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Abstract 

Background  Population stratification based on interindividual variability in gut microbiota composition has revealed 
the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often 
associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. 
Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. 
Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two 
enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) 
as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble 
enterotypes, and to provide clues on enterotype functional differences and their links with growth traits.

Results  We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype 
at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecu‑
tive generations. Response to selection across three generations revealed, per line, an increase in the prevalence 
of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial 
genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth 
during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species 
between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch 
degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to gen‑
eral nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest 
that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosyn‑
thesis and degradation, respectively.

Conclusion  We experimentally demonstrated that enterotypes are functional ecosystems that can be selected 
as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units 
of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, 
and enterotype functionalities to understand holobiont shaping and adaptation.
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Background
A holobiont is defined as a living organism that embod-
ies a host and its microbiota as a fully fledged biological 
entity [1]. A holobiont acts as a biological system that 
relies on complex and continual host-microbiota inter-
actions. This new biological scale has paved the way 
towards a new field of research referred to as hologenom-
ics that aims at integrating the genomic features of both 
the host and its microbiota [2, 3]. In humans and animals, 
the gut microbiota displays high inter-individual vari-
ability and determining the main drivers of this diversity 
remains an open question. It is acknowledged that the 
composition of an individual’s gut microbiota results 
from multiple factors including the environmental condi-
tions at birth, the diet, age, genetics, sex, or medication 
administered [4]. A wide range of studies has already 
highlighted the influence of the host genetics on shap-
ing the gut microbiota: first by the analysis of twin pairs 
in humans [5], and later with genome-wide association 
studies in humans [6, 7], mice [8], or pigs [9]. In addition, 
based on the estimates of microbiability, which is defined 
as the proportion of the phenotypic variance explained 
by microbiota variations in livestock, and of heritability, 
it has been established that microbiota can have strong 
links with host phenotypes and genotypes [10, 11]. In 
parallel, the comparison between intestinal microbiota 
catalogs has revealed limited sharing at the gene level 
across host species [12–15], which is in line with a tight 
co-evolution between the host and its microbiota dur-
ing animal speciation that relies partly on adaptation to 
changes in diets [16]. In spite of all these results and clues 
on the links between a host’s genetics and its microbiota, 
in vivo animal models, which could confirm that the gut 
microbiota composition can be oriented by genetic selec-
tion directly exerted on the host, are still lacking.

Previously, we have shown that, at 60  days of age 
(D60), Large White pig populations bred under the 

same controlled conditions stratify into two enterotypes 
according to their fecal microbiota [17]. These two ente-
rotypes are characterized by an overabundance of either 
Prevotella and Mitsuokella (PM), or Ruminococcus and 
Treponema (RT). These four genera were central nodes in 
inferred ecological networks and were subsequently con-
sidered keystone taxa for shaping the two enterotypes. 
Notably, the fact that a taxon was very abundant did not 
necessarily mean that it played a key role in driving an 
enterotype. Indeed, whatever the enterotype, Prevotella 
was the most abundant genus while Ruminococcus had a 
low abundance in all pigs. In this report, our aims were 
to study whether the selection of pigs for the relative 
abundance of the bacterial genera (used as a phenotype), 
which define the enterotypes PM or RT, is effective in ori-
enting the composition of the gut microbiota of offspring, 
and to deepen the analysis of taxonomic and functional 
contrasts between the two enterotypes. For this study, we 
produced two pig lines referred to as HPM (high preva-
lence of PM) and HRT (high prevalence of RT) and moni-
tored the response to selection across three generations 
(Fig. 1).

Methods
Animal farming and management, phenotyping, 
and biological sampling
The experiment was conducted on the INRAE experi-
mental farm at le Magneraud (GenESI, Pig Phenotyp-
ing and Innovative Breeding Facility,  https://​doi.​org/​10.​
15454/1.​55724​15481​18584​7E12).

Male and female piglets were weaned at the age of 
28 days. At weaning, piglets from two to three different 
litters from the same line were mixed in post-weaning 
pens of 20 to 24 individuals. They received food and 
water ad  libitum. The starter diet (18.6% protein and 
10.8  MJ/kg net energy (NE) on a dry matter basis) was 
given during the last week before and the first 2  weeks 

Fig. 1  Animal protocol and stratification of the Large White pigs according to their enterotypes PM (Prevotella-Mitsuokella) or RT 
(Ruminococcus-Treponema). A Timing for stool sampling (blue triangle) and body weight records (colored circles) from birth (D0) until the end 
of the post-weaning period (D70). Microbiota data was obtained in all animals by sequencing the 16S rRNA gene using DNA extracted from stools 
sampled at D60. For a subset of 30 G0 animals, whole-metagenome sequencing data was obtained at D60. B Selection strategy of the two pig lines 
HPM (High PM) and HRT (High RT) over three successive generations (G1 to G3). The G0 generation was not genetically selected and corresponds 
to the founding population obtained from 30 litters from 30 males crossed with 30 females. The generations G1 to G3 comprised 30 litters 
produced from 6 males and 30 females each. The number of piglets per generation and per pig line is indicated. The relative prevalence of the two 
enterotypes within each population is represented by pie charts, the blue and red sections representing the % of pigs with the PM or RT enterotype, 
respectively. The number of pigs for each enterotype is reported in the pie charts. C Enterotype distribution of the whole population of 1067 pigs 
(generation G0 to G3, two pig lines) into two groups that correspond to the enterotypes PM (blue) and RT (red). D Notched box plots showing 
the differences in alpha diversity (left: Shannon index, right: richness) according to generation and pig line

(See figure on next page.)

