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Abstract 

Background Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been dem-
onstrated that microorganisms can endure salinity stress via either the “salt-in” strategy, involving inorganic ion uptake, 
or the “salt-out” strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured 
isolates, exploring the adaptive mechanisms of microorganisms within  natural salinity gradient is crucial for gaining 
a deeper understanding of microbial adaptation in the estuarine ecosystem.

Results Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical 
subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity 
metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, 
as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagen-
omic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs 
were categorized as stenohaline—specific to low-, intermediate-, or high-salinity—based on the average relative 
abundance in one salinity category significantly exceeding those in the other two categories by an order of mag-
nitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity 
tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned impor-
tant genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified 
as important features, with the “inorganic ion transport and metabolism” COG category emerging as the most promi-
nent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the “salt-
in” strategy, three to the “salt-out” strategy, and one to the regulation of water channel activity. COG0168, annotated 
as the Trk-type  K+ transporter related to the “salt-in” strategy, was ranked as the most important feature. The relative 
abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, 
and the dominant Actinobacteriota and Proteobacteria phyla.

Conclusions We demonstrated that salinity exerts influences on both the taxonomic and functional profiles 
of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adapta-
tion strategies employed by the estuarine microbial communities, highlighting the crucial role of the “salt-in” strategy 
mediated by Trk-type  K+ transporters for microorganisms thriving under osmotic stress in the short residence-time 
estuary.

Keywords Salinity adaptability, Salt-in strategy, Metagenomics, Pearl river estuary

*Correspondence:
Wei Xie
xiewei9@mail.sysu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-024-01817-w&domain=pdf


Page 2 of 19Wu et al. Microbiome          (2024) 12:115 

Background
Microorganisms inhabiting fluctuating environments 
are subjected to diverse environmental stresses that can 
be broadly classified as physical, chemical, and biologi-
cal factors. Among the various environmental stresses, 
salinity is characterized as a particularly influential 
abiotic factor in shaping microbial communities [1]. 
Stenohaline and euryhaline are classical categorizations 
used to describe the tolerance of organisms to salinity, 
thereby providing vital insights into their ecological niche 
widths in environments with a wide variation in salinity. 
Organisms thriving within a narrow range of salinity are 
regarded as stenohaline, as their life processes are con-
fined to environments where salinity remains relatively 
stable. Instead, organisms capable of adapting to wide 
salinity fluctuations are classified as euryhaline [2, 3]. 
Regardless of their adaptability, microorganisms must 
inhabit environments that fall within specific salinity 
ranges to proliferate, as deviating from these ranges can 
disrupt metabolic processes or impede their survival. 
Microorganisms can be classified as stenohaline or eury-
haline based on fluctuations in their relative abundances 
across varying salinity environments [4, 5]. Furthermore, 
microorganisms can also be categorized as colonizers 
inhabiting high-salinity or low-salinity environments 
based on their relative abundance patterns in response to 
salinity [6].

Throughout their evolutionary trajectory, prokaryotic 
microorganisms have developed remarkable adaptability 
to osmotic conditions, allowing them to thrive in diverse 
salinity habitats. These microorganisms have developed 
two distinct strategies, namely, the “salt-in” and “salt-
out” mechanisms, to achieve this feat [7, 8]. Employing 
the “salt-in” strategy, microorganisms maintain intracel-
lular osmolarity equilibrium with their surroundings by 
assimilating  K+ while extruding  Na+. Alternatively, those 
employing the “salt-out” strategy synthesize or uptake 
small organic compounds known as compatible solutes 
from the environment to prevent hazards caused by 
osmotic imbalance [9, 10]. Given that any disruption in 
osmotic pressure can lead to detrimental water influx or 
efflux from microbial cells, the regulation of intracellular 
water exchange may also be crucial for microorganisms 
to counteract the adverse effects of salinity stress.

As critical zones where freshwater and marine environ-
ments converge, estuaries present strong salinity gradi-
ents, making them ideal natural laboratories for studying 
the adaptability of microorganisms to varying salinity lev-
els. Within an estuary, the residence time delineates the 
duration a water mass spends traversing a specific zone, 
thereby determining the temporal window for estuarine 
microbial community development [11]. Estuaries char-
acterized by shorter residence times are more susceptible 

to be colonized by microorganisms originating from both 
freshwater and brackish water sources, eventually foster-
ing the establishment of distinct microbial communities 
adapted to different salinity conditions [12]. This implies 
that distinct microbial strains, acclimatized to either 
low- or high-salinity environments, may be present in a 
short residence-time estuary.

