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Abstract 

Background  Advances in sequencing technology has led to the discovery of associations between the human 
microbiota and many diseases, conditions, and traits. With the increasing availability of microbiome data, many 
statistical methods have been developed for studying these associations. The growing number of newly developed 
methods highlights the need for simple, rapid, and reliable methods to simulate realistic microbiome data, which 
is essential for validating and evaluating the performance of these methods. However, generating realistic microbi-
ome data is challenging due to the complex nature of microbiome data, which feature correlation between taxa, 
sparsity, overdispersion, and compositionality. Current methods for simulating microbiome data are deficient in their 
ability to capture these important features of microbiome data, or can require exorbitant computational time.

Methods  We develop MIDASim (MIcrobiome DAta Simulator), a fast and simple approach for simulating realistic 
microbiome data that reproduces the distributional and correlation structure of a template microbiome dataset. 
MIDASim is a two-step approach. The first step generates correlated binary indicators that represent the presence-
absence status of all taxa, and the second step generates relative abundances and counts for the taxa that are con-
sidered to be present in step 1, utilizing a Gaussian copula to account for the taxon-taxon correlations. In the second 
step, MIDASim can operate in both a nonparametric and parametric mode. In the nonparametric mode, the Gaussian 
copula uses the empirical distribution of relative abundances for the marginal distributions. In the parametric mode, 
a generalized gamma distribution is used in place of the empirical distribution.

Results  We demonstrate improved performance of MIDASim relative to other existing methods using gut and vagi-
nal data. MIDASim showed superior performance by PERMANOVA and in terms of alpha diversity and beta dispersion 
in either parametric or nonparametric mode. We also show how MIDASim in parametric mode can be used to assess 
the performance of methods for finding differentially abundant taxa in a compositional model.

Conclusions  MIDASim is easy to implement, flexible and suitable for most microbiome data simulation situations. 
MIDASim has three major advantages. First, MIDASim performs better in reproducing the distributional features of real 
data compared to other methods, at both the presence-absence level and the relative-abundance level. MIDASim-
simulated data are more similar to the template data than competing methods, as quantified using a variety of meas-
ures. Second, MIDASim makes few distributional assumptions for the relative abundances, and thus can easily accom-
modate complex distributional features in real data. Third, MIDASim is computationally efficient and can be used 
to simulate large microbiome datasets.
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Introduction
The human microbiota and its associated microbiome 
play a fundamental role in many diseases and condi-
tions, including obesity [1], inflammatory bowel disease 
(IBD) [2], preterm birth [3], autism [4], and cancers [5, 
6]. Advances in sequencing technologies, especially 16S 
rRNA sequencing, now allow rapid and simultaneous 
measurement of the relative abundance of all taxa in a 
community. This has led to a growing number of epide-
miological and clinical studies to measure the association 
between the microbiome and traits of interest, some-
times with complex study designs and research questions.

Although microbiome data is increasingly available, 
statistical analysis remains challenging. Microbiome data 
have special characteristics that are difficult to model 
analytically, including sparsity (the majority of taxa are 
not present in a sample), overdispersion (the variance 
of read counts is larger than what is assumed from the 
usual parametric models), and compositionality (the 
read counts in a sample sum to a constant). There is lit-
tle consensus among researchers on how microbiome 
data should be analyzed, and new methods are being 
regularly developed, both for identifying individual taxa 
that associate with diseases [7–13] and for understanding 
the community-level characteristics that relate to clinical 
conditions [14–16].

Simulating realistic microbiome data is essential for the 
development of novel methods. To establish the valid-
ity of a new method and prove it outperforms existing 
ones, researchers rely on simulated data in which the true 
microbiome/trait associations are known. Ideally, the 
simulated data should be similar to real microbiome data 
for the simulation studies to be trustworthy. However, 
simulating realistic microbiome data is made difficult by 
the same challenges as analyzing microbiome data: spar-
sity, overdispersion, and compositionality. Further, the 
distribution of counts for each taxon is highly skewed 
and correlated in a complex way. For these reasons, most 
simulation methods are based on using a template micro-
biome dataset and generate simulated data that is “simi-
lar” to the template data in some way.

Several approaches have been proposed for simulating 
microbiome data. Among them, some methods impose 
strong parametric assumptions so that the simulated 
microbiome data share similar dispersion of real data. 
For example, the Dirichlet-Multinomial (D-M) distri-
bution, in which the taxa counts are generated from a 
multinomial distribution with proportion parameters 
provided by a Dirichlet prior [17], is frequently used in 
simulating microbiome data. The hyper-parameters of 
this D-M model are often estimated from real data so 
that the simulated data share similar dispersion. Another 
method, MetaSPARSim [18], uses a gamma-multivariate 

hypergeometric (gamma-MHG) model, in which the 
gamma distribution models the biological variability of 
taxa counts, accounting for overdispersion, and the MHG 
distribution models technical variability originating from 
the sequencing process.

Although the D-M model and the MetaSPARSim 
model address the compositional feature by either the 
multinomial or the hypergeometric distribution, they do 
not attempt to match the correlation structures in the 
simulated data with those found in the real data. One 
recently developed approach that does attempt to model 
between-taxa correlations is SparseDOSSA (Sparse Data 
Observations for the Simulation of Synthetic Abun-
dances) [19]. This hierarchical model makes assump-
tions about both the marginal and joint distributions of 
the relative abundances of a set of taxa. For the marginal 
distribution, SparseDOSSA assumes a zero-inflated log-
normal model for the relative abundance of each taxon 
and then imposes the compositional constraint. Param-
eters in the zero-inflated log-normal marginal are esti-
mated through a penalized Expectation-Maximization 
(EM) algorithm from a template dataset. Unfortunately, 
the penalized EM algorithm for estimating hyper-param-
eters is computationally expensive, especially when a 
large number of taxa exist in the data. For example, fit-
ting SparseDOSSA model to a modest-sized dataset with 
sample size of 79 and number of taxa = 109 takes more 
than a day ( ≈ 27.8 h) on a single Intel “Cascade Lake” 
core [19]. To partially compensate for this drawback, 
SparseDOSSA provides fitted models that were previ-
ously trained by the developers and that users can use 
directly, which is only useful if the developer-provided 
fits resemble the data users wish to generate. Moreover, 
SparseDOSSA removes rare taxa that appear in fewer 
than 4 samples by default, thus failing to accommodate 
the possibility that rare taxa are of interest in the simula-
tion studies.