https://doi.org/10.15454/1.5572415481185847E12
https://doi.org/10.15454/1.5572415481185847E12
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Fig. 1  (See legend on previous page.)
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after weaning, and the weaner diet (17.5% protein and 
10.0  MJ/kg NE) was given from the second week after 
weaning. The piglets were transferred to growing-fin-
ishing pens at 10 weeks of age in pens of 10 to 12 indi-
viduals from the same post-weaning pen. All piglets were 
weighed at birth, at weaning, and at the end of the post-
weaning period at around 70  days of age. Average daily 
gain was estimated for the post-weaning period from 28 
to 70 days of age (ADG_postweaning). In total, 1067 ani-
mals were included in the study (Fig. 1B), comprising 316 
piglets for the basal G0 population, 272 piglets for the G1 
generation (133 HPM and 139 HRT), 228 piglets for the 
G2 generation (114 HPM and 114 HRT), and 251 piglets 
for the G3 generation (126 HPM and 125 HRT).

Stool samples were collected at 60 days of age directly 
from the rectal ampulla, snap-frozen in liquid nitro-
gen (approximately 200  mg per cryotube), and stored 
at − 80 °C until use for microbial DNA extraction. All bio-
logical samples were stored at the Biological Resources 
Center of the @BRIDGe core facility that is a member of 
the CRB-Anim infrastructure (https://​doi.​org/​10.​15454/1.​
56137​85622​82737​8E12, CRB-Anim, INRA, 2018. Biologi-
cal Resource Centers for domestic animals of AgroBRC).

Selection experiment
For the G0 basal population, 30 Large White sows bred 
on the INRAE experimental farm were each insemi-
nated once with semen from 30 Large White boars. The 
design was chosen such that a G0 generation was pro-
duced with maximal genetic diversity and with animals 
as lowly related as possible. Animals were selected on 
the relative abundance of either Prevotella and Mit-
suokella or Treponema and Ruminococcus  at 60  days 
of age, measured from 16S rRNA gene sequencing of 
fecal DNA, after precorrection for batch effect. Relative 
abundance of Prevotella was computed as the sum of 
Prevotella_9, Prevotella_7, and Prevotella, and relative 
abundance of Ruminococcus  as the sum of Ruminococ-
cus, Ruminococcus_gnavus_group, Ruminococcus_tor-
ques_group, and Ruminococcus_gauvreauii_group. At 
each generation, the male reproducers were selected 
on a family basis with only one boar per sire and using 
a mass selection approach. For the first generation of 
selection only, females were selected on a litter basis, 
with one or two females selected in the same litter for 
each line. This first step was designed to limit found-
ers’ maternal effects in the first generation of selection. 
For the two other generations of selection, females were 
selected regardless of their family. At each generation, 
six boars and 30 females were selected as reproducers. 
The males and females with the highest abundances of 
Prevotella were selected for the HPM line and males 
and females with the highest abundances of Treponema 

were selected for the HRT line. At each generation, 
for the HPM line, male piglets were ranked intra-sire 
family according to their relative abundance of Prevo-
tella. Among the top three male piglets per sire, the 
one with the highest relative abundance of Mitsuokella 
was selected as a future reproducer. For the HRT line, 
male piglets were ranked intra-sire family according to 
their relative abundance of Treponema, and among the 
top three male piglets per sire, the one with the high-
est relative abundance of Ruminococcus was selected 
as a future reproducer. Females were ranked within the 
line on Prevotella abundance for the HPM line and on 
Treponema for the HRT line. Males and females were 
mated according to their respective lines avoiding full-
sib-halfsib matings.

16S rRNA sequencing and analysis
For 16S rRNA gene sequencing, DNA extraction was 
performed as previously described [18]. In brief, 200 mg 
of frozen fecal sample were resuspended with 250 μL of 
guanidine thiocyanate buffer (4  M guanidine thiocy-
anate–0.1  M Tris, pH 7.5), 40 μL of 10% N-lauroyl sar-
cosine–0.1  M phosphate buffer (pH 8.0), and 500 μL 
of 5% N-lauroyl sarcosine; the mixture was then incu-
bated at 70 °C for 1 h. After the addition of one volume 
of 0.1-mm-diameter silica beads (Sigma), tubes were 
shaken for 10  min at the maximum speed on a Vibro-
broyeur MM200 (Retsch, Germany). After shaking, the 
tubes were centrifuged at 20,000 g for 5 min at 4 °C. After 
recovery of the supernatant, 30 μL of Proteinase K (Che-
magic STAR DNA BTS kit, Perkin Elmer, USA) were 
added; samples were incubated for 10  min at 70  °C at 
250 rpm in a Multi-Therm shaker (Benchmark Scientific, 
USA) and then for 5 min at 95 °C for enzyme inactivation. 
After centrifugation at 20,000 g for 5 min at 4  °C, DNA 
extraction was performed on the supernatant using the 
Chemagic STAR DNA BTS kit (Perkin Elmer, USA) and 
the Chemagic STAR platform (Hamilton, Perkin Elmer, 
USA), according to the manufacturer’s instructions.

