydrogenase (acd), 
enoyl-CoA hydratase (echA), 3L-hydroxyacyl-CoA dehy-
drogenase (fadN), and acetyl-CoA acyltransferase (fadI), 
especially in bin.332 and bin.292 (Fig. 5, Supplementary 
Data 12). Interestingly, in addition to the LCFA beta-
oxidation pathway, bin.332 and bin.292 also exhibited 

Fig. 5 Metabolic reconstruction in the key novel syntrophic fatty acid‑oxidizing bacteria and their interactions with the most active methanogens. 
Only the long‑ and short‑chain fatty acid oxidation pathways, the reverse electron transfer mechanism and transporters are presented 
in the syntrophic bacteria. Light pink and violet cell cartoons present two predominant methanogens of Methanothrix (bin.206) preferring acetate 
and Methanoregulaceae (bin.74) consuming  H2 and formate generated by the bacteria. The other detailed information of pathway reconstructions 
is provided in Supplementary Data S12
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high transcriptional expression of propionate oxidation 
and butyrate beta-oxidation pathway, respectively. Simi-
lar metabolic capacity for simultaneous degradation of 
LCFA and SCFA has been observed in isolates within 
the genus Syntrophomonas, e.g., Syntrophomonas palmi-
tatica strain MPA and Syntrophomonas zehnderi strain 
OL-4 [58, 59]. These findings indicated that these syn-
trophic populations possessed metabolic flexibility, ena-
bling them to utilize fatty acids of different lengths and 
saturation levels for growth and energy production.

Short‑chain fatty acid syntrophic degradation
Non-accumulation of SCFAs in effluent relative to their 
high concentrations in substrate implied the vital con-
tribution of syntrophic SCFA oxidation to the substrate 
conversion. Despite the high amount of acetate in the 
substrate and its production during the LCFA break-
down, acetate conversion in this reactor is primarily 
driven by aceticlastic methanogens rather than bacterial 
syntrophic oxidation, as elaborated in the Supplementary 
Note5.

Reconstructing the MMC pathway for propionate 
oxidation and integrating it with transcriptional activi-
ties pinpointed Smithellaceae bin.332 (contig=26, 92.9% 
completeness), Syntrophobacteraceae bin.487 (circu-
lar genome, 99.5% completeness), and Pelotomacu-
laceae bin.218 (circular genome, 100% completeness) as 
prominent active participants in propionate degradation 
(Fig. 4). Bin.487 and bin.218 showed high ANI similari-
ties with the previously characterized syntrophic propi-
onate-oxidizing bacteria (SPOB) [60, 61] (Supplementary 
Note 6.1), confirming their propionate degradation capa-
bilities and validating the reliability of assembly, binning 
strategies, and metabolic reconstruction in this study. 
Remarkably, the two previously identified SPOB had 
either only 16S rRNA gene or highly fragmented genome 
(contig=404, 74.7% completeness) [60, 61], underscoring 
the substantial progress by retrieving circular genomes 
in our study to better understand their role in propionate 
metabolism at the genomic level. Of greater significance, 
the most active population Smithellaceae bin.332 was 
recognized as a novel SPOB (Supplementary Note 6.2), 
broadening our understanding beyond the previously 
recognized Smithella propionica as the sole SPOB within 
the Smithella genus [19].

Further genomic features and a comparative analysis 
of transcriptional activity for key genes unveiled unique 
mechanisms and specific enzymes utilized by these 
SPOB in energy-dependent processes in the MMC path-
way (Fig.  5, Supplementary Data 12). To activate propi-
onate, SPOB could encode a CoA transferase to couple 
this step (Step1) with the downstream exergonic acetyl-
CoA dethiolation (Step11), and/or utilized acyl-CoA 

