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Abstract 

Background  Chronic exposure to microorganisms inside homes can impact respiratory health. Few studies have 
used advanced sequencing methods to examine adult respiratory outcomes, especially continuous measures. 
We aimed to identify metagenomic profiles in house dust related to the quantitative traits of pulmonary function 
and airway inflammation in adults. Microbial communities, 1264 species (389 genera), in vacuumed bedroom dust 
from 779 homes in a US cohort were characterized by whole metagenome shotgun sequencing. We examined two 
overall microbial diversity measures: richness (the number of individual microbial species) and Shannon index (reflect‑
ing both richness and relative abundance). To identify specific differentially abundant genera, we applied the Lasso 
estimator with high-dimensional inference methods, a novel framework for analyzing microbiome data in relation 
to continuous traits after accounting for all taxa examined together.

Results  Pulmonary function measures (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), 
and FEV1/FVC ratio) were not associated with overall dust microbial diversity. However, many individual microbial gen‑
era were differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to FEV1, 
FVC, or FEV1/FVC. Similarly, fractional exhaled nitric oxide (FeNO), a marker of airway inflammation, was unrelated 
to overall microbial diversity but associated with differential abundance for many individual genera. Several genera, 
including Limosilactobacillus, were associated with a pulmonary function measure and FeNO, while others, includ‑
ing Moraxella to FEV1/FVC and Stenotrophomonas to FeNO, were associated with a single trait.

Conclusions  Using state-of-the-art metagenomic sequencing, we identified specific microorganisms in indoor dust 
related to pulmonary function and airway inflammation. Some were previously associated with respiratory condi‑
tions; others were novel, suggesting specific environmental microbial components contribute to various respiratory 
outcomes. The methods used are applicable to studying microbiome in relation to other continuous outcomes.
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Background
Chronic respiratory illnesses pose a major public health 
burden [1]. Although exposure to microorganisms inside 
homes has been linked to respiratory health [2], data in 
adults are limited. A few studies have examined associa-
tions of microbial composition with asthma and allergies 
[3–5]. Continuous outcomes have been largely ignored. 
No large studies of adult respiratory outcomes that cap-
ture environmental microbial exposure using state-of-
the-art whole metagenome shotgun sequencing have 
been reported.

Pulmonary function is a continuous measure of the 
physiologic state of the lungs in health and disease. 
Lower pulmonary function associates with poor health-
related quality of life [6] and predicts mortality, indepen-
dently of other risk factors [7]. Compared to genetic [8, 
9] and epigenetic [10] factors, less is known regarding 
potential impacts of exposures to microbial components 
inside homes on pulmonary function. Lower pulmonary 
function in asthmatic individuals was associated with 
exposure to house dust endotoxin, a generic measure of 
gram-negative bacteria [11]. Some studies reported no 
significant associations of adult pulmonary function with 
bacterial or fungal components [12], while others found 
associations with specific microorganisms [13] or moldi-
ness [14]. These studies measured microbial agents using 
quantitative PCR (qPCR) which limits the number of 
microorganisms under investigation [12–14]. Metagen-
omics provides the opportunity to explore a broad spec-
trum of microorganisms, including ones that cannot be 
cultured in a laboratory setting.

Fractional exhaled nitric oxide (FeNO) is a quantitative, 
noninvasive measure of airway inflammation. In children, 
exposure to endotoxin in house dust was related to lower 
FeNO [15]. FeNO levels associated with diverse indoor 
fungal communities among 55 adults [16]. We find no 
large sequencing-based study of indoor microbial profiles 
and FeNO in adults.

We used whole metagenome shotgun sequencing to 
comprehensively profile microorganisms in house dust 
from 779 households in the Agricultural Lung Health 
Study (ALHS), a case-control study of asthma nested 
within a US farming cohort. We investigated associa-
tions of pulmonary function and FeNO with diversity 
of microbial communities inside homes and with abun-
dance of individual microbial taxa. We implemented a 
novel framework for analyzing microbiome data in rela-
tion to continuous health outcomes.

Methods
Study population
Participants were enrolled in the Agricultural Lung 
Health Study (ALHS), a case-control study of current 

asthma nested within the Agricultural Health Study 
(AHS), a cohort of farmers and spouses of farm-
ers in North Carolina (NC) and Iowa (IA) [17]. 
Details have been described previously (data version 
P3REL201209.00) [11, 18]. In brief, the ALHS enrolled 
3301 participants (1223 asthma cases and 2078 noncases) 
in 2009–2013. Of these, 2871 received a home visit at 
which bedroom dust was collected. Of a simple random 
sample (N = 1000) chosen for our previous 16S rRNA 
amplicon sequencing study, 879 samples passed quality 
control and were included in our previous dust micro-
biome analyses [19]. These 879 samples were subjected 
to whole metagenome shotgun sequencing for more 
accurate comprehensive characterization of microbial 
communities.