Amplicon libraries of the V3–V4 region of the 16S 
rRNA gene were constructed; amplification was per-
formed using the PCR1F_343 (5′-CTT​TCC​CTA​CAC​
GAC​GCT​CTT​CCG​ATC​TAC​GGR​AGG​CAG​CAG​-3′) 
and PCR1R_784 (5′-GGA​GTT​CAG​ACG​TGT​GCT​CTT​
CCG​ATC​TTA​CCA​GGG​TAT​CTA​ATCCT-3′) primers fol-
lowing the Illumina 16S rRNA metagenomic sequencing 
library preparation protocol. Paired-end sequencing of 
the pooled library was performed on an Illumina MiSeq 
platform (Illumina Inc., San Diego, CA, USA) using the 
MiSeq Reagent kit v3 (2 × 300 cycles, Illumina Inc., San 
Diego, CA, USA), as previously described [18]. FastQ 
files were generated after the run was completed (MiSeq 
Reporter software, Illumina, USA).

https://doi.org/10.15454/1.5613785622827378E12
https://doi.org/10.15454/1.5613785622827378E12
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We used DADA2 [19] to process reads into an ampli-
con sequence variant (ASV) table, with an approach that 
follows the authors’ recommendations in their “Big Data” 
workflow. In brief, for each MiSeq run, we performed 
separately the quality filtering, denoising pair-end merg-
ing, and amplicon variant calling steps. Briefly, for each 
run, primers were trimmed from read pairs by using cut-
adapt [20] and a quality filtering was performed on reads 
by using DADA2 filterAndTrim function with options 
truncF = 235, truncR = 225, and truncQ = 5. ASV unique 
sequences and corresponding counts per sample were 
inferred for each run with the DADA2 algorithm after 
learning the error distribution with the learnErrors func-
tion. This step included the merging of both read pairs 
and the removal of chimeras. Finally, the ASV tables from 
each run were merged based on ASV sequences, and the 
annotation of each ASV assigned in DADA2 by using the 
SILVA database (version 138) [21]. Based on the sequenc-
ing depth and the rarefaction curves, we rarefied counts 
for subsequent analyses at 7000 counts per sample. Alpha 
diversity was measured through microbial richness (that 
is, the number of taxa present in each sample after rar-
efaction) and the Shannon index estimated in vegan R 
package [22].

Enterotype categorization was done in R and was 
based on Jensen–Shannon divergence (JSD) distance 
measured from the rarefied genus abundance table as 
recommended by [23]. In brief, we first determined the 
optimal number of distinct clusters after partitioning 
the microbiota around medoids with all samples in each 
generation, and then confirmed if, as previously reported 
in 60-day-old pigs, the fecal microbiota was also divided 
into two enterotypes. Each individual was finally affiliated 
to its corresponding enterotype and the clustering was 
represented on a PCoA.

For the analysis of contrasts between the two entero-
types from piglets of the G0 population, we carried out 
the clustering process over 100 iterations and further 
considered only animals that never changed group (Fig-
ure S1). This process prevented us from including piglets 
that would have been randomly misclassified, and thus 
allowed us to confidently consider piglets that were good 
representatives of each enterotype. These animal subsets 
were used to deepen enterotype comparison and to select 
15 females per enterotype for shotgun metagenomic 
sequencing.

Statistics for analysis of genetic parameters and response 
to selection
All host genetic analyses were carried out using 16S 
rRNA sequencing data. Only relative abundances of gen-
era representing more than 0.1% of the total were kept 
for genetic analyses. Thus, we performed genetic analyses 

on 64 relative abundances of bacterial genera, two diver-
sity indexes (Shannon and richness) and the two rela-
tive abundances of the sum of Prevotella and the sum of 
Ruminococcus used for selection. All relative abundances 
were normalized with a log-ratio transformation, after 
adding 0.01 to remove 0 values.

For the genetic analysis, the fixed effects of batch and 
sex were included in the model. The random effects of 
common litter and animal were also included in the 
model. Heritability and common litter effect were first 
estimated with a one-trait animal model. All ancestors 
of the recorded animals up to five generations from the 
G0 animals were taken into account to build the additive 
relationship matrix for 4551 individuals. The estimation 
of genetic parameters was performed with the VCE6 
software [24, 25].

The responses to selection were estimated by the dif-
ferences between the two lines within generation, the 
data from the HPM line being used as baselines. For each 
parameter, we compared HPM-HRT differences within a 
generation over three generations. The analysis was car-
ried out on diversity indexes, growth performances, and 
genera with less than 50% zero values (N = 74) including 
the 64 genera mentioned above. The relative abundances 
were log-transformed after adding 0.01 to remove zero 
values. The differences were obtained with the GLM pro-
cedure (SAS9.4). The model included the effect of sex, 
batch nested intra-generation, and a generation × line 
interaction. The level of significance for the differences 
between the two lines within a generation was estimated 
by the contrast option. An adjusted level of significance 
was also estimated with the lsmeans option, with a Tukey 
adjustment. The analysis was carried out on standardized 
variables, centered-standardized variables, and ranked 
variables. In order to illustrate the response to selection, 
a ranking was performed on the HPM-HRT differences 
observed between the two lines in the G3 generation for 
the standardized variables, and differences were then 
plotted.

Shotgun metagenomics and analysis
DNA extraction was performed by the SAMBO plat-
form located at INRAE MetaGenoPolis. Fecal DNA was 
extracted following the SOP 07 V2 H from [26, 27]. The 
DNA preparation was subjected to quality control using 
Qubit Fluorometric (ThermoFisher Scientific, Waltham, 
USA) and qualified using DNA size profiling on a Frag-
ment Analyzer instrument (Agilent Technologies, Santa 
Clara, USA).

Sequencing was performed by the MetaQuant platform 
located at INRAE MetaGenoPolis. Three micrograms of 
high molecular weight DNA (> 10 kbp) were used to build 
sequencing libraries. Shearing of DNA into fragments 
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of approximately 150  bp was performed using an ultra-
sonicator (Covaris, Woburn, USA) and DNA fragment 
library construction was performed using the Ion Plus 
Fragment Library and Ion Xpress Barcode Adapters Kits 
(ThermoFisher Scientific, Waltham, USA). Purified and 
amplified DNA fragment libraries were sequenced using 
the Ion Proton Sequencer (ThermoFisher Scientific, 
Waltham, USA). The raw sequences are available through 
the project PRJEB60032 on the EMBL-EBI’s European 
Nucleotide Archive (ENA accessions ERS14678539 to 
ERS14678568).