Recently, deep neural networks have also been used in 
simulating microbiome data, notable examples being MB-
GAN [20] and DeepMicroGen [21]. MB-GAN employs a 
deep generative adversarial network (GAN) to autono-
mously learn from actual microbial abundances, obviat-
ing the need for explicit statistical modeling assumptions. 
DeepMicroGen, tailored for longitudinal microbiome 
studies, utilizes a bidirectional recurrent neural network 
(RNN)-based GAN to impute missing data by exploiting 
temporal relationships between samples. Although these 
deep neural network models show promise over conven-
tional statistical models in capturing microbiome data’s 
complex structure, their practical application is challeng-
ing. Issues include the difficulty in tailoring simulations 
to specific alterations in data structure (e.g., changes in 
relative abundances), and severe computational issues (see 
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https://​github.​com/​zhanxw/​MB-​GAN/​blob/​master/​code_​
check_​conve​rgence/​plot_​logs_​conve​rgence_​check.​ipynb). 
Consequently, these methods were not included in our 
comparative analyses.

Considering the drawbacks of existing approaches, a 
method that can flexibly capture the distributional and 
correlation structure of microbiome data would greatly 
benefit the research community. Here, we develop a fast 
and simple MIcrobiome DAta Simulator (MIDASim) 
for generating realistic microbiome data that capture 
the correlation structure of taxa of a template microbi-
ome dataset in both the presence-absence structure and 
the relative abundances. MIDASim can operate in two 
modes: parametric and nonparametric. In nonparametric 
mode, all quantities are calculated using their empirical 
distributions in the original data. In parametric mode, we 
use a generalized gamma  distribution [22, 23] to model 
the relative abundances; this model is fit using a novel 
method-of-moments approach. We show that the result-
ing distribution gives good agreement with the datasets 
we analyze here, for both low and high prevalence taxa. 
The parametric mode is primarily designed for simu-
lation studies where we want to make changes to the 
log-mean relative abundance so that we can assess the 
performance of methods that look for differentially abun-
dant taxa in log-linear models such as the compositional 
model. Using simulations, we show that MIDASim in 
either mode generates data that are more similar to the 
template data, as measured by multiple metrics, than 
competing methods. MIDASim is implemented as an R 
package (https://​github.​com/​mengyu-​he/​MIDAS​im).

Results
The MIDASim approach
MIDASim simulates microbiome data using a two-step 
approach. The first step generates the presence-absence 
status for taxa in each sample by simulating correlated 
binary data from a probit model with a correlation struc-
ture chosen to match the empirical correlation in the 
template data. The second step generates relative abun-
dance and count data for non-zero taxa from a Gaussian 
copula model.

The copula model allows for separate fitting of the mar-
ginal distribution of each taxon’s relative abundance and 
the inter-taxa correlations. For taxon-taxon correlation, 
MIDASim employs a rank-based approach to accurately 
mirror the empirical correlations observed in the tem-
plate data, effectively managing zero counts. MIDASim 
offers two options for the marginal distribution of relative 
abundances: using the taxon-specific empirical distribu-
tion (nonparametric mode) or sampling taxon relative 
abundances from a generalized gamma distribution (par-
ametric mode). This flexibility enables MIDASim to 

capture the complex distributional characteristics often 
present in real data.

MIDASim also allows the user to change the library 
sizes, taxon relative abundances or the proportion of 
non-zero cells, and these features may depend on covari-
ates such as case/control status. MIDASim is compu-
tationally efficient and can be used to simulate large 
microbiome datasets in a fast and simple fashion.

Simulation setup
We compared MIDASim in both parametric and non-
parametric mode to three competing methods (the D-M 
method, MetaSPARSim, and SparseDOSSA) and evalu-
ate how well the simulated data reproduce the charac-
teristics of the template data. We use two datasets from 
the Integrative Human Microbiome Project (HMP2) 
[24] as the template data: a vaginal microbiome dataset 
from Multi-Omic Microbiome Study: Pregnancy Initia-
tive (MOMS-PI) project, and a gut microbiome dataset 
from the Inflammatory Bowel Disease Multi-omics Data-
base (IBDMDB) project [25]. These two datasets repre-
sent microbiomes from two body sites that are frequently 
studied in the literature. They are also distinct in their 
characteristics and thus provide a comprehensive assess-
ment of the proposed method. For example, the vaginal 
data is notably sparse, comprised of 95.25% zeros. In 
contrast, the gut data is less sparse, comprised of 85.09% 
zeros. Both datasets feature taxa that are OTUs; the IBD 
data are classified at the genus level, while the MOMS-PI 
data are classified to the species level using a “best guess” 
approach. Moreover, the coefficient of variation (CV) of 
vaginal data is 40.77, while that of the gut data is 10.76, 
indicating that the vaginal data is more over-dispersed. 
We compared the four methods using two aspects of per-
formance: how well the simulated data matched the tem-
plate data, and the computational effort required to fit 
and generate a simulated dataset. Further details on the 
statistical procedures used can be found in Supplemental 
text (Section: Statistical Analyses).