Respiratory outcomes
Measurement of pulmonary function and FeNO in ALHS 
has been described previously [20]. In brief, trained 
staff measured prebronchodilator spirometric param-
eters, including the forced expiratory volume in the first 
second (FEV1) and forced vital capacity (FVC), during 
in-home visits using an EasyOne® spirometer (NDD 
Medical Technologies, Chelmsford, MA, USA) accord-
ing to American Thoracic Society guidelines. Participants 
were asked to avoid use of bronchodilators for at least 6 h 
before the visit; only 3% of participants failed to comply. 
We calculated FEV1/FVC as a proportion ranging from 0 
to 1. FeNO was measured using NIOX MINO (Aerocrine 
AB, Solna, Sweden) following manufacturer guidelines 
in duplicate and then averaged. Values below the limit of 
detection (LOD; < 5 ppb; 5.1%) were assigned to LOD/
sqrt(2) = 3.5 ppb.

House dust collection and whole genome shotgun 
sequencing
Trained field technicians collected dust samples using 
a DUSTREAM™ Collector (Indoor Biotechnologies, 
Inc., Charlottesville, VA, USA) from participants’ bed-
rooms during home visits [11]. Technicians vacuumed a 
one square yard area on the sleeping surface and on the 
floor next to the bed. Details on dust samples and DNA 
extraction were previously described [19]. Extracted 
DNA samples were sent to Center for Microbiome Inno-
vation, University of California San Diego, for whole 
genome shotgun metagenomic sequencing using Illu-
mina NovaSeq (Illumina, Inc., San Diego, CA, USA). Pro-
cessing included (1) trimming of low-quality sequence 
reads, duplicates, and adapters based on FastQC results 
(v0.11.5) [21] and (2) identification and removal of poten-
tial contaminant sequence reads, not from microbial 
genomes but from host genomic sources (human, cow, 
pig, chicken, turkey, horse, goat, sheep, dog, cat, and 
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dust mite) (Table S1) plus PhiX, a spike-in control in an 
Illumina experiment, using Bowtie2 [22] and KneadData 
(v0.7.10) [23]. We obtained taxonomic classification of 
sequences using Kraken2 (v2.1.1) [24] and generated 
abundance (counts) for each taxon using Bracken (v2.5.0) 
[25] with RefSeq genomes for bacteria, archaea, eukary-
otes, fungi, viruses, and plasmids and NCBI taxonomy 
information. Additionally, we identified and removed 
sequences related to potential contamination from sam-
ple collection and laboratory reagents (168 taxa) (Table 
S2) using negative “blank” controls of sterile water and 
the decontam R package (v1.10.0) [26]. We used both 
frequency-based (the default threshold of 0.1) and preva-
lence-based (a stricter threshold of 0.5) methods. For fur-
ther analyses, we excluded 98 samples having sequence 
reads < 1000 and taxa having < 0.0005% of the total 
number of sequence reads across all samples [27, 28] or 
assigned to Eukaryota and viruses with limited RefSeq 
genome databases available, leaving microbial abundance 
data for 1264 species (389 genera) in 781 samples.

Overall microbial diversity in relation to respiratory 
outcomes
We calculated two measures of overall microbial diver-
sity within each sample (alpha diversity): richness (the 
number of individual microbial species) and the Shan-
non index [29], which reflects both richness and relative 
abundances of each species. Using linear regression, we 
evaluated associations of the diversity measures with 
pulmonary function parameters (FEV1, FVC, and FEV1/
FVC) or FeNO. Due to its negatively skewed distribution, 
Shannon index was exponentially transformed before 
association analyses. Covariates for pulmonary func-
tion were age, age squared, sex, height, height squared, 
weight (for FVC only), cigarette smoking (former or cur-
rent, both relative to never), cigarette pack-years, asthma 
status (yes/no), state of residence (NC/IA), and ancestry 
(European/not based on genome-wide genetic informa-
tion, except for one sample whose information was filled 
with self-reported race as White). Models for FeNO 
included abovementioned covariates except age squared 
and height squared. As sensitivity analyses, we addition-
ally adjusted for season of dust collection (winter/not) 
which showed associations with overall microbial diver-
sity in ALHS [19].

To avoid bias due to different sequencing depths among 
samples, abundance data were rarefied to the minimum 
number of sequences (975) across samples before assess-
ing microbial diversity. After excluding two participants 
without smoking pack-years, 779 were included in asso-
ciation analyses. FeNO was available for 767 participants. 
We used R version 4.1.0 to summarize characteristics of 
the study population and perform association analyses of 

microbial diversity. We used functions specnumber and 
diversity in the vegan R package (v2.6.2) [30] to calculate 
the richness and the Shannon index, respectively. We set 
p-value < 0.05 as the threshold for statistical significance 
in diversity analyses.

Individual microbial taxa differentially abundant 
in relation to respiratory outcomes
To examine differential abundance of individual taxa in 
relation to pulmonary function or FeNO, we applied sta-
tistical inference techniques that provide accurate tests 
of hypotheses in large-scale data sets with high-dimen-
sional predictors. We analyzed microbial abundance at 
the genus level to overcome the sparsity when examin-
ing individual species. To lessen the impact of extreme 
sequence reads on regression models, we used winsori-
zation [31]; for each genus, sequence reads for the sam-
ples with five largest numbers of sequence reads were set 
to the sixth largest number of sequence reads. We con-
verted abundance read counts to relative abundances 
for each genus and centered and scaled predictor and 
response variables to remove the need for an intercept 
term in the regression models. The same covariates were 
included as in our diversity analyses. We estimated coef-
ficients with the Lasso estimator and tested hypotheses 
regarding predictor-response associations with a post-
selection inference methodology [32, 33]. This method 
determined whether each microbial taxon (the predictor) 
was differentially abundant in relation to a respiratory 
outcome (the response variable) while controlling for all 
other microbial taxa using Lasso estimation to shrink 
coefficients of unimportant predictors toward zero. This 
procedure produces a test of significance of each taxon; 
but critically, each taxon is tested after removing the 
effects of all other taxa. Typical one-taxon-at-a-time test-
ing does not involve either shrinkage of unimportant 
coefficients or adjustment for other taxa. Accordingly, we 
used a cutoff of p-value < 0.05 for statistical significance.