Quality control was performed with AlienTrimmer 
[28]: (1) sequencing adapters were removed, (2) low-
quality reads were trimmed or discarded, and (3) reads 
that were too short (< 60  bp) were discarded. Then, 
reads mapped to the pig reference genome (Sscrofa11.1 
GCA_000003025.6) with bowtie2 [29] were removed. 
Finally, 18 M high-quality reads were randomly selected 
in each sample with fastq-sample [30].

The gene abundance table was generated with the 
METEOR software suite [31]. First, selected high-quality 
reads were mapped with bowtie2 [29] to a gene catalog 
representative of the pig gut microbiota [32], compris-
ing 9.3 million genes. Alignments with nucleotide iden-
tity < 95% were discarded and gene counts were computed 
with a two-step procedure previously described that han-
dles multi-mapped reads [33]. Finally, raw gene counts 
were normalized according to gene length.

Using MSPminer [34], the gene catalogue was previ-
ously organized into 1523 MetaGenomic species (MGS), 
which are clusters of co-abundant genes corresponding 
to the same microbial species. The abundance of a MGS 
in a sample was defined as the mean abundance of its 100 
marker genes (i.e., species-specific core genes that corre-
late most with each other). If less than 10% of the marker 
genes were found in a sample, the abundance of the MGS 
was considered null. Abundances at higher taxonomic 
ranks were computed as the sum of the MGS that belong 
to a given taxon. Taxonomic annotation of the MGS 
was carried out with GTDB-Tk [35] based on Genome 
Release 07-RS207.

KEGG Orthologs (KOs) were assigned to genes in the 
catalog with KofamScan based on the KEGG 102 data-
base. KO abundances were computed by summing the 
abundance of genes assigned to the same KO.

Differentially abundant MGS or functional modules 
were searched for by using Wilcoxon–Mann–Whitney 
tests. False discovery rate (FDR) was controlled by cor-
recting p-values for multiple testing with the Benjamini–
Hochberg procedure. Effect size was estimated using 
the Cliff ’s Delta statistic (CD) with the package effsize 
v0.7.4. Unless stated otherwise, features with corrected 
p-values (q-values) below 0.1 and a magnitude of the 

effect size |CD|> 0.7 were reported in Supplementary 
Tables (Table S1, Table S2).

The pathway enrichment analyses were performed on 
the lists of differentially abundant KOs by using the clus-
terProfiler R package [36]. In this package, we used the 
enrichKEGG function, with the hypergeometric distribu-
tion in over-representation analysis to calculate enrich-
ment p-values, and used the list of KOs present in the 
differential analyses as background genes in the tests (sig-
nificance: p < 0.05, Table S3).

Results
Stratification of the pig population into two contrasted gut 
enterotypes at D60
The founding G0 population comprised 316 60-day-old 
Large White piglets from 30 lowly related families, and 
their fecal microbiota was characterized by 16S rRNA 
gene sequencing and analysis of amplicon sequence vari-
ants (ASVs) (Fig. 1A).

Consistent with our previous study [17], the G0 popula-
tion was stratified into two groups according to their fecal 
microbiota. One group was characterized by an over-
abundance of the Prevotella and Mitsuokella genera (PM 
enterotype, 168 piglets), and the other by an overabun-
dance of the Ruminococcus and Treponema genera (RT 
enterotype, 148 piglets) (Fig. 1B). We analyzed the differ-
ences between the two enterotypes (Fig.  2) on two sub-
sets of piglets that were consistently assigned to the same 
enterotype across 100 classification repeats (Figure S1). 
Although there was considerable variation in taxa abun-
dance within each enterotype (Figure S2), the average 
taxonomic composition of each enterotype at the genus 
level showed the dominance of Prevotella for both ente-
rotypes and a higher abundance of Treponema for the RT 
enterotype compared to Ruminococcus (Fig.  2A). This is 
the reason why, at each generation, the reproducing males 
and females for the HRT line ranked first on Treponema 
and second on Ruminococcus. The co-abundance network 
(Fig. 2B) confirmed that genera that were directly targeted 
for divergent selection are major hubs in the network, as 
in previous results [17]. Thus, the directly selected genera 
interact with many other taxa that need to be taken into 
account as indirectly selected in the selection process.

To carry out high-resolution taxonomic profiling and 
obtain the first clues on functional differences between 
the two enterotypes, shotgun metagenomics was per-
formed on a subset of samples from 30 females from the 
G0 population, which was split into two groups, each 
group being a good representative of each enterotype 
(15 PM and 15 RT pigs) (Figure S1). We selected ani-
mals of the same sex to avoid a confounding factor that 
cannot be controlled with a limited number of animals. 
These analyses confirmed that both enterotypes were 
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dominated by the genus Prevotella, although the lat-
ter was significantly more abundant in the PM animals 
(PM: 44.9% ± 8.3%; RT: 25.7% ± 10.0%). We identified P. 
hominis and several uncharacterized Prevotella bacte-
ria as the main contributing species (Fig. 2C, Figure S3, 
and Table S1). In the PM animals, other genera were also 
enriched, including Mitsuokella (PM: 1.2% ± 1.2%; RT: 

0.4% ± 0.5%) that was represented only by the species M. 
jalaludinii. As expected, the RT enterotype was enriched 
in Ruminococcus (RT: 1.3% ± 0.8%; PM: 0.5% ± 0.5%) and 
Treponema (RT: 8.7% ± 6.5%; PM: 1.2% ± 1.4%), the latter 
being mainly represented by two uncharacterized spe-
cies (T. sp002395155 and T. sp018384055). Notably, the 
Rikenellaceae RC9 gut group was abundant and enriched 