The Pearl River Estuary (PRE) is a typical short  resi-
dence-time estuary linking to the Pearl River, one of the 
largest rivers in southern China, to the northern South 
China Sea. A substantial inflow of freshwater, approxi-
mately 330 ×  109  m3 per annum, is received by the PRE, 
resulting in a strong salinity gradient due to the intermin-
gling of freshwater and seawater. Taking seasonal varia-
tion into account, the estimated estuarine residence time 
of the PRE is relatively short, ranging from 3 to 12 days 
[13]. Previous studies have shown that the dominant bac-
terial groups within the PRE included Proteobacteria, 
Actinobacteriota, Chloroflexota, Planctomycetota, Aci‑
dobacteriota, Nitrospirota, Bacteroidota, Spirochaetota, 
Firmicutes, and Gemmatimonadota. The PRE was also 
reported to harbor archaeal groups such as Euryarchae‑
ota, Thaumarchaeota, and Crenarchaeota [14]. Among 
these microorganisms, Actinobacteriota and Proteobac‑
teria have emerged as the prevailing microbial phyla 
[15, 16]. Actinobacteriota have been found to exhibit a 
greater relative abundance in freshwater habitats within 
the coastal zone, while Proteobacteria dominates across 
the entire estuarine region [17, 18]. Given its continuous 
salinity gradient and short residence time, the PRE serves 
as an ideal natural laboratory for exploring microbial 
adaptation to salinity stress, both in terms of the charac-
teristics of the estuarine microbial communities and spe-
cific microbial taxa.

Metagenomics is widely recognized as a powerful 
cultivation-independent paradigm for studying micro-
bial communities. It offers a more comprehensive view 
compared to amplicon sequencing, primarily owing to 
its ability to analyze the functional capabilities of the 
microbial community studied [19, 20]. This broader 
scope is essential for understanding microbial responses 
and adaptations to environmental stresses. For instance, 
a metagenomic study of the Dead Sea revealed that halo-
philes in the region have adapted to high concentrations 
of  Mg2+ by enriching their genomes with COGs related 
to  Mg2+ transport [21]. Additionally, a metagenomic 
study conducted in a saltern suggested that microor-
ganisms known to utilize the “salt-in” strategy also pos-
sess the capability to synthesize compatible solutes 
[22]. However, analyzing  massive amount of metagen-
omic data poses a significant challenge for statistical 
analysis. To address this challenge, machine learning 
approaches, including the Boruta algorithm [23], have 
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been developed and demonstrated to be particularly 
advantageous for biological applications [24, 25]. The 
Boruta feature selection algorithm employs a multiple 
random forest-based feature selection method that itera-
tively compares the importance of each feature against 
random predictors. Through this process, this algorithm 
verifies whether the classification features are statisti-
cally superior to random variables. This method is par-
ticularly advantageous when applied to metagenomic 
data, as it balances the sensitivity of identifying relevant 
variables with the control of false positive errors while 
saving computational resources [26].

Currently, studies in coastal ecosystems have described 
the taxonomic shifts of microbial communities along 
salinity gradients, elucidating their functional changes 
and community assembly mechanisms [27–31]. Fortu-
nato et  al. conducted a study in a short residence-time 
estuary connecting the Columbia River using metagen-
omics and metatranscriptomics. They found that with 
increasing salinity, the abundances of  Na+ transporter 
genes, as well as glycine betaine and proline transporter 
genes, showed increasing trends. However, the total 
abundance of  K+ transporters exhibited no significant 
trend with changes in salinity. The expression levels of 
 Na+ and  K+ transporter genes varied, not displaying any 
specific trend with salinity [17]. While these studies pro-
vide valuable insights into the community characteristics, 
functional gene abundance profiles, and gene expres-
sion patterns of microbial communities along estuarine 
salinity gradients, they fall short of explicitly identifying 
the specific genes related to microbial salinity adapta-
tion strategies in estuarine ecosystems. Furthermore, the 
salinity adaptation traits of major microbial taxa inhabit-
ing estuarine environments have not yet been fully under-
stood. In this study, shotgun metagenomics was applied 
to water samples from different salinity conditions in the 
PRE. Based on this, taxonomic and function analyses 
were conducted at the metagenomic assembly and MAG 
levels, respectively. We aim to reveal the characteristics 
and mechanisms of the estuarine microbial communities 
in response to salinity stress and to investigate the salin-
ity adaptation strategies of the two dominant microbial 
phyla Actinobacteriota and Proteobacteria in the PRE. 
This research will help improve our understanding of the 
life mechanisms of estuarine microorganisms.