We used R version 3.4.0 for computation with optimi-
zation of the Lasso estimator performed by the software 
mosek wrapped through the R package Rmosek, which 
implemented fivefold cross-validation to choose the 
Lasso regularizer.

Results
Of the 779 participants, 60% were male. Participants were 
62 years old on average and from NC (32%) or IA (68%) 
(Table 1). As expected, individuals with asthma exhibited 
statistically significantly lower lung function and higher 
FeNO than noncases (Table S3).

After quality-control filtering, our house dust metage-
nome data included 173,766,690 sequence reads, with 
223,064 sequence reads per sample on average. The taxa 
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identified were 1264 species assigned to 389 genera. 
Most species (1260; 99.7%) were from 13 distinct phyla 
within Bacteria; only a few were from Archaea (Table S4). 
Of the 13 bacterial phyla, four predominated: Proteo-
bacteria (39%), Actinobacteria (33%), Firmicutes (16%), 
and Bacteroidetes (11%). At the genus level, the gen-
era Staphylococcus (phylum Firmicutes), Pseudomonas 
(phylum Proteobacteria), Brevibacterium (phylum Act-
inobacteria) were more abundant than other genera, 
and the three account for about 30% of the dust micro-
bial communities. The three most abundant species were 
Brevibacterium aurantiacum (phylum Actinobacte-
ria), Cutibacterium acnes (phylum Actinobacteria), and 
Staphylococcus aureus (phylum Firmicutes); each made 
up about 5–7% of the microbial communities. Microbial 
community compositions at the phylum level varied by 
sample (Fig. 1).

For overall diversity measures, the average richness 
was 241 (SD 40), and Shannon H index was 4.4 (SD 0.43) 

(Figure S1). Overall microbial diversity in house dust was 
not significantly related to respiratory outcomes. For 
both richness and Shannon index, higher diversity was 
related to higher pulmonary function parameters (FEV1 
and FEV1/FVC), but these associations were not statisti-
cally significant (Table S5). Similar patterns were seen for 
FeNO.

Many individual microbial genera were differentially 
abundant in relation to pulmonary function. Of the 389 
genera examined, 76 were related to one or more pulmo-
nary function parameters (p-value < 0.05) in analyses that 
adjusted for all other microbial taxa (Fig. 2, Table 2). Most 
were from the bacterial phyla Actinobacteria (N = 25), 
Proteobacteria (N = 23), or Firmicutes (N = 17). Slightly, 
more genera showed positive than negative associations: 
55% for FEV1, 62% for FVC, and 71% for FEV1/FVC. Of 
the 76 genera, 22 were associated with two parameters, 
including Ilumatobacter (phylum Actinobacteria), Chroo-
coccidiopsis (phylum Cyanobacteria), and Anaerobutyri-
cum (phylum Firmicutes). The remaining 54 genera were 
uniquely associated with a specific parameter, including 
Streptococcus (phylum Firmicutes) and Moraxella (phy-
lum Proteobacteria) (Table S6). Significant genera were 
largely from more abundant phyla including Proteobac-
teria and Actinobacteria (Fig. 3). Notably, of two genera 
from phylum Acidobacteria examined in this work, one 
Luteitalea showed significant associations with FEV1 and 
FEV1/FVC.

For FeNO, we found 30 differentially abundant genera 
(p-value < 0.05) after controlling for all other microbial 
taxa, including Stenotrophomonas (phylum Proteobac-
teria) (Table  3). Notably, seven of these, including the 
bacterial genus Limosilactobacillus (phylum Firmicutes), 
were also related to a pulmonary function parameter 
(Table S6).

When we interrogated our data at the species level, 
we found 189 (of 1264) species (106 genera) significantly 
related to lung function and 80 species (51 genera) signif-
icantly related to FeNO (p-value < 0.05 after accounting 
for all species examined together, Table S7). Of genera 
related to lung function and/or FeNO in the species level 
results, 63 containing 145 species were not significant in 
the genus level results. Of the 76 genera related to lung 
function in our genus level association results, 47 (62%) 
genera contained one or more significant species in the 
species level results (Table S8). Of the 30 genera associ-
ated with FeNO in the genus level results, 19 (63%) gen-
era contained species exhibiting significant associations 
in the species level results (Table S9).