Before fitting MIDASim, we lightly filtered the two 
template datasets. For quality control, we removed sam-
ples with library size < 3000 . To allow comparison with 
SparseDOSSA, we removed taxa that were present in 
fewer than 4 samples, a requirement of SparseDOSSA. 
MOMS-PI is a longitudinal study with repeated vaginal 
samples; we kept only first-visit samples to avoid repeated 
measures. The only filtering used for the IBD data was 
that required by SparseDOSSA. After filtering, 517 sam-
ples and 1146 taxa were preserved in the vaginal MOMS-
PI dataset; the gut IBD dataset comprised 146 samples 
and 614 taxa. This filtering also slightly decreased the 
zero proportions in the template datasets. Specifically, in 
the IBD dataset, the zero proportion was reduced from 

https://github.com/zhanxw/MB-GAN/blob/master/code_check_convergence/plot_logs_convergence_check.ipynb
https://github.com/zhanxw/MB-GAN/blob/master/code_check_convergence/plot_logs_convergence_check.ipynb
https://github.com/mengyu-he/MIDASim
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89.69% to 85.09% following the filtering. Similarly, for the 
MOMS-PI dataset, the zero proportion decreased from 
96.97% to 95.25% . We ignored covariates such as gender 
or location of biopsy collection to focus only on repro-
ducing the microbiome datasets as closely as possible, the 
goal of all methods considered here. In our simulations, 
the library sizes for datasets generated using the D-M 
method and MetaSPARSim were the same as those in the 
original data. For SparseDOSSA, the library sizes were 
generated from a log-normal distribution parameterized 
by mean and standard deviation of log counts in the orig-
inal data, as recommended in their original publication. 
To facilitate a comparison of the methods, all simulated 
counts were transformed to relative abundances.

MIDASim outperforms existing methods in reproducing 
distributional features of microbiome data
The PCoA plots in Fig. 1 provide a simple visualization of 
the similarities between the original data and the simu-
lated data by MIDASim (in both nonparametric and par-
ametric modes), the D-M method, MetaSPARSim, and 
SparseDOSSA for the IBD data and MOMS-PI data. For 
both datasets, after ordination, the data simulated from 
MIDASim looked similar to the template data, using 
either the (presence-absence-based) Jaccard distance 
(Fig. 1A, C) for nonparametric, (E, G) for parametric or 
(relative abundance-based) Bray-Curtis distance (Fig. 1B, 
D) for nonparametric, (F, H) for parametric. Conversely, 
for both data templates, data simulated by the D-M 
method, MetaSPARSim, SparseDOSSA all appear to be 
underdispersed in the first two principal coordinates 
(Fig. 1I, K, M, O, Q, S) using the Jaccard distance. For the 
IBD data, data simulated using D-M and MetaSPARSim 
appeared easily distinguishable from the original data 
when the Bray-Curtis distance was used (Fig. 1J, N). For 
both the IBD and the MOMS-PI data, we also see clear 
underdispersion in data simulated using D-M (Fig. 1J, L). 
To allow visual comparison between the template data 
and multiple datasets simulated by MIDASim, in Fig. S1 
we also give a probability density map of data generated 
using MIDASim, constructed using 20 simulated data-
sets. In general, the agreement between the observed and 
expected values is good.

The visual impressions of beta diversity in Fig.  1 and 
Fig. S1 are confirmed in Table 1, where we test whether 
the template and simulated data are significantly differ-
ent in beta diversity using PERMANOVA [26]. For tests 
using the Jaccard distance, the p-values for MIDASim in 
nonparametric mode were consistently high (indicating 
no detected difference between simulated and template 
data); in parametric mode, MIDASim had a significant 
difference for the MOMS-PI data but not the IBD data. 
For all other methods, PERMANOVA found highly 

significant differences between the simulated and tem-
plate data with the single exception of SparseDOSSA 
applied to the IBD data using the Jaccard distance. Note 
that when using the Bray-Curtis distance, only MIDASim 
in nonparametric mode could produce data that was 
not easily differentiated from the template data by 
PERMANOVA.

To compare the performance of all methods in terms 
of beta dispersion, in Fig.  2, we compare the empirical 
cumulative distribution function (CDF) of the distance 
between each sample and the group centroid in the sim-
ulated data to this CDF in the template data. These dis-
tances were calculated using the betadisper function 
in the R package vegan. If the simulated data are similar 
to the template data, the CDF of distances-to-centroids 
in the simulated data should resemble that of the tem-
plate data. These CDFs are shown in Fig.  2 for Jaccard 
and Bray-Curtis distances, for the IBD and MOMS-PI 
data. The CDFs datasets simulated by the D-M method, 
MetaSPARSim, and SparseDOSSA are noticeably dissim-
ilar to the CDFs of the template data; this dissimilarity is 
confirmed by extremely small Kolmogorov-Smirnov two-
sample test p-values reported in the figure. The range of 
distances to centroids in the data simulated by the D-M 
method and SparseDOSSA is smaller compared to the 
real data in every scenario, indicating a smaller disper-
sion overall. For the IBD data, the MIDASim-simulated 
data (both modes) follow the template data closely in dis-
persion in both Jaccard and Bray-Curtis distances. For 
the MOMS-PI dataset, the non-parametric MiDASim 
generated data exhibiting a dispersion profile similar to 
the template data when evaluated using the Jaccard dis-
tance, but not the Bray-Curtis distance. Conversely, the 
parametric MiDASim yielded data with significant differ-
ences in both Jaccard and Bray-Curtis distance measures. 
However, panel C and D of Fig.  2 show the MIDASim 
results (especially in nonparametric mode) are clearly 
closer to those of the template data than the other meth-
ods are.

Figures S2 and S3 display the results of t-distributed 
Stochastic Neighbor Embedding (t-SNE) and Uniform 
Manifold Approximation and Projection (UMAP) analy-
ses, applied to simulated and template data using Jaccard 
and Bray-Curtis distances using multiple methods. These 
visualizations corroborate the findings from the PCoA 
plot, demonstrating that data generated by MIDASim 
more closely resemble the template data compared to 
those from alternative methods.