Methods
Sample collection, DNA extraction, and metagenomic 
sequencing
In this study, ten surface water samples were collected 
from the PRE and the northern South China Sea (lati-
tude, 21.624° N to 23.219° N; longitude, 112.809° E to 
114.417° E; Additional file  1: Supplementary Figure S1)  

and then were filtered through 0.7 μm filter mem-
branes during different cruises from June 2011 to 
October 2012. The measurement of environmental 
parameters (i.e., salinity, pH), DNA extraction, and shot-
gun metagenomic sequencing were performed as previ-
ously described [32]. Water samples were collected from 
shallow water layers not exceeding 20 m in depth, and 
salinity ranged from 0.12‰ to 34‰. All sample IDs were 
prefixed with “PR” (representing the Pearl River), and 
the numbering ascended in correlation with the rising 
salinity levels of their originating environmental water 
samples. The library samples were sequenced using the 
Illumina HiSeq 2000 and Illumina HiSeq 2500 plat-
forms, which respectively generated 2 × 100 paired-end 
reads or 2 × 150 paired-end reads. Specifically, sample 
PR9 was sequenced on the Illumina HiSeq 2500 plat-
form, while the other samples were sequenced on the 
Illumina HiSeq 2000 platform. After high-throughput 
sequencing, 11 sequenced metagenomic samples were 
obtained, of which PR9 and PR10 were from the same 
water sample, but with different sequencing depths. The 
sequencing depth of PR9 was deeper with 33.96 GB of 
sequenced data, while the sequenced data size of PR10 
was 4.89 GB. The sequences from PR10 have been pub-
lished, and are available under the GenBank Sequence 
number SRX3516207 [32]. Station locations, measured 
environmental parameters, and sequencing depth infor-
mation are available in the supplemental information 
(Additional file 2: Supplementary Table S1).

Bioinformatic processing of shotgun metagenomic data
Metagenomic quality control, assembly, and binning
A flexible pipeline, metaWRAP version 1.2.1, was 
employed to process raw metagenomic reads into 
metagenomic assemblies and metagenome-assembled 
genomes (MAGs) [33]. The raw reads were trimmed and 
quality-controlled with the metaWRAP-Read_qc mod-
ule. Clean reads were then co-assembled and single-sam-
ple assembled using MEGAHIT version 1.1.3 [34] with 
kmer lengths of 21, 29, 39, 59, 79, 99, 119, and 141. All 
of the assembled sequences obtained were greater than 
300 base pairs (bp) and were utilized for further analysis. 
However, only scaffolds greater than or equal to 1000 bp 
from the co-assembly were retained for binning (Addi-
tional file  2: Supplementary Table  S2). Three metagen-
omic binning softwares (CONCOCT version 1.0 [35], 
MaxBin2 version 2.2.6 [36], and MetaBAT2 version 2.12.1 
[37]) were used to produce three initial bin sets of MAGs 
based on co-assembled sequences in parallel. These three 
initial bin sets were consolidated into an improved bin 
set using the Bin_refinement module, setting a minimum 
of 50% completion and a maximum of 10% contamina-
tion, during which DAS_Tool [38], Binning_refiner [39], 
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and metaWRAP_ Bin_refinment [33] were used. Finally, 
to improve the N50 contig length, increase the com-
pleteness, and reduce the contamination of the MAGs 
in the consolidated bin set, SPAdes version 3.13.0 [40] 
was used to reassemble these MAGs. Following the bin-
ning pipeline, we obtained 127 MAGs. The completion 
and contamination of all 127 MAGs were evaluated with 
CheckM version 1.1.3 (Additional file  2: Supplementary 
Table S3) [41]. The relative abundance of each MAG was 
estimated utilizing the metaWRAP-Quant_bins mod-
ule with Salmon version 0.13.1 [42] based on the proto-
col of the metaWRAP pipeline. The  relative abundance 
of each MAG here  was expressed as genome copies per 
million reads. This measurement method was chosen 
for its comparability between metagenomes with differ-
ent sequencing depth outputs and different MAG sizes 
(Additional file 2: Supplementary Table S4) [33]. The per-
centage of sequences recruited by these MAGs from the 
co-assembly, as well as the proportion mapped to each 
metagenomic sample, were calculated using CoverM ver-
sion 0.6.1 (“genome” mode with default settings, https:// 
github. com/ wwood/ CoverM) with minimap2 version 
2.26-r1175 [43] and SAMtools version 1.19 [44] (Addi-
tional file 2: Supplementary Table S5).