When we examined our 16S data [19], of the 76 gen-
era related to lung function in our metagenome data, 31 
were present. Of these, six, including Moraxella (phylum 
Proteobacteria), were significant (Table S10). Of the 30 

Table 1  Characteristics of study participants (N = 779)

a Fractional exhaled nitric oxide, available in 767 participants. Values were 
natural log (ln) transformed for normality

Characteristic N (%) or mean ± SD

Age, years 62 ± 11

Sex

  Male 468 (60)

  Female 311 (40)

Height, cm 171 ± 10

Weight, kg 90 ± 21

Smoking status

  Never 506 (65)

  Former 227 (29)

  Current 46 (6)

Pack-years in ever smokers 21 ± 23

Asthma status

  Yes 295 (38)

  No 484 (62)

State of residence

  North Carolina 246 (32)

  Iowa 533 (68)

Ancestry

  European 746 (96)

  Not 33 (4)

Season of dust collection

  Winter 178 (23)

  Not 601 (77)

Pulmonary function parameters

  FEV1, ml 2649 ± 853

  FVC, ml 3620 ± 1036

  FEV1/FVC 0.73 ± 0.10

FeNOa, ppb 2.8 ± 0.7
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genera associated with FeNO in our metagenome data, 
11 were present, and 1 genera Stenotrophomonas (phy-
lum Proteobacteria) showed significance (Table S11).

Discussion
To our knowledge, this is the first large study to assess 
metagenome profiles in house dust using whole metage-
nome shotgun sequencing to examine associations of 
house dust microbiota with respiratory outcomes in 
adults. By comprehensively profiling microorganisms 
in house dust, we identified many individual microbial 
genera differentially abundant in relation to pulmonary 
function and/or airway inflammation. Among the gen-
era that we identified as related to pulmonary function, 
several have been linked to pathogenesis of lung diseases 
previously, but others have not. Our results suggest that 
chronic exposure to specific microorganisms indoors 
may play a role in occupants’ respiratory outcomes.

House dust contains diverse microbial profiles. In our 
study, bacteria from four phyla (Proteobacteria, Act-
inobacteria, Firmicutes, and Bacteroidetes) predomi-
nated; each phylum included > 10% of the total species. 
This finding is similar to that generated using 16S rRNA 
amplicon sequencing [19]. Our whole metagenome 
sequencing provides more accurate identification of 
microbial species and adds nonbacterial microorganisms 
not targeted in 16S technology [34].

There are few data on associations between microbial 
communities measured in house dust and pulmonary 
function and none using whole metagenome sequenc-
ing. While we were not able to identify an independent 
indoor dust microbiome dataset to replicate our findings, 
we found some of our results overlapping with findings 
from a recent oral microbiome study of pulmonary func-
tion in Norwegian adults [35]. That study used 16S rRNA 
amplicon sequencing data and examined categorized 
levels of pulmonary function (low vs normal) and airway 
inflammation (eosinophilic inflammation vs normal). 
From a look-up analysis of our differentially abundant 
genera in their results, we were able to validate some of 
our findings [35]. Of genera identified for FEV1 and FVC 
in our dust data, the genus Achromobacter (phylum Pro-
teobacteria) showed same directional (inverse) associa-
tions with the two lung function parameters (FDR < 0.05) 
in their oral microbiome data. Among genera we identi-
fied for FeNO, the genus Janibacter (phylum Actinobac-
teria) was negatively associated with FeNO in the oral 
microbiome data. The overlap between our findings and 
theirs provides partial validation for our findings.

Notably, several genera we identified as differentially 
abundant in relation to pulmonary function or air-
way inflammation have been linked to pathogenesis of 
lung diseases. The genus Streptococcus (phylum Firmi-
cutes; family Streptococcaceae) was inversely associated 

Fig. 1  Phylum level summary of microbial taxa across all dust samples (n = 779). This figure shows the phylum level summary of relative abundance 
in each sample. The x-axis indicates house dust samples examined, and the y-axis represents relative abundance at the phylum level
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with FEV1/FVC in our data; it contains several species, 
including Streptococcus pneumoniae and Streptococcus 
pyogenes, well known to cause pneumonia [36]. We also 
found the genus Moraxella (phylum Proteobacteria; fam-
ily Moraxellaceae) related to FEV1/FVC. Moraxella is a 
genus of gram-negative bacteria and includes Moraxella 
catarrhalis, frequently observed in sputum of COPD 
patients and related to asthma exacerbations [37, 38]. 
M. catarrhalis, a known pathogen, is not generally con-
sidered an environmental microbe because it requires 
a human host to survive; however, it can live in dried 
sputum in the environment for up to 3 weeks [39]. Our 
identification of an association of this organism in dust 
with a pulmonary outcome hints at potential interactions 

between the human and indoor dust microbiomes. An 
additional genus positively associated with FEV1/FVC 
was Bifidobacterium. A recent review recognized poten-
tial contributions of probiotics, including the genus Bifi-
dobacterium, in management of respiratory diseases 
[40]. The genus Limosilactobacillus associated with both 
FEV1/FVC and FeNO in our data includes Limosilac-
tobacillus reuteri, which also has probiotic properties 
[41]. We observed the genus Stenotrophomonas (phylum 
Proteobacteria; family Xanthomonadaceae) significantly 
related to FeNO. The genus includes Stenotrophomonas 
maltophilia, a common multidrug-resistant organism 
related to severe lung infections in individuals with cystic 
fibrosis [42, 43].