Fig. 2  Main taxonomic and functional differences between the two enterotypes that were characterized on animals from the G0 basal 
population. A Average relative abundances of the main bacterial genera for the two pig groups harboring either PM (142 piglets) or RT (87 piglets) 
enterotypes based on 16S rRNA sequencing data. This analysis was narrowed down to the piglets with an unchanged enterotype across multiple 
repeats of the clustering process. B Co-abundance networks based on the most abundant and differentially abundant genera between the two 
enterotypes defined on the G0 population at D60, using 16S rRNA sequencing data. C Most contrasted MetaGenomic species (MGS) identified 
based on shotgun metagenomics data between two subsets of 15 females representative of each enterotype at G0. Effect size was estimated using 
the Cliff’s Delta statistic. Blue and red bars correspond to MGS enriched in PM and RT animals, respectively
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in the RT animals (RT: 5.0% ± 2.3%; PM: 1.8% ± 1.1%) and 
consisted of two unknown species with temporary names 
(Cryptobacteroides sp000433355 and Onthomorpha 
sp004551865) (Fig. 2C, Figure S3, and Table S1). Consist-
ent with the average relative abundance of genera in each 
enterotype and the co-abundance network, this analysis 
suggested that combined with Treponema, the Rikenel-
laceae RC9 gut group might better specify the RT ente-
rotype than the Ruminococcus group (Fig. 2B). Using the 
KEGG Orthology database, we searched for differentially 
abundant functional orthologs (KOs) between the two 
enterotypes (Table S2). Strikingly, KOs related to starch 
degradation and polysaccharide metabolism were among 
the most enriched features in the PM enterotype. In the 
RT enterotype, the enriched KOs were different and 
included general nucleoside transport and peptide/nickel 
transport. The top-4 enriched pathways in the PM ente-
rotype were related to the overall biosynthesis of amino 
acids and more specifically to the biosynthesis of phe-
nylalanine, tyrosine, tryptophan, valine, leucine and iso-
leucine. By contrast, degradation of valine, leucine, and 
isoleucine was in the top-4 enriched pathways in the RT 
enterotype, which shows that both enterotypes harbor 
different functionalities relating to the same amino acid 
metabolism. In the RT enterotype, the three other top-4 
functions were ABC transporter, metabolism of carbon, 
and metabolism of methane (Table S2 and Table S3). 
These contrasts are likely linked to differences in alpha 
diversity between enterotypes (Fig.  1D), with a poten-
tially higher functional richness in the RT animals that 
needs deeper investigation.

Selection of two divergent pig lines with gut microbiota 
enriched in bacterial genera specifying each enterotype
In this study, we hypothesized that host genetic selection 
directly targeting the four genera predicted to specify the 
two enterotypes could successfully drive the ecological 
structure of the gut microbiota. These four genera were 
chosen as direct targets for genetic selection as they were 
previously predicted as keystone taxa based on the analy-
sis of co-abundance networks [17]. Within each group, 
animals were ranked by decreasing abundance of the 
two keystone taxa of their respective enterotype. Using 
this strategy, the males and females that were the most 
representative of each enterotype were chosen as found-
ers of either the HRT or the HPM line. Under the same 
farming conditions, we produced three successive gen-
erations per line, by mating the best-ranked boars (n = 6) 
and females (n = 30) (Fig. 1B). After combining the whole 
cohort of 1067 pigs (G0, G1, G2, and G3 generations), 
enterotype clustering based on the D60 fecal microbiota 
composition confirmed a robust stratification into the 
same two enterotypes, without revealing any additional 

animal clusters that might have emerged during the 
genetic selection process (Fig.  1C). In agreement with 
our hypothesis on the role of the host genetics, through-
out the three successive generations, the prevalence of 
the PM enterotype dramatically increased in the HPM 
pig line (from 53% in G0 up to 87% in HPM-G3), while 
that of the RT enterotype dramatically increased in the 
HRT line (from 47% in G0 up to 70% in HRT-G3). Nota-
bly, alpha diversity indexes (Shannon index and rich-
ness) were significantly higher in the HRT pig line than 
in the HPM pig line (Fig.  1D), which is consistent with 
the results of our previous study [17], and in agreement 
with those of reports on a lower alpha diversity of human 
enterotypes with Prevotella [37].

Significant influence of host genetics on microbiota 
composition and enterotype assembly, and correlations 
with body weight traits
Using the whole population, the estimates of the herit-
ability for the four genera under direct selection were 
all within the same range, around 0.3. Among the four 
genera, the estimate of the heritability was highest for 
Treponema, and lowest for Ruminoccocus (Fig. 3A). The 
heritability for enterotype value as a unique binary trait 
(PM/RT) was estimated at around 0.3, consistent with an 
increase in enterotype prevalence in HPM and HRT lines 
over generations (Fig.  1B). Considering the 64 analyzed 
genera, the estimates of heritability for the correspond-
ing bacterial genera ranged from 0.14 to 0.4. Several stud-
ies have reported heritability estimates for the relative 
abundance of bacterial genera of the gut microbiota in 
pigs either younger or older than D60 [38–40]. Because 
of differences in the animal genetic background or the 
age of the pigs analyzed or of differences between the sta-
tistical models used to estimate the genetic variances, it 
is difficult to compare the heritability estimates between 
studies. However, in all these studies, several genera had 
moderate to high heritability estimates, which shows that 
the host genetics has an influence on microbiota com-
position. The effect of common litter environment was 
small for a majority of the genera (< 0.1). We observed 
that the largest litter effect was estimated for Streptococ-
cus and an unknown genus of the family Succinovibrion-
aceae (> 0.2). These findings revealed that, in our study, 
the mother and associated perinatal environment at birth 
and during the suckling period had a much weaker influ-
ence than the host genetics in shaping piglet gut micro-
biota at D60.