Taxonomic assignment of the metagenomes
Two methods were employed for taxonomic annota-
tion of the metagenomes. Contigs of each metagen-
ome were taxonomically classified against the NCBI 
RefSeq database (2023–5-10, downloaded from kaiju.
binf.ku.dk), using Kaiju version 1.9.2 with default set-
tings [45]. Kaiju performed a database search based on 
amino acid sequence similarity and provided classifica-
tion results at the species level. Sequences annotated as 
viruses or unclassified were excluded from the output 
results, and the relative abundances of the remaining 
classified sequences were recalculated (Additional file 2: 
Supplementary Table  S6). Barrnap version 0.9 (https:// 
github. com/ tseem ann/ barrn ap/) was used for rRNA gene 
sequence retrieval based on single-sample assembled 
contigs, and the 16S rRNA gene fragments (i.e., 16S miT-
ags) were then extracted. The 16S rRNA gene sequences 
were classified by the RDP (Ribosomal Database Project) 
classifier. The classification was performed under an 80% 
confidence threshold using the 16S rRNA training set 18 
(Additional file 2: Supplementary Table S7) [46].

Functional annotation of the metagenomes and the MAGs
Functional annotation was performed at the open read-
ing frame level for the assembled contigs of 11 metage-
nomes and 127 MAGs. Prodigal version 2.6.3 [47] was 
used for gene prediction, and eggNOG version 5.0 data-
base [48] was used for functional annotation using the 

DIAMOND version 0.9.14 [49] with eggNOG-map-
per-2.1.6 [50] (E-value = 0.001). The metagenome mode 
setting was used for the metagenomes (Additional file 2: 
Supplementary Table S2), and the genome option (-itype 
genome) was used for the MAGs.

GTDB classification of the MAGs and phylogenetic analysis
GTDB-Tk version 1.3.0 was used to classify the MAGs 
generated from this study as well as to build phyloge-
netic trees based on the Genome Taxonomy Database 
(GTDB, release 95) [51, 52]. Taxonomy designation of 
the MAGs was performed using the classify_wf work-
flow within the GTDB-Tk. The classification and phy-
logenetic analysis of archaeal MAGs were performed 
based on 122 archaeal marker genes, and 120 bacterial 
marker genes were used to classify bacterial MAGs [53]. 
FastTree version 2.1.10 [54] was used to infer the phy-
logenetic trees of MAGs with the maximum-likelihood 
model based on the multiple sequence alignments pro-
vided by the GTDB-Tk align module. The bootstrap 
value of each branch was calculated with the Shimo-
daira-Hasegawa test based on 1000 replicates. The tax-
onomic assignment results for MAGs can be found in 
Additional file  2: Supplementary Table  S3, S4, and S5. 
The taxonomic annotation of COG0168 was conducted 
by integrating the annotation results from the eggNOG 
v5.0 database and aligning against the NCBI_nr data-
base using BLASTp (E-value < 2e-28) [55]. The multiple 
sequence alignment based on amino acid sequences of 
COG0168 was created with Clustal-Omega version 1.2.4 
[56]. FastTree version 2.1.10 was again used to infer the 
phylogenetic tree with the default setting based on the 
provided multiple sequence alignment. All the phyloge-
netic trees in this paper were drawn and presented using 
iTOL version 6.6 [57].

Statistical analysis
Statistical analyses and data visualization were carried 
out using the R language version 4.1.1 (https:// www.R- 
proje ct. org/) [58], ImageGP online platform (http:// www. 
ehbio. com/ Image GP/) [59], and Hiplot Pro online plat-
form (https:// hiplot. com. cn/).

All of the statistical tests were performed using R lan-
guage version 4.1.1. For multiple group comparisons, 
we performed the Kruskal–Wallis rank-sum test (K-W 
test). If the Kruskal–Wallis rank-sum test was significant 
(p ≤ 0.05), we then performed Dunn’s multiple compari-
son tests with Bonferroni adjustment. Dunn’s multiple 
comparison tests were done using the R package dunn.
test version 1.3.5. The Shannon–Wiener diversity index 
calculation, hierarchical clustering analysis, Bray–Cur-
tis dissimilarity-based non-metric multidimensional 
scaling (NMDS), and analysis of similarities (ANOSIM) 