Fig. 2  Heatmap of genera differentially abundant in relation to one or more pulmonary function parameters. The three rightmost columns visualize 
regression coefficients with statistical significance separately by pulmonary function parameter (FEV1, FVC, or FEV1/FVC). The six leftmost columns 
provide taxonomic classification (from kingdom to genus) for each taxon. Coding for p-value threshold is * for p-value < 0.05 after controlling for all 
other microbial taxa examined
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Table 2  Genera differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to pulmonary 
function parameters

Phylum Family Genus Coefficient p-value

Trait: FEV1

  Acidobacteria Vicinamibacteraceae Luteitalea −0.066 0.012

  Actinobacteria Bifidobacteriaceae Parascardovia −0.055 0.012

  Actinobacteria Cellulomonadaceae Cellulomonas −0.062 0.004

  Actinobacteria Conexibacteraceae Conexibacter 0.081 0.020

  Actinobacteria Dermacoccaceae Kytococcus 0.046 0.038

  Actinobacteria Ilumatobacteraceae Ilumatobacter 0.068 0.001

  Actinobacteria Microbacteriaceae Cryobacterium 0.076 0.013

  Actinobacteria Microbacteriaceae Frigoribacterium 0.064 0.005

  Actinobacteria Micrococcaceae Kocuria 0.043 0.040

  Actinobacteria Nocardioidaceae Friedmanniella 0.059 0.023

  Actinobacteria Streptosporangiaceae Streptosporangium 0.035 0.031

  Bacteroidetes Cytophagaceae Spirosoma 0.058 0.028

  Cyanobacteria Chroococcidiopsidaceae Chroococcidiopsis 0.026 0.046

  Cyanobacteria Nostocaceae Nostoc −0.076 0.036

  Deinococcus-Thermus Deinococcaceae Deinococcus −0.037 0.049

  Firmicutes Acidaminococcaceae Acidaminococcus −0.043 0.022

  Firmicutes Erysipelotrichaceae Erysipelatoclostridium −0.075 0.029

  Firmicutes Lachnospiraceae Anaerobutyricum −0.072 0.045

  Firmicutes Paenibacillaceae Saccharibacillus 0.034 0.049

  Firmicutes Peptostreptococcaceae Monoglobus 0.051 0.022

  Proteobacteria Alcaligenaceae Achromobacter −0.052 0.005

  Proteobacteria Alcaligenaceae Rhizobacter −0.052 0.004

  Proteobacteria Hyphomicrobiaceae Devosia 0.060 0.031

  Proteobacteria Methylobacteriaceae Methylorubrum 0.055 0.004

  Proteobacteria Pasteurellaceae Haemophilus 0.071 0.020

  Proteobacteria Pseudomonadaceae Pseudomonas −0.074 0.047

  Proteobacteria Rhodobacteraceae Haematobacter −0.029 0.030

  Proteobacteria Shewanellaceae Shewanella 0.031 0.008

  Proteobacteria Sphingomonadaceae Sphingosinithalassobacter −0.049 0.010

Trait: FVC
  Actinobacteria Cellulomonadaceae Cellulomonas −0.057 0.003

  Actinobacteria Dermacoccaceae Kytococcus 0.047 0.025

  Actinobacteria Ilumatobacteraceae Ilumatobacter 0.051 0.015

  Actinobacteria Microbacteriaceae Cryobacterium 0.058 0.040

  Actinobacteria Microbacteriaceae Frigoribacterium 0.078 0.001

  Actinobacteria Micrococcaceae Kocuria 0.044 0.026

  Actinobacteria Micromonosporaceae Micromonospora 0.045 0.044

  Actinobacteria Nocardiopsaceae Nocardiopsis 0.043 0.026

  Bacteroidetes Blattabacteriaceae Candidatus_Sulciaa 0.036 0.049

  Cyanobacteria Chroococcidiopsidaceae Chroococcidiopsis 0.036 0.007

  Cyanobacteria Oscillatoriaceae Oscillatoria 0.053 0.033

  Cyanobacteria Scytonemataceae Scytonemaa −0.037 0.044

  Firmicutes Acidaminococcaceae Acidaminococcus −0.034 0.024

  Firmicutes Erysipelotrichaceae Erysipelatoclostridium −0.073 0.014

  Firmicutes Lachnospiraceae Anaerobutyricum −0.078 0.006

  Firmicutes Lachnospiraceae Blautia 0.139 0.038

  Firmicutes Lachnospiraceae Lachnoclostridium −0.089 0.032
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Table 2  (continued)