Table 1 and Fig. 3 present comparisons of two alpha 
diversity measures: species richness and the Shannon 
index. We employed the Welch t-test to compare the 
mean alpha diversities and the Kolmogorov-Smirnov 
two-sample test for differences in their distributions. 
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Fig. 1  Principal coordinate plots (PCoA) of the simulated and original community. Each row corresponds to one method. The left two columns are 
the plots for the IBD data, and the right two columns are the plots for the MOMS-PI data. Black points: samples from original data. Colored points: 
samples from the simulated data with red being MIDASim with nonparametric model, purple being MIDASim with parametric model, blue being 
D-M, yellow being MetaSPARSim, and green being SparseDOSSA
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Table 1  Average p-value (from 20 replicates) for tests comparing alpha and beta diversities of simulated data and template data. The 
significance level is 0.05

a Beta-diversity comparisons were conducted using PERMANOVA

 bAlpha-diversity comparisons were conducted using both t-test and the Kolmogorov-Smirnov (KS) test

Beta-diversitya Alpha-diversityb

Data Method Jaccard Bray-Curtis Richness t Richness KS Shannon t Shannon KS

IBD MIDASim 0.9993 1.0000 0.6644 0.2557 0.6047 0.6627

MIDASim (parametric) 0.5856 0.8118 0.4916 0.1960 0.3306 0.2565

D-M 0.0090 < 0.0001 0.3303 < 0.0001 < 0.0001 < 0.0001

MetaSPARSim 0.0340 < 0.0001 0.3102 < 0.0001 0.0078 < 0.0001

SparseDOSSA 0.7972 < 0.0001 0.0569 < 0.0001 < 0.0001 < 0.0001

MOMS-PI MIDASim 0.5793 0.8617 0.6252 0.0019 < 0.0001 < 0.0001

MIDASim (parametric) 0.0058 0.0010 0.0495 0.1607 < 0.0001 < 0.0001

D-M < 0.0001 < 0.0001 0.0028 < 0.0001 < 0.0001 < 0.0001

MetaSPARSim < 0.0001 < 0.0001 0.6341 < 0.0001 < 0.0001 < 0.0001

SparseDOSSA < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0002 0.0015

Fig. 2  Empirical cumulative distribution function of distances to centroids
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Table 1 reports the average p-values obtained from 20 
simulated datasets for each method. In the IBD data 
analysis, all methods successfully reproduced mean 
richness (indicated by Welch t-test p-values > 0.05 ). 
For the MOMS-PI data, only MIDASim (in nonpara-
metric mode) and MetaSPARSim produced mean rich-
ness values not significantly different from the template 
data. A different perspective emerges when analyzing 
the entire distribution of sample richness using the Kol-
mogorov-Smirnov test. Here, only MIDASim (in both 
modes) generated data with richness distribution indis-
tinguishable from the IBD data, and only MIDASim 
in parametric mode achieved this for the MOMS-PI 

data. Regarding the Shannon index, MIDASim (in both 
modes) was the only method to successfully generate 
data resembling the template IBD data in both mean 
and distribution. However, for the MOMS-PI data, no 
method could replicate the Shannon index of the tem-
plate data. It is noteworthy that, even when MIDASim 
indicated significant differences sometimes, its p-values 
were often larger than those of competing methods. 
Figure 3 also illustrates the alpha diversities for a single 
dataset from each simulation method, where MIDASim 
more closely matches the template data’s alpha diver-
sity. Additionally, the alpha diversity of MIDASim 
in parametric mode is typically less variable than in 

Fig. 3  Alpha diversities (Richness and Shannon Index) of original and a single simulated dataset for each of four simulation methods. Asterisks 
indicate significance levels of KS-test p-values comparing the simulated data with that in the template data, as shown in Table 1: ns ( p > 0.05 ), * 
( p < 0.05 ), ** ( p < 0.01 ), *** ( p < 0.0001)
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nonparametric mode, potentially explaining its relative 
performance in beta diversity.

We also applied MIDASim to the un-filtered datasets 
to assess its performance when very rare taxa are present. 
Including all taxa, the IBD data comprised 908 taxa for 
146 subjects, and the MOMS-PI data comprised 1839 
taxa for 517 subjects. We compared the alpha and beta 
diversities between the template data and the MIDASim 
simulated data in Table S1. The result remains consistent 
with scenarios where extremely rare taxa are excluded.

MIDASim can be used for assessing newly designed 
statistical tools
To demonstrate the capability of MIDASim for evaluat-
ing newly developed statistical tools, we used MIDASim 
to generate realistic microbiome data that included taxa 
with relative abundances that varied with categorical 
covariates. We used the IBD data [25] as the template, 
resulting in the simulation of 614 taxa across n inde-
pendent samples. A more detailed description of the 
simulation can be found in the  “Assessment of differen-
tial abundance analysis methods using MIDASim-simu-
lated data” section. Briefly, we generated a dichotomized 
covariate X1 that affected the relative abundance of either 
10 or 20 “causal” taxa, randomly selected among the 100 
taxa having the highest relative abundances. We gener-
ated a second covariate X2 that affected a second group 
of 10 taxa selected in the same way, such that there were 
always 5 taxa affected by both covariates. We assumed X2 
had a fixed effect on relative abundances, but varied the 
effect of X1 according to a parameter that measures the 
effect size. The precise effect of the covariates is given in 
Eqs. (9) and (10). X1 and X2 are simulated to be balanced. 
Note that although only a subset of taxa are directly 
affected by our covariates, the relative abundances of all 

other taxa are modified due to the compositional con-
straint that relative abundances sum to one.

We used data simulated with MIDASim to evaluate 
seven existing methods that can measure the association 
between X1 and each taxon while adjusting for X2 . These 
methods are: (1) Analysis of Compositions of Micro-
biomes with Bias Correction (ANCOM-BC) [27], (2) 
an updated version of ANCOM-BC which additionally 
accounts for taxon-specific bias (ANCOM-BC2) [28], (3) 
the original Linear Decomposition Model (LDM) as pro-
posed in [11], (4) an updated LDM version incorporating 
the centered log-ratio transformation [29], (5) the Linear 
models for Differential Abundance analysis (LinDA) [30], 
(6) the Logistic Compositional Model (LOCOM) [13], 
and (7) the Zero-Inflated Quantile approach (ZINQ) [31]. 
Notably, ZINQ and the original LDM is designed to test 
differences in relative abundances, while the other meth-
ods are tailored for the compositional null hypothesis. 
Our analysis was restricted to taxa present in at least 20% 
of the samples.