Genetic correlations between the four genera under 
direct selection were very high (Fig.  3B). Consistent 
with the enterotype structure of the HPM and HRT 
lines, the correlations between the bacterial gen-
era characterizing the same enterotype were positive 
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and the correlations between bacterial genera char-
acterizing different enterotypes were negative. These 
four genera were also moderately correlated (abso-
lute values from 0.32 to 0.52, with a standard error 
around 0.12) with post-weaning average daily gain 
(heritability value of 0.2) either positively (Prevotella 
and Mitsuokella) or negatively (Ruminococcus and 
Treponema), which illustrates the phenotypic links 
observed previously between enterotypes and growth 
[17, 41]. The positive correlations between post-
weaning growth and PM enterotype could be associ-
ated with the significant enrichment of gene families 
that are involved in starch degradation, as revealed 
by shotgun metagenomics. The genetic correlations 
show a positive co-selection of co-abundant genera 
per pig line with either a lower or higher ability to 
body weight gain in the HRT or HPM lines, respec-
tively. These results suggest a response to selection 
at the holobiont level, which results in an extended 
phenotype that combines the growth capacity of the 
host together with its associated favorable microbiota. 
Interestingly, the RT enterotype is richer than the PM 
enterotype (Fig. 2B) but less efficient for piglet growth 
during the post-weaning period.

Increased differences in bacterial genera abundances 
and post‑weaning body‑weight gain between the HPM 
and HRT lines across three generations of selection
The responses to selection were calculated as normal-
ized differences between the HPM and HRT lines at 
each generation of selection for features such as bacte-
rial genera, alpha diversity indexes (richness, Shannon), 
and body weight traits (Fig.  4). Considering the respec-
tive ratio of selected males (1/10) and selected females 
(1/2) within each line, selection is mainly driven by selec-
tion intensity on the sires. The differences between the 
HPM and HRT lines increased at each generation for 
Prevotella and Treponema and tended to be maintained 
between the G2 and G3 generations for Ruminococcus 
and Mitsuokella. Prevotella and Treponema are more 
abundant than the two other genera under direct selec-
tion and acted as main drivers of selection. For a few 
genera, the evolution trend was similar to that of either 
Prevotella or Treponema. For example, Dialister, Faecali-
bacterium, or Agathobacter were consistently higher in 
the HPM line than in the HRT line across the three gen-
erations of selection. The response to the selection of the 
Rikenellaceae RC9 gut group had a similar evolutionary 
pattern than the Ruminococcus or Treponema groups. 

Fig. 3  Genetic parameters of fecal microbiota composition and body weight phenotypes at D60. A Heritability estimates (h2 blue dots) and litter 
effect (c2 pink dots) with their standard error (lines) for 64 gut microbiota genera and 2 diversity indexes (genera) based on 16S rRNA sequencing 
data. Selected genera are written in dark blue (B). Genetic correlation between genera under selection in the HPM line (red squares) or the HRT line 
(blue triangles), diversity indexes (green disk), and post-weaning growth rate (ADG_pw, yellow star). Negative correlations are marked with dashed 
lines. Black lines represent correlations for which the absolute value is higher than 0.9, purple lines represent correlations with absolute values 
between 0.6 and 0.9 and gray lines correlations with absolute values between 0.3 and 0.5
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Considering its importance in enterotype representation 
combined with its high heritability estimate, this group 
should likely be considered as a valuable alternative or 
additional taxon for selection on enterotype. In general, 
the number of genera with a negative difference between 
the two lines in G3 is larger than the number of genera 
with positive differences, which is consistent with the PM 
animals having microbiota with a lower diversity. The dif-
ferences between the HPM and HRT lines are in agree-
ment with the co-abundance network that describes the 
two enterotypes (Fig. 2B). Thus, our selection experiment 
provides original data on the evolution of the microbiota 
as a biological ecosystem that responds to the genetic 
selection of its host; it would be nearly impossible to pre-
dict such an ecosystemic evolution by considering the 
genetic and phenotypic correlations between all genera.

We also included the calculation of the effect of selec-
tion on post-weaning growth (ADG_postweaning) since 

significant genetic correlations with microbiota compo-
nents were estimated (Fig. 4). The contrasts between the 
two pig lines increased at each generation with greater 
post-weaning growth in the HPM line, confirming a com-
bined selection for host and microbiota features during 
the selection process.

Discussion
Stratification of human populations according to their gut 
microbiota composition has led to defined enterotypes that 
reduce the microbiota complexity to a limited number of 
ecosystems with different microbial diversities and func-
tionalities. In spite of the initial controversies on their asso-
ciated concept and reliability [42, 43], three enterotypes 
have been reported and further confirmed in humans, their 
key taxa being Prevotella, Firmicutes (including the genus 
Ruminococcus), and Bacteroides [23, 37]. Enterotypes have 
also been characterized in wild and domesticated animals 

Fig. 4  Responses to genetic selection oriented towards a high abundance of Prevotella and Mitsuokella or a high abundance of Ruminococcus 
and Treponema at D60 across three generations. The differences between the HPM and HRT lines for 74 genera, 2 diversity indexes (light blue 
highlighting), and one growth feature (ADG_postweaning: average daily gain during the post-weaning period, light green highlighting) are 
expressed in standard deviation. They are ranked from the largest positive difference (on the left) to the largest negative difference (on the right) 
at generation G3 of the selection. The differences are in pale green for G1, green for G2, and dark green for G3. Positive differences are associated 
with higher values in the HPM line whereas negative values are associated with higher values in the HRT line. Microbiota results are based on 16S 
rRNA sequencing data