Phylum Family Genus Coefficient p-value

  Firmicutes Paenibacillaceae Saccharibacillus 0.030 0.047

  Firmicutes Peptoniphilaceae Finegoldia −0.056 0.044

  Firmicutes Peptostreptococcaceae Clostridioides 0.080 0.011

  Firmicutes Peptostreptococcaceae Flintibacter 0.059 0.020

  Firmicutes Planococcaceae Planococcusa −0.050 0.014

  Firmicutes Streptococcaceae Lactococcus 0.060 0.004

  Proteobacteria Alcaligenaceae Achromobacter −0.042 0.028

  Proteobacteria Alcaligenaceae Rhizobacter −0.036 0.025

  Proteobacteria Alcaligenaceae Rubrivivax −0.035 0.050

  Proteobacteria Brucellaceae Ochrobactruma 0.045 0.038

  Proteobacteria Enterobacteriaceae Klebsiella 0.071 0.026

  Proteobacteria Hyphomicrobiaceae Devosia 0.061 0.023

  Proteobacteria Methylobacteriaceae Methylorubrum 0.056 0.006

  Proteobacteria Pasteurellaceae Haemophilus 0.085 0.004

  Proteobacteria Rhodobacteraceae Haematobacter −0.036 0.007

  Proteobacteria Sphingomonadaceae Sphingosinithalassobacter −0.038 0.026

  Proteobacteria Yersiniaceae Ewingella 0.061 0.046

Trait: FEV1/FVC
  Acidobacteria Vicinamibacteraceae Luteitalea −0.096 0.016

  Actinobacteria Actinomycetaceae Pauljensenia 0.072 0.026

  Actinobacteria Bifidobacteriaceae Bifidobacterium 0.067 0.005

  Actinobacteria Bifidobacteriaceae Parascardovia −0.103 0.003

  Actinobacteria Intrasporangiaceae Ornithinimicrobium −0.112 0.004

  Actinobacteria Intrasporangiaceae Phycicoccus 0.084 0.047

  Actinobacteria Microbacteriaceae Cnuibacter 0.066 0.042

  Actinobacteria Microbacteriaceae Herbiconiux −0.064 0.016

  Actinobacteria Microbacteriaceae Microbacteriuma 0.099 0.020

  Actinobacteria Microbacteriaceae Rathayibacter −0.079 2.1 × 10−4

  Actinobacteria Micrococcaceae Arthrobacter 0.070 0.043

  Actinobacteria Nocardioidaceae Friedmanniella 0.117 0.001

  Actinobacteria Propionibacteriaceae Cutibacterium −0.101 0.011

  Actinobacteria Propionibacteriaceae Pseudopropionibacterium 0.053 0.049

  Actinobacteria Ruaniaceae Haloactinobacterium −0.066 0.022

  Actinobacteria Rubrobacteraceae Rubrobacter 0.061 0.012

  Bacteroidetes Amoebophilaceae Candidatus_Cardinium 0.048 0.049

  Bacteroidetes Rikenellaceae Alistipes −0.132 0.025

  Bacteroidetes Weeksellaceae Elizabethkingia 0.055 0.045

  Firmicutes Enterococcaceae Enterococcus 0.061 0.008

  Firmicutes Lactobacillaceae Limosilactobacillusa −0.085 0.037

  Firmicutes Staphylococcaceae Auricoccus 0.052 0.022

  Firmicutes Streptococcaceae Streptococcus −0.144 0.011

  Firmicutes Veillonellaceae Megasphaera 0.073 0.049

  Proteobacteria Alcaligenaceae Alcaligenes 0.069 0.012

  Proteobacteria Anaplasmataceae Wolbachia 0.049 0.027

  Proteobacteria Bradyrhizobiaceae Variibacter 0.091 0.002

  Proteobacteria Enterobacteriaceae Leclercia 0.083 0.029

  Proteobacteria Enterobacteriaceae Lelliottiaa 0.042 2.7 × 10−4

  Proteobacteria Erwiniaceae Buchnera 0.036 0.026

  Proteobacteria Halomonadaceae Halomonas 0.040 0.012
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Findings from earlier studies of pulmonary function 
and microbial components using older technologies are 
limited in the number of microbial agents investigated 
[11–14]. Most studies analyzed bacterial or fungal agents 
with qPCR, but results are not comparable across stud-
ies because the microbial components examined differed 
[12–14]. We generated a comprehensive set of metagen-
omic profiles in house dust using whole metagenome 
sequencing and identified specific microbial signatures 
related to pulmonary function and airway inflammation.

Sparsity due to excessive zero counts in microbiome 
data poses challenges in statistical analysis. Applying an 
additional filtering step to remove rare taxa and analyzing 

differential abundance data at the genus level enabled us 
to reduce spurious associations potentially induced by 
sparsity. Analysis at the species level results in greater 
sparsity. For some genera, we were able to identify spe-
cific species contributing to the significant associations at 
the genus level. We also found genera significant in the 
genus level results, but the species level analysis gave no 
significant species within that genus. These genus level 
associations were not driven by a single species but by 
the combined effects of different species.

Whole metagenome sequencing can capture micro-
bial community composition with higher accuracy than 
16S technology. In the same population, we identified 

Table 2  (continued)

Phylum Family Genus Coefficient p-value

  Proteobacteria Moraxellaceae Moraxella 0.060 0.009

  Proteobacteria Rhizobiaceae Shinella 0.076 0.023

  Proteobacteria Rhodobacteraceae Tabrizicola 0.068 0.014

  Proteobacteria Shewanellaceae Shewanella 0.037 0.006

Association results were obtained from linear regression with each microbial taxon as the predictor and a pulmonary function parameter as the outcome while 
controlling for all other microbial taxa. Therefore, a cutoff of p-value < 0.05 was used for statistical significance. Covariates were age, age squared, sex, height, height 
squared (weight for FVC only), cigarette smoking (former or current, both relative to never), pack-years of cigarette smoking, asthma status (yes/no), state of residence 
(NC/IA), and ancestry (European/not). For each taxon, a positive regression coefficient means that a change in the relative abundance results in a change in the 
measure trait in the same direction. Negative coefficients imply an inverse association between the relative abundance and the measured trait
a Also associated with FeNO. See Table 3. All genera from kingdom Bacteria