synthetases to independently catalyze this step [18, 19, 
61]. For Smithellaceae bin.322, it harbors four homologs 
of acyl-CoA synthetases to produce propionyl-CoA, with 
one (bin332_5_143) showing notably high transcrip-
tional expression, implying that this population decou-
pled propionate activation from acetyl-CoA hydrolysis 
without conserving energy. The same activating reaction 
was also observed in Pelotomaculaceae bin.218 and Syn-
trophobacteraceae bin.487 (Supplementary Data 12). For 
the subsequent carboxylation of propionyl-CoA, unlike 
other well-described SPOB that could couple this step 
with downstream decarboxylation of oxaloacetate (Step 
9) [19], these three SPOB only harbored and highly tran-
scriptionally expressed gene encoding membrane-asso-
ciated protein methylmalonyl-CoA decarboxylase (EC 
7.2.4.3, bin332_1_53, bin487_1_100 and bin218_1_934), 
signifying their independent utilization of methyl-
malonyl-CoA decarboxylase to generate a sodium ion 
motive force for ATP synthesis and energy conserva-
tion [62]. For the energy-dependent succinate oxidation 
(Step 6), Syntrophobacteraceae bin.487 and Pelotomacu-
laceae bin.218 possess two fumarate reductase/succi-
nate dehydrogenase complexes (frdABC: bin487_1_2317 
to bin487_1_2319 and bin218_1_611 to bin218_1_613; 
sdhAB: bin487_1_1345 and 1346, bin218_1_289 and 
290) to complete this process (only one in Smithellaceae 
bin.332 probably due to genome incompleteness). Upon 
further transcriptional activity comparison of these com-
plexes, the consistently high expression of frdABC in Syn-
trophobacteraceae bin.487 and Pelotomaculaceae bin.218 
implies the more crucial importance of frdABC in this 
energetically challenging step within the MMC pathway.

Butyrate beta-oxidation pathway reconstruction com-
bined with the transcriptional activity found that only 
Syntrophales bin.292 transcriptionally expressed all the 
genes involved in the beta-oxidizing pathway, probably 
due to the rigorous pathway filtering criteria (100% com-
pleteness). Syntrophales bin.292 expressed all four types 
of flavin-based electron bifurcation/confurcation systems 
and several mechanisms facilitating interspecies elec-
tron transfer, i.e., hydrogenases and formate dehydroge-
nases (Supplementary Data 12). A unique characteristic 
of syntrophic butyrate metabolism is the requirement 
for reverse electron transport to convert butyryl-CoA 
into crotonyl-CoA, which could be catalyzed via the 
membrane-bound complexes (i.e., iron-sulfur-binding 
reductase and Fix system) as well-described in S. wolfei 
and S. aciditrophicus [63, 64]. Syntrophomonas bin.292 
encodes the complete Fix system (bin292_1_900 to 
bin292_1_904) and the Fe-S oxidoreductase-EtfAB com-
plex (bin292_2_157 to bin292_2_159), both of which are 
co-clustered with the butyryl-CoA dehydrogenase (bcd) 
(Supplementary Data 12). Both ETF-related complexes 
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were expressed, yet the Fe-S-binding complex exhibited 
significantly higher transcriptional activity, underscor-
ing its greater significance in facilitating reverse electron 
transport during butyrate metabolism. Interestingly, the 
iron-sulfur-binding reductase was also clustered with 
genes encoding LCFA transporters (fadL), synthetase 
(K01897 and K01895), NAD (P)H dehydrogenase com-
plexes (wrbA), and LCFA-degrading enzymes, such as 
hydratase and acetyltransferase, forming a concerted 
gene cluster (bin292_2_146 to bin292_2_160) for fatty 
acid transportation, activation, and subsequent metabo-
lism (Supplementary Data 12). The presence of these spe-
cific genomic features suggests a synergistic role among 
key functional genes, contributing to the growth of Syn-
trophales bin.292 by utilizing various types and concen-
trations of fatty acids as substrates in bioreactor.