Figure  4 presents the false discovery rate (FDR) at a 
nominal 0.2 rate for all evaluated methods when n = 200 . 
Results for n = 100 are similar  and have been omitted 
for brevity. Unsurprisingly, ZINQ and the original LDM 
model exhibit a notably inflated FDR, as they test the 
hypothesis of any difference in relative abundance. In 
MIDASim-simulated data, changes in the abundance of 
one taxon can influence the relative abundances of oth-
ers due to compositional constraints, as described in Eqs. 
(9) and (10). Among the remaining methods, which were 
designed to test the compositional hypothesis, LOCOM 
shows the best FDR control, followed by LDM-CLR, 
LinDA and the original ANCOM-BC. To our surprise, 
the ANCOM-BC2 reports worse FDR control compared 
to the original ANCOM-BC, possibly due to the difficulty 

Fig. 4  False discovery rate assessment of seven differential abundance analysis methods using MIDASim simulated datasets at FDR=0.2 nominal 
rate. Sample size n = 200 . Effect size is the value of β1 in Eqs. 9 and 10. Gray dashed line: FDR = 0.2 reference line
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in addressing the taxon-specific bias factor. These find-
ings underscore the efficacy of MIDASim in generating 
datasets conducive to the evaluation of novel statistical 
models.

MIDASim is computationally efficient
We compared the computational time that each method 
takes to fit its proposed model to the template IBD and 
MOMS-PI datasets and to simulate one dataset of the 
same size, which is summarized in Table 2. The compu-
tational time was evaluated on an Intel Quad core 2.7-
GHz processor, with 8 GB memory. Comparing the total 
time used, MIDASim is one of the fastest, especially for 
the large MOMS-PI dataset. For model fitting, MetaS-
PARSim is the fastest, but it is very slow in generating 
new data. For simulating new data after fitting, D-M is 
the fastest. The computation time of SparseDOSSA for 
fitting the model depends on the number of iterations 
in its EM algorithm. We found it took more than 3 h to 
fit SparseDOSSA to either the IBD or MOMSPI dataset, 
making it hard to use in practice; the pre-trained models 
can be used if faster results are needed, but then a user-
selected template dataset cannot be used. Discounting 
the time required for model fitting, MIDASim, D-M, and 
SparseDOSSA all can generate replicate datasets quickly; 
MetaSPARSim is the only outlier in this regard.

Discussion
Simulating realistic microbiome datasets is essential 
for methodology development in microbiome stud-
ies. However, this task is surprisingly difficult due 
to the complexity of microbial relative abundance 
data. Existing parametric microbiome data simula-
tors facilitate easy simulation of microbiome data in 
a controlled manner. However, they often fall short in 
generating realistic correlation structures and accu-
rately reproducing the marginal distributions. In con-
trast, deep-learning-based methods show promise in 
effectively modeling complex correlation structures and 

generating appropriate marginal distributions of micro-
biome data. However, they typically encounter practical 
application challenges and are often not user-friendly 
for generating microbiome data with controlled varia-
tions. Here we adopt an empirical approach, using the 
presence-absence correlation structure of the origi-
nal data (through a smoothed tetrachoric correlation 
matrix) and the empirical correlation matrix of relative 
abundances (using a Gaussian copula model). The use 
of a Gaussian copula model allows us to closely match 
the marginal distribution of taxon-specific relative 
abundances found in the template data, either by using 
the empirical distribution or by fitting an inverse gen-
eralized gamma distribution. Although these assump-
tions are not based on any underlying model of what 
microbiome data “should” look like, this approach is 
fast and easily implemented and appears to reproduce 
data from a template microbiome dataset better than 
the existing methods we considered here.

MIDASim can operate in two modes: parametric or 
nonparametric. Our simulations show that data gen-
erated using the nonparametric mode is closer to the 
template data than data generated using the parametric 
mode. Thus, if the only goal is to reproduce template 
data, nonparametric mode should be used. However, 
data generated in parametric mode may be more useful 
for simulation studies, since the parametric model cor-
rectly adjusts other parameters such as the proportion of 
non-zero cells when a user changes the taxon mean rela-
tive abundances or library sizes. Since it can be difficult 
to correctly adjust these parameters in nonparametric 
mode, we strongly suggest using parametric mode for 
simulations of the type we illustrate in the  “MIDASim 
can be used for assessing newly designed statistical tools” 
section. Further, our simulations show that even though 
data generated in nonparametric mode is more faithful to 
the template data, the data generated in parametric mode 
is generally more faithful to the original data than the 
other methods we studied here.

Table 2  Computation time (seconds) required to fit the template data, and to simulate a new dataset with the same library size. 
Simulating time is the average time over 20 replicates of generating datasets of the same size as the real data. Total time is the sum of 
fitting and simulating times

Method IBD MOMS-PI

Fitting Simulating Total Fitting Simulating Total

MIDASim (non-parametric) 25.5 2.5 28.0 162.0 15.3 177.6

MIDASim (parametric) 19.4 1.8 21.2 306.8 16.9 323.7

D-M 25.0 0.3 25.3 308.4 2.2 310.6

MetaSPARSim 7.4 144.9 152.3 41.3 469.4 510.7

SparseDOSSA 10812.6 0.8 10813.4 11792.5 5.2 11797.7
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Although MIDASim does not explicitly support mod-
eling covariates that affect mean relative abundance, it is 
fairly easy to handle discrete covariates such as case/con-
trol status or multiple arms of the same experiment by 
(1) generating correlations for zero-one and quantitative 
data from the template data and then (2) using these cor-
relations to generate data for each covariate group using, 
say, a different vector of mean relative abundances. We 
showed here that simulation studies of existing methods 
using this approach have appropriate false-discovery rate 
(FDR) when MIDASim-generated data is used.