Fig. 3  Sunburst plots visualizing membership of microbial taxa significantly associated with a health outcome at different taxonomic levels. Each 
sunburst plot displays a hierarchical summary of phylum-, family-, and genus-level taxonomic name (from center to edge respectively) for a all 
genera examined and genera differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to each outcome: 
b FEV1, c FVC, d FEV1/FVC, and e FeNO
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many more microbial taxa and significant associations 
using whole genome sequencing microbiome data [34] 
compared to 16S [19]. Similarly, in this investigation 
of continuous health outcomes, we found some genera 
significant in our metagenome data were also related to 
lung function and/or FeNO in our 16S data (p-value < 
0.05 after accounting for all genus level taxa examined 
together). Given the different microbial taxa and com-
positions captured using the two sequencing methods 
and the unique nature of our statistical method of con-
sidering all identified taxa in the same model, validation 
of these microorganisms identified using metagenome 

sequencing in our 16S data is reassuring and useful for 
comparison with prior 16S literature.

In a usual differential abundance analysis, research-
ers examine each microbial taxon one at a time and thus 
execute statistical testing with correction for the number 
of individual taxa included in the analysis. In contrast, 
the statistical method we implemented examines each 
microbial taxon after accounting for all microbial taxa 
identified in the data. The dust microbiome is inherently 
a mixture, and individuals are exposed to all of the iden-
tified organisms simultaneously. Therefore, our method 
of accounting for all the other taxa in dust may be more 

Table 3  Genera differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to FeNO

Association results were obtained from linear regression with each microbial taxon as the predictor and FeNO as the outcome while controlling for all other microbial 
taxa. Therefore, a cutoff of p-value < 0.05 was used for statistical significance. Covariates were age, sex, height, cigarette smoking (former or current, both relative 
to never), pack-years of cigarette smoking, asthma status (yes/no), state of residence (NC/IA), and ancestry (European/not). For each taxon, a positive regression 
coefficient means that a change in the relative abundance results in a change in the measure trait in the same direction. Negative coefficients imply an inverse 
association between the relative abundance and the measured trait
a Also associated with at least one pulmonary function parameter (FEV1, FVC, or FEV1/FVC) (see Table 2). All genera from kingdom Bacteria

Phylum Family Genus Coefficient p-value

Actinobacteria Actinomycetaceae Actinomyces −0.125 0.010

Actinobacteria Atopobiaceae Olsenella 0.106 0.019

Actinobacteria Geodermatophilaceae Blastococcus −0.066 0.039

Actinobacteria Intrasporangiaceae Intrasporangium −0.145 3.4 × 10−4

Actinobacteria Intrasporangiaceae Janibacter −0.069 0.037

Actinobacteria Microbacteriaceae Microbacteriuma −0.106 0.034

Actinobacteria Nocardioidaceae Kribbella −0.081 0.012

Bacteroidetes Blattabacteriaceae Candidatus_Sulciaa −0.073 0.033

Bacteroidetes Flavobacteriaceae Capnocytophaga 0.132 0.011

Bacteroidetes Flavobacteriaceae Flavobacterium 0.089 0.038

Bacteroidetes Hymenobacteraceae Adhaeribacter −0.077 0.036

Bacteroidetes Weeksellaceae Weeksella 0.039 0.024

Cyanobacteria Scytonemataceae Scytonemaa 0.074 0.046

Firmicutes Bacillaceae Salicibibacter 0.098 0.030

Firmicutes Lactobacillaceae Limosilactobacillus −0.087 0.027

Firmicutes Peptostreptococcaceae Massilistercora −0.076 0.017

Firmicutes Planococcaceae Planococcusa 0.070 0.035

Firmicutes Planococcaceae Solibacillus −0.081 4.9 × 10−4

Firmicutes Staphylococcaceae Jeotgalicoccus 0.124 0.027

Planctomycetes Planctomycetaceae Planctomyces 0.079 0.011

Proteobacteria Alcanivoracaceae Alcanivorax 0.096 3.2 × 10−5

Proteobacteria Bradyrhizobiaceae Rhodopseudomonas 0.071 0.035

Proteobacteria Brucellaceae Ochrobactruma 0.086 0.007

Proteobacteria Enterobacteriaceae Lelliottiaa −0.046 8.0 × 10−4

Proteobacteria Erythrobacteraceae Erythrobacter −0.041 0.004

Proteobacteria Pasteurellaceae Frederiksenia −0.151 6.4 × 10−5

Proteobacteria Rhodobacteraceae Pannonibacter 0.075 0.023

Proteobacteria Xanthomonadaceae Lysobacter 0.096 0.011

Proteobacteria Xanthomonadaceae Stenotrophomonas 0.115 2.9 × 10−4

Proteobacteria Yersiniaceae Rouxiella 0.190 0.023
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appropriate and can provide additional insights into 
understanding the impact of this complex environmental 
exposure on human health.

The high-dimensional metagenome data analysis 
method we implemented addresses the limited availabil-
ity of statistical analysis methods suitable for continuous 
outcomes and metagenome data also allowing for adjust-
ment for covariates. While it is relatively new in the con-
text of metagenome data analysis, it is built upon a strong 
statistical foundation [32, 33]. Using this high-dimen-
sional method in the analysis of a continuous outcome is 
a strength of our study and should be useful to research-
ers studying impacts of the microbiome on other contin-
uous outcomes and will advance metagenome analysis.