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/tseemann/barrnap/
https://github.com/tseemann/barrnap/
https://www.R-project.org/
https://www.R-project.org/
http://www.ehbio.com/ImageGP/
http://www.ehbio.com/ImageGP/
https://hiplot.com.cn/
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were all conducted using the R package vegan version 
2.5–7 (https:// CRAN.R- proje ct. org/ packa ge= vegan). In 
this study, the Bray–Curtis dissimilarity was computed 
based on the relative abundances of MAGs or COGs. The 
Shannon–Wiener diversity index of each sample was cal-
culated at the species level based on the taxonomic anno-
tation results from Kaiju software. In R, the lm() function 
and package ggplot2 version 3.4.2 [60] were used for lin-
ear regression, and regression parameters were obtained 
using the summary() function. To further enhance the 
statistical robustness of our results, the R package boot 
version 1.3–28 was employed to conduct bootstrap tests 
on the p values of the Kruskal–Wallis rank-sum tests, 
Dunn’s significance tests, and the statistics of the linear 
regressions (1000 resamplings) [61]. The significance cri-
teria (alpha) for simple linear regressions were all set to 
0.05. The sampling map was drawn by Ocean Data View 
version 5.6.3 (https:// odv. awi. de/).

Metagenomes and MAGs categorization
Metagenomes and MAGs were both categorized by salin-
ity. Metagenomes PR1, PR2, PR3, and PR4 were from 
stations with salinities below 10‰ and were classified 
as low-salinity metagenomes. Metagenomes PR5, PR6, 
and PR7 were from stations with salinities ranging from 
10‰ to 30‰ and were classified as intermediate-salinity 
metagenomes. Metagenomes PR8, PR9, PR10, and PR11 
were from stations with salinities above 30‰ and were 
classified as high-salinity metagenomes (Additional file 2: 
Supplementary Table S1).

To elucidate the genomic features of the obtained 
MAGs across the salinity gradient, we employed the fol-
lowing classification scheme. If the average relative abun-
dance of a specific MAG in  a particular salinity category 
(indicated as C-salinity, where C represents one of the 
following: low, intermediate, or high) surpassed the aver-
age abundance in the other two categories by an order of 
magnitude, then this MAG was classified as stenohaline, 
indicating its adaptability to the C-salinity level. MAGs 
failing to meet this classification criterion were catego-
rized as euryhaline MAGs. Further subdivision of these 
euryhaline MAGs was based on their average relative 
abundances across metagenomes of different salinity cat-
egories, resulting in the identification of three subsets: 
high-, intermediate-, and low-salinity inclined euryhaline 
MAGs (Additional file 2: Supplementary Table S4).

Feature selection
To identify the characteristic COGs of MAGs associ-
ated with the different salinity categories, we applied 
the Boruta feature selection algorithm based on random 
forest variable importance measures, implemented in 
version 7.0.0 of the Boruta R package. Specifically, the 

Boruta function was executed utilizing a maximum of 
8000 runs and confidence level of 0.05 [25]. After up to 
8000 importance source runs, no COGs were left ten-
tative. Boruta first created a corresponding “shadow” 
COGs matrix, whose relative abundances were obtained 
by randomly scrambling the original relative abundances 
of COGs between objects and then ran a random forest 
classifier to gather the importance score of each COG 
[23]. By iteratively fitting the random forest model, 
Boruta tested whether each COG was significantly more 
important than the “shadow” COG until all the COGs 
were classified as “confirmed” or “rejected.”

Results
Community structure and diversity of prokaryotes 
across the salinity gradient
After quality control filtering, the 11 metagenomes 
from this study, a total of 271,182,520 reads were 
retained for further analysis, yielding an average of 
24,652,956 reads per metagenome. The reads were 
subsequently assembled into contigs, with the result-
ing number of contigs ranging from 15,124 to 349,586 
for the different metagenomes. The average N50 con-
tig length was 2718 bp (Additional file  2: Supplemen-
tary Table  S2). For taxonomic profiling, the entire set 
of contigs from 11 metagenomes, totaling 616,372 con-
tigs (i.e., all assembled contigs having a length greater 
than 300 bp), were annotated with Kaiju. Among these, 
260,006 sequences were annotated at the species level 
for prokaryotes, accounting for 42.18% of all con-
tigs. The remaining sequences included 15,703 viral 
sequences, 278,087 unclassified sequences, and 62,576 
sequences that could not be assigned to a (non-viral) 
species. Based on the contig-level Kaiju annotation, 55 
prokaryotic phyla were annotated, with 46 attributed 
to Bacteria and 9 to Archaea (Additional file 2: Supple-
mentary Table  S6). Barrnap extracted 453 16S miTags 
from the metagenomes, with 314 of them being clas-
sified as either Archaea or Bacteria at a confidence 
threshold of 80%. These 16S miTags were classified into 
14 phyla, of which 11 were affiliated with Bacteria and 
3 with Archaea (Additional file 1: Supplementary Figure 
S2 and Additional file  2: Supplementary Table  S7). In 
each sample, bacterial taxa were predominant. Results 
from both methods showed that Proteobacteria was the 
most abundant bacterial phylum, followed by Actino‑
bacteriota and Cyanobacteria. Additionally, Bacteroi‑
dota and Planctomycetota had high relative abundances 
in certain metagenomes. Proteobacteria dominated 
across almost all salinity categories, while the relative 
abundance of Actinobacteriota decreased with increas-
ing salinity. Archaeal taxa were primarily annotated in 
metagenomes of high-salinity categories, exhibiting 