Page 11 of 15Larzul et al. Microbiome          (2024) 12:116 	

(e.g., chimpanzees [44], wild mice [45], domesticated pigs 
[17, 41], African buffaloes [46]), which show that ente-
rotypes are not exclusive of human microbiomes [37] and 
may reflect long-term host-microbiota interactions that 
accompany the coevolution of both the host species and its 
gut microbiota. This coevolution process may have resulted 
in a limited number of self-beneficiary ecotypes provid-
ing beneficial services to their hosts [47]. In such a “leash 
model” that was conceptualized within the ecology discipli-
nary field, it is predicted that the traits that benefit the host 
will also help bacteria to persist in the microbiome. Thus, 
investigating how host biology affects the microbiome 
might be as important as elucidating how symbionts affect 
their hosts since the benefits provided by microbes are typ-
ically by-products of microbe species that strive to be rep-
resented in the microbiome [47]. In line with this need to 
assess the host control on its microbiome, we report origi-
nal data on the influence of the host genetics for shaping its 
gut microbiota and associated enterotypes in pigs, which 
raise issues for breeding programs that should consider the 
holobiont and not only the host.

Our results confirmed that populations of 60-day-old 
Large White piglets repeatedly and consistently strat-
ify according to the two enterotypes PM and RT under 
shared and controlled environmental and feeding con-
ditions. We experimentally demonstrated a significant 
influence of the host genetics by producing two pig lines 
that were selected throughout three generations for rela-
tive abundances of bacterial genera identified as key 
taxon drivers for assembling the enterotypes. Our data 
demonstrate that the factors that determine the entero-
type composition, at least at this young age, are not pre-
dominantly linked with dietary habits and environmental 
constraints as usually stated [18, 46]. We focused on the 
age of 60  days since it corresponds to a reference time 
point in our first large-scale study reporting the pig ente-
rotypes [17]. Under our experimental conditions, D60 is 
32 days after weaning and 10 days before starting the fat-
tening period until slaughter between 140 and 150 days 
of age. In pigs, the gut microbiota diversifies considerably 
after birth during the first 3 weeks with a dramatic shift 
before and after weaning [39, 48–50]. The age of 60 days 
is an interesting time point in pig life to study gut micro-
biota composition because it corresponds to the first step 
of microbiota maturation and stability [41].

The RT enterotype was found to be richer than the PM 
enterotype but less efficient for body weight gain meas-
ured on piglets from 28 to 70 days of age. The gut microbi-
ota richness has been acknowledged as a robust indicator 
of gut health and resilience capacity [51]. Therefore, the 
RT enterotype might be more resilient than the PM ente-
rotype to stressors or suboptimal farm conditions in spite 
of being less efficient for growth at early life stages. Our 

results challenge the general assumption that fast growth 
is linked to good health. Indeed, we suggest the need to 
investigate possible vulnerabilities and physiological 
tradeoffs in piglets that grow very fast at early life stages. 
The less diverse PM enterotype seems to be enriched in 
functional features that may favor piglet growth capacity, 
with functions relating to starch degradation and polysac-
charide metabolism, overall biosynthesis of amino acids 
and more specifically to the biosynthesis of phenylala-
nine, tyrosine, tryptophan, valine, leucine, and isoleucine. 
Strikingly, the two enterotypes were found to have oppo-
site functionalities for the metabolism of valine, leucine, 
and isoleucine, the PM enterotype being oriented towards 
their biosynthesis and the RT enterotype towards their 
degradation. As in our study, the Prevotella enterotype in 
humans was also characterized by the lowest alpha diver-
sity and associated with high dietary fiber intake. This 
is particularly highly prevalent in individuals with non-
Western and/or fiber-rich diets [18]. In both the PM ente-
rotype in pigs and the Prevotella enterotype in humans, 
there is an enrichment in enzymes that degrade fibers.

Heritability estimates of around 0.3 were found for the 
four genera under direct selection. The same bacteria 
genera were reported with heritability estimates lower 
than 0.2 when measured on animals at around 300 days 
of age [38] or 110 days of age [39] or with null heritabil-
ity estimates when measured on lactating piglets [40]. At 
older ages, some other genera were found with a h2 value 
of around 0.3, higher than our estimates (e.g., Blautia, 
Paraprevotella, Roseburia, Streptococcus, Succinivibrio 
[38], Anaevibrio, Rikenellaceae RC9 gut group, Dialister 
[39]). These variations in heritability estimates for the 
same bacteria genera at different ages suggest an influ-
ence of the host genetics that may vary in importance 
throughout life but that is strong in pigs at D60 com-
pared to younger ages. In suckling piglets, we hypoth-
esize that it is too early to estimate genetic parameters 
since the dynamic process of microbiota diversification is 
just starting with likely strong daily inter-individual dif-
ferences. Host genetics has been documented as a deter-
minant of microbiomes in a wide range of animals from 
animal models to wild or livestock species and humans. 
Our results highlight the possible varying importance 
of the host genetics on gut microbiota composition 
throughout life and are relevant for making links with 
targeting strategic time windows for efficiently modulat-
ing the gut microbiota. Our hypothesis of a varying influ-
ence of the host genetics throughout life might help to 
reconcile divergent assumptions on the respective impor-
tance of the host genetics [5] and the environment [52] in 
shaping the gut microbiota.