Archaea competition in methanogenesis
Archaeal methane metabolism as the terminal step in 
the anaerobic metabolic network plays a critical role 
in anaerobic carbon transformation and the natural 
methane flux. Methanogenesis pathway reconstruction 
revealed that 6 archaeal MAGs encode complete genes 
for both hydrogenotrophic and aceticlastic methano-
genesis within the Methanotrichales order (Fig.  6A), 
and Methanomethylovorans sp. bin.231 (contig=1, 99.2% 
completeness) possessed all the genes of three methano-
genesis pathways. Yet, this lineage bin.231 with a broad 
substrate spectrum was not active  CO2 and acetate uti-
lizer (only 0.35% activity in the archaeal community, 
Supplementary Fig.  4), reinforcing the necessity for 
metatranscriptomics in elucidating the ecological roles of 
uncultured species beyond mere pathway presence.

Hydrogenotrophic (82.0~51.6%) and aceticlastic 
(9.8~43.2%) methanogenesis were the prevailing forms 
of methane production (Fig. 6B, Supplementary Data 13). 
Regarding hydrogenotrophic methanogenesis, Metha-
noregulaceae bin.74 (contig=29, 99.7% completeness) 
overwhelmed any of other methanogens regardless of 
loading rates, exhibiting hydrogenotrophic activity rang-
ing from 95.6 to 74.5% (Supplementary Fig. 7). Concern-
ing the aceticlastic methanogenesis, three species from 
genus Methanothrix, i.e., Methanothrix sp. bin.206 (con-
tig=36, 99.4% completeness), bin.532 (circular genome, 

98.0% completeness), and Methanothrix sp. bin.266 
(contig=26, 100.0% completeness), contributed to over 
92% aceticlastic transcriptional activity (Supplementary 
Fig. 7). As above, Methanoregulaceae bin.74 and Metha-
nothrix sp. bin.206 were recognized as the most active 
methane producers, given their high combined abun-
dance (over 70%) and transcriptional activity (up to 80%) 
within the archaeal community (Fig. 6C, Supplementary 
Fig.  4). An obvious transition in overall transcriptional 
activity from Methanomicrobiales bin.74 to Methano-
thrix sp. bin.206 (Fig. 6D) highlighted the increased role 
of Methanothrix sp. bin.206 in  CH4 production with the 
increase organic loading, likely due to the rising acetate 
amount in fresh leachate substrate. This result reinforced 
the environmental determinants in shaping archaeal 
niche dominance.

Discussion
Studying the metabolic activity and trophic interactions 
among microbial communities during various stages 
of carbon mineralization offers insights into their con-
tributions to the global carbon cycle, spanning implica-
tions from biotechnological management to efforts in 
addressing climate change. Through metatranscriptom-
ics-guided genome-scale metabolic reconstruction, this 
study offered a genome-wide insight into carbon min-
eralization flow within the methanogenic community 
in details, revealing metabolic functions from the whole 
anaerobic community to the specific active popula-
tions, including some novel uncultured syntrophic fatty 
acid-oxidizing bacteria (i.e., new Smithellaceae and Syn-
trophales lineages) and bacteria with previously unde-
scribed functions (e.g., sugar- and AAs-scavengers within 
family VadinHA17 and Bacteroidales). By harnessing 
the long reads advantage, we recovered eight circular 
genomes, including two previously recognized but highly 
incomplete SPOB, yet-uncharacterized fermenters with 
versatile metabolism (Petrimonas sp.bin.267, etc.) and a 
genome from yet-to-be underexplored phylum (Caldis-
ericota bin.236), advancing the holistic comprehension 
of anaerobic keystone species from the whole genomic 
perspective. In this study, we employed a 100% pathway 
completeness threshold (except 90% for MMC path-
way) to mitigate inaccurate functional assignments. Our 