https://CRAN.R-project.org/package=vegan
https://odv.awi.de/
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relatively low relative abundances in metagenomes of 
low- and intermediate-salinity categories. Euryarchae‑
ota emerged as the predominant archaeal phylum, and 
it was annotated in every sample (Fig. 1a and Additional 
file 1: Supplementary Figure S2a). Based on the annota-
tions provided by Kaiju on the taxonomic profiles of the 
contigs, the results from NMDS and ANOSIM analyses 
indicated a significant difference in taxonomic compo-
sition among different salinity categories (Additional 
file 1: Supplementary Figure S2b; NMDS, stress = 0.053; 
ANOSIM, p = 0.001; number of permutations = 99,999). 
The results of the hierarchical clustering were dis-
played through a dendrogram, which was divided into 
four branches: low-salinity samples PR2 and PR3 were 
grouped together; low-salinity samples PR1 and PR4 
formed another group; all high-salinity samples con-
stituted a separate group; and all intermediate-salinity 

samples formed yet another group. The mean Bray–
Curtis distance was 0.623 (Additional file  1: Supple-
mentary Figure S2c).

The alpha diversity of each microbial community was 
assessed using the Shannon–Wiener diversity index at 
the species level, with taxonomic annotations derived 
from Kaiju software. The alpha diversity indices of these 
samples ranged from 4.44 and 6.00, with an average of 
5.28. Specifically, the average values for low-, interme-
diate-, and high-salinity categories were 4.88, 5.70, and 
5.39, respectively. However, no significant difference was 
detected among the three salinity categories, as deter-
mined by the Kruskal–Wallis rank-sum test (Fig.  1b, 
p = 0.2826). To fulfill the independence assumption of the 
Kruskal–Wallis rank-sum test, PR9 was excluded from 
this test.

Fig. 1 Taxonomic profiles and functional patterns of the microbial communities across the salinity gradient. a Relative abundances of microbial 
domains (above) and the top 10 most abundant phyla (below) in each metagenome obtained from the taxonomic assignments of contigs. 
Boxplot components, center lines, medians; box limits,  25th and  75th percentiles; whiskers, 1.5 × interquartile range from the  25th and  75th 
percentiles. Source data are provided in Additional file 2: Supplementary Table S6. b Comparison of Shannon–Wiener diversity index distributions 
estimated for the three salinity categories. The number of metagenomes included in each category is as follows: low-salinity category, n = 4; 
intermediate-salinity category, n = 3; high-salinity category, n = 3 (PR9 was excluded). Due to the limited number of samples across different salinity 
categories, bootstrap testing was not conducted. Source data are provided in Additional file 2: Supplementary Table S6. c NMDS performed 
on the Bray–Curtis dissimilarities of COG relative abundance profiles of the 11 metagenomic samples from this study. The ellipses in the plot mark 
the 90% confidence interval for metagenomes grouped by the salinity category. d Complete linkage hierarchical clustering based on the relative 
abundances of COGs in the metagenomes using Bray–Curtis dissimilarities. The salinity categories of the metagenomes are denoted using markers 
of different colors and shapes. Different colored boxes indicate the grouping of these branches into two main subdivisions
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Functional characteristics of the metagenomes 
across the salinity gradient
Functional dissimilarities between samples were quanti-
fied using Bray–Curtis dissimilarity, resulting in a mean 
Bray–Curtis distance of 0.352 (Fig. 1c and d). NMDS and 
ANOSIM analyses revealed a significant difference in the 
functional gene composition across metagenomes of dif-
ferent salinity categories (NMDS, stress = 0.083; ANO-
SIM, p = 0.0098; number of permutations = 99,999). To 
depict the range of variation for the high-salinity and 
low-salinity metagenomes, 90% confidence ellipse inter-
vals were plotted. The intermediate-salinity metagen-
omes fell within the variation range of the high-salinity 
metagenomes but were excluded from that of the low-
salinity metagenomes (Fig.  1c). Using complete link-
age hierarchical clustering, a dendrogram comprising 
11 branches was constructed, and these branches were 
grouped into two main subdivisions (Fig.  1d). Unsuper-
vised hierarchical clustering revealed that the high-salin-
ity and intermediate-salinity metagenomes were distinct 
from the low-salinity metagenomes. These findings sug-
gested that the dissimilarities between low- and high-
salinity metagenomes were more pronounced than those 
between intermediate- and high-salinity metagenomes.