Compared to competing methods, MIDASim offers 
users greater flexibility in changing parameters than the 
Dirichlet-Multinomial model and MetaSPARSim, while 
providing a better fit to data even in its parametric mode. 
Further, MIDASim runs much faster than computation-
ally intensive approaches such as sparseDOSSA and the 
deep-learning-based approaches. The main disadvan-
tages of MIDASim come primarily from its empirical 
approach; it makes no attempt to base simulations on 
knowledge of microbiology or microbial ecology, but 
instead attempts to empirically model observed patterns 
of correlation. There are several areas where MIDASim 
could be improved. For example, in its current version, 
it cannot leverage the correlations found in longitudinal 
data as DeepMicroGen can. Second, it assumes that the 
observed correlations are not functions of extra covari-
ates. The use of underlying Gaussian models for generat-
ing both presence/absence and qualitative data imposes 
some limitations on the possible correlation structures 
available in MIDASim. This last objection could be par-
tially ameliorated for the presence/absence data by pro-
viding alternative models to the approach in Eqs. (1) 
and (2). The user could then choose the model that best 
agreed with the template data. Similarly, it may be pos-
sible to find a better model for relative abundance data 
than the generalized gamma, and future revisions could 
include different choices for this distribution. Addition-
ally, the parametric mode is set up to test the composi-
tional null hypothesis; future revisions could include 
parametric models that are appropriate for other hypoth-
eses. Finally, we hope to extend MIDASim to handle con-
tinuous covariates in a future revision.

Materials and methods
We assume a template dataset having n samples and J 
taxa such that each taxon is present in at least one sam-
ple. For sample i and taxon j, let Cij denote the observed 
count, Ni =

∑J
j=1 Cij denote the observed library size, πij 

denote the observed relative abundance ( πij = Cij/Ni ), and 
define  presence-absence indicator Zij = I(Cij > 0) where 
I(S) = 1 if S is true and 0 otherwise. We and let p and δ be 
the J-dimensional vectors having elements pj = 1

n

∑n
i πij 

and δj = 1
n

∑n
i Zij respectively. We let C , Z , and π represent 

the n× J matrices of the read counts, presence-absence, 
and the relative abundances of all taxa in the template data, 
respectively. Corresponding quantities for the simulated 
data are denoted by a tilde, e.g., Z̃ is the presence-absence 
indicator in the simulated data. We also use a “dot” nota-
tion to refer to the ith row or jth column of matrix M as Mi· 
or M·j , respectively.

MIDASim is a two-step procedure for generating count 
and relative abundance data. The first step generates 
binary presence-absence indicators having correlation 
structure similar to the template presence-absence data 
Z . This step determines which cells have zero counts in 
the simulated data. The second step is to fill the non-zero 
cells from step 1 using a Gaussian copula model fitted to 
the observed values π . In this step, MIDASim provides 
two options for modeling the marginal distribution of 
each taxon: a nonparametric mode that uses the empiri-
cal distribution, and a parametric mode employing a 
three-parameter generalized gamma distribution. These 
modes are accordingly designated as “non-parametric” 
and “parametric” approaches, based on the marginal dis-
tribution choice in this step. We next describe each step 
in detail for the nonparametric mode; in the “Parametric 
Mode using a three-parameter location-scale model for 
relative abundances” section, we describe the differences 
when the parametric mode is used.

Step 1: generate presence‑absence data
The goal of step 1 is to generate presence-absence data 
Z̃ij having correlation and marginal means that match the 
presence-absence structure in the target data. MIDASim 
uses a threshold model with underlying multivariate nor-
mal data Dij having mean θj + ηi and variance-covari-
ance matrix ρ in such a way that Zij = 1 corresponds to 
Dij ≥ 0 . To accomplish this, we choose θj and ηi to jointly 
solve

and

where mj =
∑n

i Zij is the number of non-zero cells in 
the data from the jth taxon, ni =

∑J
j Zij is the number of 

non-zero cells for the ith observation, and �(·) and �−1(·) 
are the CDF and quantile function of the standard nor-
mal distribution respectively. These equations are iter-
ated alternately, starting from the initial values ηi = 0 and 
θj = �−1(Z·j).

(1)
N∑

i=1

�(θj + ηi) = mj ,

(2)
J

j=1

�(θj + ηi) = ni
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To estimate ρ , we first calculate the tetrachoric corre-
lation matrix, denoted by ζ , using the approach of [32]. 
We smooth ζ to be positive definite using the function 
cor.smooth() in R package psych [33] and denote 
the resulting correlation matrix ρ̃ . We then sample values 
D̃i· ∼ MVN(θ + ηi, ρ̃) and take Z̃ij = I(D̃ij > 0).

Step 2: generate relative abundance and count data
We generate relative abundance data using a Gaussian 
copula model, which allows us to incorporate dependence 
between taxa while specifying a marginal distribution 
for each taxon that matches the observed distribution of 
non-zero relative abundances for that taxon.

In order to allow for the possible generation of non-zero 
relative abundances for taxa that are observed to have 
zero counts, we must include the zero cells when we spec-
ify the correlation structure of the Gaussian copula. To 
accomplish this, we use a rank-based approach based on 
the relationship between the Pearson and Spearman cor-
relations for normally distributed data [34]. This approach 
does not require us to know the values we would have 
obtained for an empty cell, had that cell not been empty; 
our only assumption is that the relative abundances of the 
zero cells are smaller than those of the cells having non-
zero counts. In particular, to specify the correlation of the 
underlying Gaussian model, we calculate Spearman’s rank 
correlation φ for the observed relative abundance values. 
When calculating the rank correlation, we consider the 
zero cells to be tied, and then break these (and any other) 
ties by a random ordering. For the kth of K such random 
orderings, after computing Spearman’s rank correlation 
φ(k) , we obtain the corresponding Pearson correlation r(k) 
using r

(k)
ij = 2sin(πφ

(k)
jj′ /6) . The correlation matrix 

r∗ =
∑K

k=1 r
(k)/K  is corrected to be positive definite by 

setting negative eigenvalues to a small positive value and 
then renormalizing to preserve the trace of the smoothed 
correlation matrix. The default choice for MIDASim is 
K = 100 . We then take the corrected correlation matrix 
as the final correlation matrix for the underlying Gaussian 
model.