Fig. 6 Transcriptional expression and reconstructions of the methanogenic pathways in the archaeal communities and MAGs. A Methanogenesis 
pathway reconstruction of the archaeal MAGs. B The change of transcriptional activities of four methanogenesis pathway with the increased 
organic loadings. C The change of relative abundance (normalized to the archaeal community) in Methanoregulaceae bin.74 and Methanothrix 
bin.206. D The change of transcriptional activities of Methanoregulaceae bin.74 and Methanothrix bin.206. E Methanogenesis pathway 
reconstruction of three representative archaeal MAGs. H15, H7, H4, H2, and H1 means the hydraulic retention times of 15, 7, 4, 2, and 1 day, 
respectively, and the organic loadings increased with the shortened hydraulic retention times

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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approach involves assessing the complete pathway tran-
scriptional activity to pinpoint pivotal contributors in 
the targeted functional guild. The utilization of complete 
pathway transcriptional activity could address the defi-
ciency of the mcr-biomarker comparison method in dif-
ferentiating between hydrogenotrophic and aceticlastic 
methanogenesis. Furthermore, our finding emphasized 
the significance of metatranscriptomics in identifying 
the ecological functions and in situ metabolism of uncul-
tured species. Representative example is Syntrophobacte-
raceae bin.487, it encodes the reversed Wood–Ljungdahl 
pathway, MMC pathway and beta-oxidation for acetate, 
propionate, and butyrate degradation, yet our study indi-
cates significant transcriptional activity primarily in the 
MMC pathway within bin.487, consistent with the prior 
research classifying it as a SPOB based on isolated pure 
culture experiments [60]. Overall, our study establishes 
a framework for elucidating carbon transformations 
in anaerobic microbiota, linking genomic pathways of 
uncultured microbes with their ecological functions, and 
evaluating the significance of certain microbes within 
functional guilds via comparisons of targeted path-
way activities. This framework could undoubtedly be 
applied to uncover novel microbes and trophic interac-
tions in other engineered and natural ecosystems, offer-
ing significant insights into biotechnologies and global 
biogeochemistry.

In the phylogenetically and functionally diverse meth-
anogenic community, the metabolic repertoire dem-
onstrates a high level of functional redundancy across 
various phyla [65]. For example, Bacteroidota-related 
bacteria (bin.267, bin.202, and bin.334), along with 
Thermotogota-affiliated species (bin.190 and bin.512) 
and members from Synergistota (e.g., Thermovirgaceae 
bin.148) showed metabolic flexibility in scavenging varied 
AAs and sugars to generate metabolites (such as glucose, 
β-D-fructose-6P, and pyruvate) for downstream central 
carbon metabolism. Such a high degree of functional 
redundancy contributes to greater system stability, par-
ticularly in fluctuating environments with high microbial 
density and significant turnover of dead biomass, e.g., in 
anaerobic digesters with rapidly increased organic load-
ings. Despite having comparable metabolic capacities, 
different taxonomic lineages utilized functional adapta-
tion strategies, i.e., distinct transport mechanisms and 
substrate preference, to mitigate fierce competition. Ther-
motogota member bin.190 transcriptionally expressed 
genes encoding ABC-type transporters to catalyze 
simple (K02056-K02058) and multiple sugar transport 
(K02025-K02027) as well as AA uptake, differentiating 
them from Bacteroidota-affiliated degrader bin.267 that 
utilizes the unique TonB/SusC system to facilitate sug-
ars and AAs across the outer membrane (Supplementary 

Data 10). And substrate-preference-driven interactions 
were also observed among the fermenters from differ-
ent families within Bacteroidota phylum, as revealed by 
expression comparisons of overall pathway activities. 
That is, Dysgonomonadaceae bin.267 and VadinHA17 
bin.202 favored glucose cleavage by the complete EMP 
pathway, whereas Bacteroidales bin.334 (f__4484-276) 
exhibited a preference for downstream pyruvate fer-
mentation. These findings advanced the understanding 
how functionally diverse anaerobic populations evade 
substrate competition and create niche specialization, 
thereby forming a cohesive metabolic network within the 
intricate methanogenic communities.