Genome reconstruction with metagenomic binning
By employing metagenomic binning, we successfully 
assembled 127 MAGs of medium quality (complete-
ness ≥ 50%, contamination ≤ 10%, totaling 102) and high 
quality (completeness ≥ 90%, contamination ≤ 5%, total-
ing 25), as previously established quality definitions 
(Additional file 2: Supplementary Table S3) [62]. The read 
coverages of these MAGs varied from 3.92% to 21.67% 
per metagenomic sample, averaging 10.63%. In total, 
these MAGs comprised 0.27 Gbp and recruited 21.79% of 
the sequences from the co-assembly. Specifically, out of 
the 650,161 total contigs from the co-assembly, 141,665 
sequences were successfully mapped (Additional file  2: 
Supplementary Table  S5). The completeness of these 
MAGs ranged from 50.13% to 98.39%, with contamina-
tion ranging from 0% to 9.89%. Taxonomic classification 
revealed that the prevailing majority (116 MAGs) were 
ascribed to the domain Bacteria, while a mere 11 MAGs 
were attributed to the domain Archaea. These MAGs 
spanned 12 bacterial and 3 archaeal phyla, and their 
detailed characteristics are provided in Additional file 2: 
Supplementary Table S3.

The output of metagenomic binning was consistent 
with the previously obtained results on prokaryotic com-
munity composition, thereby demonstrating the robust-
ness of our findings. Among the bacterial MAGs, the 
phyla Proteobacteria (43 MAGs) and Actinobacteriota 
(37 MAGs) were dominant, followed by Planctomycetota 

(9 MAGs), Cyanobacteria (7 MAGs), Bacteroidota (6 
MAGs), and Verrucomicrobiota (6 MAGs), while the 
remaining MAGs belonged to miscellaneous bacterial 
phyla. Archaeal MAGs were assigned to three phyla, 
namely Thermoplasmatota (7 MAGs), Thermoproteota 
(3 MAGs), and Asgardarchaeota (1 MAG). The relative 
abundances of these MAGs varied across the metagen-
omes of different salinity categories. While the bacterial 
MAGs were widely distributed among all metagenomes, 
the archaeal MAGs were mainly found in the intermedi-
ate- and high-salinity metagenomes, being particularly 
more abundant in the latter. Applying the classification 
rule outlined in the Methods section, a total of 33 MAGs 
were classified as low-salinity  stenohaline, 36 MAGs as 
intermediate-salinity stenohaline, and 44 MAGs as high-
salinity stenohaline (including 11 archaeal MAGs). More-
over, 14 MAGs were classified as euryhaline. Notably, the 
two dominant phyla Actinobacteriota and Proteobacteria 
jointly constituted 71 stenohaline MAGs, accounting for 
63% of the total stenohaline MAGs. Additionally, these 
two phyla encompassed nine euryhaline MAGs, repre-
senting 64% of the total euryhaline MAGs. Within the 
Ilumatobacteraceae family of the Actinobacteriota phy-
lum, five out of seven MAGs were categorized as inter-
mediate-salinity stenohaline. The other two belonged to 
the low-salinity stenohaline and high-salinity inclined 
euryhaline categories. In the family Mycobacteriaceae, 
excluding two MAGs of the genus Aquiluna classified 
as intermediate-salinity stenohaline, the remaining four 
were categorized as low-salinity stenohaline. Further-
more, all four MAGs in the family Nanopelagicaceae 
and the order Solirubrobacterales were classified as low-
salinity stenohaline. In another major microbial group, 
the phylum Proteobacteria, within the family Rhodobac‑
teraceae, apart of two MAGs classified in the euryhaline 
category (one as intermediate-salinity inclined and the 
other as high-salinity inclined), the remaining MAGs 
were categorized as intermediate-salinity stenohaline. 
All MAGs in the family Puniceispirillaceae were classi-
fied as high-salinity stenohaline. MAGs in the families 
Burkholderiaceae and Beijerinckiaceae were primarily 
categorized as either low-salinity stenohaline or interme-
diate-salinity stenohaline, whereas MAGs in the family 
Ga0077536 were mainly classified as either intermediate-
salinity stenohaline or high-salinity stenohaline (Fig.  2, 
Additional file 2: Supplementary Table S4).