In our dust metagenome sequencing data, we observed 
3% of sequence reads mapped to Dermatophagoides fari-
nae, a known dust mite associated with asthma symp-
toms [44]. Examining relative abundance of this organism 
in relation to lung function and airway inflammation is of 
interest.

Recent studies suggest impacts of air pollutants on 
indoor microbiome in urban populations [45, 46]. Due to 
lack of air pollution data at the time of home visit, we are 
not able assess how air pollution plays a role in associa-
tions between indoor microbiome and respiratory health. 
We also note that the expected variability in air pollu-
tion in this predominantly rural population would limit 
the ability to detect impacts on the indoor microbiome. 
Future research is warranted to disentangle the complex 
relationships between air pollution, indoor microbiome, 
and respiratory health.

This study has limitations. We analyzed a single dust 
sample from each house to reflect the usual home con-
dition and measured only bedroom dust. Exposure 
assessment would be improved by collecting samples 
at multiple time points. Improved exposure assess-
ment could enhance our ability to robustly detect 
associations between dust microbial composition and 
the outcomes under study. Because most individuals 
spend a large portion of their day in the bedroom, it 
is a highly relevant single location to sample. That our 
study population is from a US farming cohort could 
potentially limit the generalizability of our findings; 
however, because farm exposures contribute to higher 
microbial diversity [19, 47] in house dust, our farming 
population might improve our ability to identify asso-
ciations with health outcomes. Because of the unique 
characteristics of our study — house dust metagenome 
characterized using whole genome sequencing together 
with adult respiratory outcomes — we could not iden-
tify a replication population. Therefore, we looked 
up taxa we identified in literature and found associa-
tions of some with lung diseases. We were unable to 

examine absolute bacterial load using sequencing data. 
Although we increased the number of microorganisms 
examined by using whole metagenome sequencing, 
sequencing methods do not allow absolute quantifica-
tion of microbial abundance. Nevertheless, our dif-
ferential abundance method allowed identification of 
directions of associations. Though it would be useful, 
we lack matching human microbiome data. Besides, 
potentially impacting the human microbiome, however, 
the house dust metagenome is an environmental expo-
sure that can directly impact health outcomes. Thus, 
the associations we observed are of interest. Finally, the 
cross-sectional observational study design limited our 
ability to draw causal inferences. Associations could 
reflect influences of microbial exposures on respiratory 
outcomes or alternatively reflect the influence of occu-
pants’ respiratory health on the microbial composition 
of house dust.

Key strengths of our study include the large sample 
size as the first indoor metagenomic study of pulmo-
nary function in adults. We generated comprehensive 
metagenome profiles using whole genome shotgun 
sequencing. Compared to the older 16S rRNA amplicon 
sequencing which obtains information on operational 
taxonomic units (OTUs) based on sequence similar-
ity, shotgun metagenomic sequencing can lead to more 
accurate detection of microorganisms by direct sequenc-
ing fragments of the genome. We applied several qual-
ity-control steps and filtering criteria to improve the 
quality of metagenome abundance data before asso-
ciation analyses; in particular, we removed poor quality 
sequence reads and rare microbial taxa. Our dataset with 
252,595 (25%) zero microbial counts across all samples 
was much less sparse than typically seen for metagen-
ome data [48]. Excluding rare taxa, reducing zero counts, 
and removing extreme outliers by winsorization should 
reduce false-positive findings. By using whole genome 
shotgun sequencing, we also captured nonbacterial 
profiles: 23 species from four phyla within Eukaryota, 4 
from three phyla within Archaea, and 3 from two viral 
phyla. We applied recently developed inference meth-
ods that allowed us to examine associations between a 
high-dimensional predictor (house dust metagenome) 
and respiratory outcomes while accounting for the many 
taxa examined together. Because humans are exposed to 
the entire community of microorganisms, it is crucial to 
use an appropriate high-dimensional modeling approach 
like ours that probes the complex relationships among 
microorganisms. In addition to pulmonary function, we 
analyzed FeNO, a marker of airway inflammation. With 
no prior whole metagenome sequencing-based studies 
of microbial exposure, our findings of individual genera 
associated with pulmonary function and FeNO could 
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inform mechanisms between exposure to microbes 
indoors and respiratory inflammation.

Our study fills the knowledge gap in the current lit-
erature by validating previously known disease-related 
microorganisms in the study of continuous measures 
reflecting respiratory health as well as identifying novel 
associations. Microbes related to several lung diseases 
appear to correlate with lung function and/or airway 
inflammation regardless of disease status. Validation in 
additional population studies reinforced by mechanistic 
studies could provide the basis for actionable guidelines 
for farmers and public health professionals.

We found microbial signatures in house dust associ-
ated with continuous measures of pulmonary function 
and airway inflammation in adults. Although overall 
microbial diversity was not significantly related to pul-
monary function, many specific genera were differen-
tially abundant in relation to pulmonary function and/
or airway inflammation. Further investigation of the gen-
era identified could inform contributions of exposure to 
indoor microorganisms to respiratory health. This com-
prehensive investigation of microbial signatures in house 
dust and adult respiratory outcomes could help elucidate 
complex mechanisms of chronic exposure to house dust 
and respiratory health across the life course.
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