To simulate a new dataset with n observations, we 
first generate n independent multivariate normal vari-
ables Ŵ i· ∼ MVN(0, r∗) . If Z̃ij = 0 we always choose 
π̃ij = 0 . Otherwise, we then choose simulated relative 
abundances for the j-th taxon sampling from the empiri-
cal distribution of the non-zero values of π·j . To mimic 
permutation, if the number of values m̃j =

∑n
i=1 Z̃ij of π̃·j 

is less than or equal to mj =
∑n

i=1 Zij , the observed num-
ber of zeroes, we sample without replacement; if m̃j > mj 
we sample the additional values with replacement, then 
assign the sampled values so that they agree with the 
ranking of those w·j values corresponding to Z̃ij = 1.

A count table C̃ is then calculated by multiplying 
the sampled relative abundances π̃ ij by library size Ni 
for each observation. Any values so obtained that are 
between 0 and 1 are rounded up to 1 to keep the pres-
ence-absence structure; other values are rounded to the 
nearest integer. The library sizes for the simulated data 
are then calculated as Ñi =

∑J
j=1 C̃ij and the final relative 

abundance is updated through π̃ij = C̃ij/Ñi.

Parametric mode using a three‑parameter location‑scale 
model for relative abundances
In parametric mode, MIDASim fits the generalized 
gamma model, a three-parameter distribution in the 
location-scale family that was proposed for analyzing 
right-censored survival data [22, 23] to the relative abun-
dance data of each taxon separately. To accomplish this, 
we define “survival time”

which corresponds to treating t̃ij as right-censored when 
πij <

1
Ni

 . The generalized gamma model then assumes t̃ij 
has the distribution specified by

where eωij follows a gamma distribution with shape 
parameter kj = 1/|Qj| and scale parameter 1 and 
where sj = sign(Qj) . The negative sign on µj in (4) is cho-
sen to ensure that the sign of µj is positive in a log-linear 
model for π̃ij . This log-linear model is derived by using 
Eq. (3) in Eq. (4).

The resulting cumulative distribution function of 
t̃1j , · · · , t̃nj is

where ωj(t) =
ln(t)+µj

σj
 , I(s,  x) is the lower incomplete 

gamma function, I(s, x) =
∫ x
0 us−1e−udu , and Ŵ(·) is the 

gamma function. Note that log-normal distribution is a 
special case of the generalized gamma distribution with 
the scale parameter Q = 0 [23].

Although the likelihood for data t̃ij easily accounts for 
censoring, we found that the maximum likelihood esti-
mators [35] of parameters (µj , σj ,Qj) gave a poor fit to 
microbiome data, presumably because for many taxa 
there are very few non-zero relative abundances. Instead, 

(3)

(4)ln(̃tij) = −µj + sjσj · ωij ,

(5)
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we developed a novel variant on the method-of-moments 
approach to estimating these parameters. The rth non-
central moment of the generalized gamma (for both posi-
tive and negative values of r) are given [36] by

The (empirical) moments of t̃  are difficult to estimate 
because of censoring (i.e., cells having zero counts). How-
ever, the empirical moments of t̃−1 (i.e., the empirical 
moments of π̃·j ) are easily calculated from the template 
data with only negligible error incurred by replacing the 
’censored’ relative abundances  π̃ij < 1/Ni by zero. For 
fixed Qj , we can easily find values of µ̂j(Qj) and σ̂j(Qj) so 
that the empirical moments of t̃−r match the theoretical 
values in (6) for r = −1,−2 . This task is simplified by the 
observation that the square of the  coefficient of varia-
tion (variance/mean2 ) is independent of µj which allows 
determination of σ̂j without knowledge of µ̂j (when 
Qj > 0 we impose the condition that σj < kj/2 to ensure 
the needed moments exist, but can show such a solution 
always exists). Note these empirical moments are calcu-
lated using all observations, not just those having non-
zero relative abundance, which stabilizes our approach. 
To find Qj , we match the observed and expected propor-
tion of zero taxa by maximizing the (profile) likelihood 
that a zero cell is observed, i.e., we maximize

with respect to Qj , where Sj(t;µ, σ ,Q) = 1− Fj(t;µ, σ ,Q) 
is the survival function for the generalized gamma dis-
tribution given in (5). Comparison of the predicted and 
empirical estimates of the CDF of relative abundance for 
taxa having a wide range of relative abundances is given 
in Figs. S4 and S5.

The (marginal) predicted probability of being non-zero 
of i-th subject and j-th taxon is

Thus, the predicted number of non-zero cells from j-
th taxon is Z̃·j =

∑
i Fj(Ni; µ̂j , σ̂j , Q̂j) . In Fig. S6, we 

show that the empirical ( Z·j ) and predicted ( ̃Z·j ) num-
ber of non-zero cells are in close agreement. Since the 
(marginal) probability of being non-zero is specified 
by (8), we can sample values D̃i· ∼ MVN(0, ρ̃) and take 
Z̃ij = I(D̃ij > �−1(1− Fj(Ni; µ̂j , σ̂j , Q̂j))) , so that (8) 
is satisfied. Note that estimating θj and ηi , described in 
the “Step 1: Generate presence-absence data” section and 

(6)

(7)
∑

i

I[πij = 0] lnSj
(
Ni·; µ̂j(Qj), σ̂j(Qj),Qj

)
+ I[πij > 1] lnFj

(
Ni·; µ̂j(Qj), σ̂j(Qj),Qj

)

(8)P(Z̃ij = 1) = Fj(Ni; µ̂j , σ̂j , Q̂j)

used in nonparametric mode, is unnecessary. Then, given 
the parameter estimates (µ̂j , σ̂j , Q̂j) , we then generate 
π̃ ij for observations having Z̃ij = 1 by sampling t̃ij from 
the generalized gamma distribution upper-truncated at 
library size Ni , then invert t̃ij and normalize to obtain π̃ij 
as specified in (3). 