We show that selecting for the relative abundance 
of bacterial genera that are identified as key drivers of 
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enterotypes results in a selection at the whole ecosystem 
level, with increased contrasts at each pig selection gen-
eration for all genera identified as differentially abundant 
between the two enterotypes at generation G0. This high-
lights that enterotypes are consistent functional ecosys-
tems that can be selected as a whole by exerting pressure 
on the host genetics. Since compared to the RT entero-
type the PM enterotype is associated with faster growth 
at early life stages, it might be tempting to select for a 
higher prevalence of PM enterotype at D60. However, it 
might be important to preserve the microbiomes as flexi-
ble biodiversity throughout life for resilience at the animal 
population level. For instance, in African buffalos, two 
enterotypes have been reported to be driven by Rumino-
coccaceae-UCG-005 or Solibacillus [46]. The Ruminococ-
caceae-UCG-005-driven enterotype is the richest and was 
found to be prevalent when the animals were submitted 
to resource-abundant dietary regimes, with limited beta 
diversity, while the Sollibacillus-driven enterotype is less 
rich and was found to be prevalent in restricted dietary 
conditions but with a high beta diversity. The environ-
mental-based shift in enterotype prevalence is associated 
with increased beta diversities for the less diverse entero-
type, thus contributing to maintaining the gamma diver-
sity at the population level and favoring the recolonization 
via microbial sharing across hosts when the environment 
allows it [46]. In humans, it has been shown that individu-
als may change enterotypes throughout life [42]. It will be 
highly interesting to investigate the temporal dynamics of 
enterotypes in the same pigs and to study the impact of 
harboring the PM or RT enterotype at D60 for produc-
tion, health, welfare, resilience, and longevity traits in 
the long term throughout life. It will also be important 
to investigate whether preserving the two enterotypes as 
complementary genetic resources is beneficial for resil-
ience and sustainability at the pig population level.

During the last decade, holobionts have emerged as 
units of biological organizations that exhibit synergistic 
phenotypes that are subject to evolutionary forces [2, 
53] with theoretical and research issues addressed to all 
life sciences, including biomedical, ecological, and agro-
nomic sectors. Genetic variations between hologenomes 
may be due to changes in the host genome as well as in 
the genomes of symbiotic microbes, leading to a complex 
framework in which the host genome and microbiome 
forge networks of G(host) x G(Microbiome) interact-
ing with the environment. Thus, holobionts may be con-
sidered as units of selection that combine host genetics 
provided at the host conception and gut microbiota that 
starts at birth and is dynamic throughout the whole life of 
its host. Considering holobionts in breeding programs is 
challenging. Our results clearly demonstrate that select-
ing components of the gut microbiota can be done with 

potential benefits for growth during the post-weaning 
period. However, targeting this benefit via genetic selec-
tion on the PM enterotype would potentially be asso-
ciated with a less diverse gut microbiota. The intense 
breeding programs in pigs that are fed formula feeds 
that contain high levels of protein and energy may have 
already eroded the level of biodiversity of the gut micro-
biota. Clues on such biodiversity erosion are provided by 
an expanded gene catalog of the pig gut microbiome that 
includes data from wild boars [54]. This expanded catalog 
revealed that the alpha-diversity of the gut microbiota is 
higher in wild boars than in commercial Duroc pigs and 
that the gut microbiota is enriched in a number of path-
ways including amino-acid biosynthesis and metabolism, 
lipid, carbohydrate, and vitamin (B6, Biotin) metabolism, 
antibiotic biosynthesis [54]. However even if the microbi-
ota diversity has decreased in commercial pigs, the exist-
ence of two enterotypes is preserved. In that respect, as 
discussed in human studies [18, 42, 43], there is a need 
to deepen research on whether enterotypes may be con-
sidered as relevant biomarkers for welfare, fitness, or risk 
assessment. Actually, the very limited number of entero-
types per host species (three in humans, and in our study 
two in pigs) is striking considering the high level of gut 
microbiota complexity and variabilities across individu-
als. The sole use of enterotype information may hide 
more subtle differences that are embedded within the 
enterotype. We may anticipate that elaborating breeding 
programs in livestock at the holobiont level will need to 
efficiently combine covariations between host genomes 
and their microbiome selection and modulation, in order 
to preserve the microbiome richness and diversity for 
resilient and sustainable livestock systems. The HPM 
and HRT divergent pig lines will potentially contribute 
to a better understanding of the combined impact of host 
genetics and gut microbiota on a range of phenotypes 
that are relevant for sustainable livestock systems, from 
growth and feed efficiency to health and welfare.

Conclusion
In this paper, we provide a formal demonstration that 
direct host genetic selection for the relative abundance of 
a very limited number of bacterial genera that are identi-
fied as key taxa driving the two enterotypes PM and RT 
is effective throughout generations, and orientates the 
whole gut microbiota as a functional ecosystem, by indi-
rectly selecting for interacting bacteria. This study was 
performed on 60-day-old piglets and additional experi-
ments would be necessary to study the possible changes 
of enterotypes over animal’s life and variations in the 
impact of host genetics on the gut microbiota at ages 
older than 60  days. Nevertheless, our report highlights 
that holobionts may be considered as units of selection 
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with intimate mechanisms between the host and its 
microbiota that need to be further investigated. Shotgun 
metagenomics have revealed some first clues to under-
standing the functional differences between pigs with the 
RT enterotype, which is more diverse, and those with the 
PM enterotype, which is more efficient for piglet growth 
during the post-weaning period. Overall, our results pave 
the way for future programs that aim at defining breed-
ing goals at the holobiont level, which will favor livestock 
sustainability while both preserving host and microbiota 
biodiversity. In addition, this study raises issues that are 
shared by biomedicine and life sciences on how to opti-
mize the holistic use of host genetics, gut microbiota 
diversity, and enterotype functionalities for assessing and 
predicting disease risks and traits of interest.
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