In addition, our findings highlight that the active 
anaerobic lineages inhabiting nutrient-rich bioreactors 
exhibit remarkable metabolic flexibility and plasticity, 
representing an additional metabolic trait that contrib-
utes to the stability of the methanogenic community. 
Strong evidence of such adaptability was observed in pre-
dominant syntrophic bacterial genomes, Smithellaceae 
bin.332 and Syntrophales bin.292, both functioning in 
LCFA and propionate/butyrate metabolism. This meta-
bolic flexibility allowed them to switch their metabolic 
processes responding to changes in fatty acids with dif-
ferent lengths and/or saturation levels in substrate. Simi-
lar to how functional redundancy across diverse phyla 
enhances the community-level resilience to environmen-
tal disturbances, the metabolic flexibility of anaerobic 
populations could provide individual lineage an adaptive 
survival strategy to cope with variable environmental 
conditions, which are also witnessed in other ecosystems, 
like the seafloor microbiomes [65, 66] and the gut micro-
biota [67, 68].

A crucial question revolves around the genomic fea-
tures within each redundant functional guild that contrib-
ute to the prominence of dominant species. Integrating 
genomic feature analysis and transcriptional evidence 
of key enzymes, we conducted comparative analyses on 
active lineages within the same functional guilds, reveal-
ing the potential genomic determinants driving their sub-
strate competition advantage and niche dominance. For 
the sugar- and AA-scavengers bin.267 and bin.202 within 
phylum Bacteroidota, their distinction from competi-
tors could be attributed to rapid cross-membrane trans-
port, supported by the presence and high transcriptional 
expression of more susC/susD homolog genes for pro-
tein and carbohydrate hydrolysate uptake and transport 
(Supplementary Fig. 8). And Smithellaceae bin.332 could 
stand out from LCFA-degrading function, primarily ben-
efiting from exceptional bacterial motility (pilus and fla-
gellar assembly), chemotaxis, rapid substrate-activating 
mechanism, and adaptive cellular degradation (Sup-
plementary Fig.  9). The breakdown of LCFA is assumed 
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to be adsorbed and attached by functional taxa [54, 69]. 
In comparison to other active LCFA-degraders, Smithel-
laceae bin.332 exhibited higher transcriptional expression 
of chemotaxis genes (wspABCDEF), type IV pilus assem-
bly (pilABCMNOPQTVWX), and flagellar assembly (flhG 
and flgP), enhancing its mobility and attachment to LCFA 
molecules. Bin.332 also harbors diverse homologous for 
each step of beta-oxidation pathway, e.g., 15 genes for 
long-chain acyl-CoA synthetase (ACSL), allowing this 
syntrophic bacterium adaptive to varied types of fatty acid 
and/or fluctuating fatty acid concentrations in bioreactors 
with increased organic loadings due to differing kinetics 
and/or affinities of the homologous genes [6, 70]. Regard-
ing methanogen, Methanomicrobiales bin.74 possessed 24 
genes encoding V/A-type ATPase and four sets of mem-
brane-bound hydrogenases (Ech, Eha, Ehb, and Mbh), a 
notably higher count compared to those in the bin.206 
genome (9 ATPase and one hydrogenase) (Supplemen-
tary Data 12). The three clusters of alternative ATPase 
may confer adaptive advantages for varying growth rates 
or distinct concentrations of  Na+/H+ in eutrophic habi-
tats, e.g., bioreactors [70]. These specific energy-related 
features of bin.74 contribute to its dominance at archaeal 
community under low organic loading to some extent, 
but the extreme amount of acetate in fresh leachate sub-
strate at high organic loading leads to a rapid increase in 
the activity of bin.206 that exhibits a preference for ace-
tate utilization. Incorporating the above discoveries, the 
specific genetic patterns and environmental determinants 
foster niche specialization and ecological dominance 
among anaerobic community, enhancing our understand-
ing of environmental adaptation of bacterial and archaeal 
lineages.
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