Changing the parameters of the simulation
Simulated microbiome data are typically required for 
rigorous evaluation of methods for analyzing microbi-
ome data. To this end, it is necessary to be able to gener-
ate microbiome data sets that are systematically different 
from the template dataset in a controlled way. In non-
parametric mode, users are able to generate data hav-
ing a different number of samples, different library sizes, 
different taxon mean relative abundances p , and/or dif-
ferent proportions of zero cells δ for each taxon. When 
these changes are made, MIDASim will adjust its mar-
ginal distribution quantities and then generate new data 
having the same presence-absence correlation ρ and rela-
tive abundance correlation r∗ as the original data. Note 
that changes in the mean relative abundance pj without 
precisely balanced changes in the taxon proportion of 
non-zeros δj imply changes in the distribution of relative 
abundances in non-zero taxa, which is used to sample 
relative abundances for non-zero taxa. In nonparametric 
mode, MIDASim calculates the mean relative abundance 
of non-zero cells as p(1)j = pj/δj , then finds the value αj 

for each taxon such that {πα
i,j|πij > 0} has mean p(1)j  for 

each taxon. Further, because the number of zero cells in 
a sample is related to its library size, in nonparametric 
mode, if users wish to change library sizes, they must also 
specify the values of mj and ni for use in (1) and (2).

Unfortunately, the freedom given in the nonparametric 
mode may be difficult to use in a controlled simulation 
study. For example, if we wish to change the library sizes 
of certain observations or the relative abundances of vari-
ous taxa, it is not clear how the proportion of non-zero 
taxa should change. This is where the parametric mode 
of MIDASim is most useful, as changes in the param-
eters of the parametric model (including library sizes) 
imply coordinated changes in all other quantities. For 
example, the proportion of non-zero cells for each taxon 
is given by (8), which facilitates changing library sizes if 
desired. Because the model used for relative abundance 
in parametric mode is a log-linear model in the location-
scale family, changes in taxon relative abundance can be 
achieved directly by changing the parameters µj while 
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holding other parameters fixed. Note that µj is the mean 
on the log scale; the mean on the relative abundance scale 
is given by (6). For convenience, MIDASim in parametric 
mode allows the user to specify a new value of the taxon 
mean relative abundances pj and will convert these val-
ues to the corresponding values of µj assuming σ̂j and Q̂j 
are unchanged.

After either modification of the parameters, we pre-
dict the number of non-zero cells in each subject Ẑi· and 
that in each taxon Ẑ·j using (8), and then use the mar-
ginal totals Ẑi· and Ẑ·j for use in generating the presence-
absence data Z̃ . In either mode, once Z̃ij is obtained, 
changing the number of samples is easily accomplished 
by simply generating extra observations using the copula 
model.

In summary, MIDASim takes an OTU count table as 
input, and output simulated tables of counts, relative 
abundances, and presence-absence data. Its nonpara-
metric mode permits adjustments in sample size, library 
sizes, mean relative abundances, and the proportion of 
non-zero cells. These alterations in the nonparametric 
mode affect simulations in two ways: firstly, changes to 
sample size, library sizes, and the proportion of non-
zero cells directly influence the values of mj and ni in 
Eqs. (1) and (2), thereby altering the construction of the 
presence-absence matrix; secondly, variations in mean 
relative abundances lead to recalibrations in the values 
of non-zero relative abundances, impacting the empirical 
marginal distribution of these abundances. In contrast, 
the parametric mode offers coordinated changes, allow-
ing for adjustments in library sizes, mean relative abun-
dances, and the location parameters µ in the generalized 
gamma model. Alterations in mean relative abundances 
are reflected in the estimation of µ to align with the first 
moment, leading to distinct generalized gamma models. 
Similarly, adjustments in library sizes affect the predicted 
probability of a non-zero presence, as determined by 
Eq. 8, which influences both mj and ni values and conse-
quently the structure of the presence-absence matrix.

Assessment of differential abundance analysis methods 
using MIDASim‑simulated data
We used MIDASim in parametric mode to simulate 
n = 100 and n = 200 independent microbiome samples 
using the IBD data as the template. For each observa-
tion, we simulated two binary covariates X1 and X2 in 
such a way that the covariates divide the sample into four 
equal-sized groups. The group having X1 = X2 = 0 was 
the “null” or control group. To model the effect of covari-
ates in the other groups, we randomly selected either 
M1 = 10 or M1 = 20 “causal” taxa from the top 100 most 
abundant taxa to exhibit differential abundance based on 

X1 . Additionally, we selected a set of M2 = 10 “causal” 
taxa showing differential abundance based on X2 , with an 
overlap of 5 taxa between the two sets of causal taxa. Fit-
ting MIDASim to the template data provided µ̂j , σ̂j , and 
Q̂j for each taxon. For the non-null groups, we modified 
the values of µj according to the model

where κ(X1,X2) is chosen so that the resulting mean 
relative abundances are normalized for each choice of 
covariates. This corresponds to choosing mean relative 
abundances in the non-null groups to be

where p0j  is the mean relative abundance for taxon j in the 
null (template) data.

We varied β1 from 0.5, 1, 1.5, 2, and β2 was fixed at 1 
(corresponding to treating X2 as a confounder whose 
effect size is not of interest). We used MIDASim to gen-
erate data from each covariate group, using the same val-
ues of ρ (tetrachoric correlation matrix) and r∗ (copula 
correlation matrix) as in the null (template) data. Library 
sizes for each covariate group were sampled with replace-
ment from the set of library sizes in the template data. 
Relative abundances were calculated using the modified 
values of µj given in (9). False discovery rates (FDR) are 
based on 500 simulated datasets, based on a nominal 
value of FDR = 0.2.
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