NMDS and ANOSIM were performed to evaluate 
the statistical difference in the composition of MAGs 
between different stenohaline categories, ensuring stable 
and reliable classification results. As depicted in Addi-
tional file 1: Supplementary Figure S3, both NMDS and 
ANOSIM confirmed that the stenohaline categories were 
significantly different from one another. This significant 
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difference was observed not only among the three steno-
haline categories, but also in each pairwise comparison 
(NMDS, stress = 0.145; ANOSIM, p = 0.001, number of 
permutations = 99,999).

Functional profile of the reconstructed MAGs
Based on the relative abundances of COGs annotated in 
the MAGs, a hierarchical clustering analysis using the 
Bray–Curtis dissimilarity was conducted (Additional 
file 1: Supplementary Figure S4). The average Bray–Cur-
tis dissimilarity was 64% and the generated dendrogram 
demonstrated two distinct clusters of the archaeal and 
bacterial MAGs at the domain level. However, compared 
with the finding at the metagenome level across the salin-
ity gradient (Fig. 1d), no clear patterns based on salinity 
categories were observed at the MAG level. The hetero-
geneity observed in the abundance composition of COGs 
within MAGs suggested that taxonomic distinctions 
play a crucial role in differentiating MAGs. Additionally, 

characteristic genes associated with adaptation to salin-
ity or other estuarine environmental factors could also be 
influencing such clustering analysis.

Feature selection for the stenohaline bacterial MAGs
The genomic profiles of the MAGs were characterized 
by their COG compositions [63]. We hypothesized that 
microorganisms adapted to different salinity environ-
ments exhibit different patterns in the relative abun-
dances of certain COGs related to salinity adaptation. 
As such, these COGs may play a crucial role in distin-
guishing MAGs of various salinity categories. However, 
owing to the divergence between Bacteria and Archaea, 
some COGs related to phylogeny may interfere with the 
identification of COGs associated with salinity adapta-
tion. Thus, we excluded archaeal MAGs from the selec-
tion model but still retained them for further analysis. 
Employing the Boruta feature selection algorithm, 40 
out of 12,612 COGs were identified as important in 

Fig. 2 Relative abundances and phylogenetic relationships of MAGs. a Heatmap representing the log10-transformed relative abundances of MAGs. 
Abundance values were computed as genome copies per million reads. To avoid the log transformation of zero values, a small constant (i.e., 1e-9) 
was added to the raw relative abundance of each MAG. Detailed information of the MAG abundance per metagenomic sample can be found 
in Additional file 2: Supplementary Table S4. Background color indicates the salinity category, while the outer color bar denotes the phylum. b, c 
Phylogenetic trees of the reconstructed bacterial and archaeal MAGs. The different background and branch colors in the trees represent the salinity 
categories and phylum taxonomic annotations of the MAGs, respectively. Color codes are the same as in part (a) of the figure. The solid black dots 
label branches with a bootstrap value greater than 0.95
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distinguishing the low-, intermediate-, and high-salin-
ity MAGs (Fig.  3a). Although seven of these COGs 
were categorized as “function unknown,” the largest 
subset (13 COGs) within these 40 COGs fell into the 
“inorganic ion transport and metabolism” category. 
Additionally, other categories including “secondary 
metabolites biosynthesis, transport and catabolism,” 
“amino acid transport and metabolism,” and “replica-
tion, recombination and repair” each contained three 
COGs, while the remaining COG categories only com-
prised one or two COGs each (Additional file 2: Supple-
mentary Table  S8). Here, we have selected COG0168, 
COG0580, COG0530, COG0477, COG3158, COG1115, 
COG0038, COG0591, COG2217, COG0861, COG2059, 
COG2409, COG0767, and COG1613 for further dis-
cussion, as they were considered to potentially relate to 
microbial adaptation to environmental stresses in the 
estuarine region.

COGs associated with microbial adaptation to salinity
Among these 40 COGs selected by the Boruta algorithm, 
COG0168 (a low-affinity  K+ transport system that inter-
acts with  K+ uptake protein TrkA of the Trk-type  K+ 
transport system), COG0530  (Ca2+:  K+/Na+ antiporter), 
COG3158  (K+ transmembrane transporter activity), 
COG0038  (Cl− channel), COG0591 (symporter activ-
ity), COG0477 (major facilitator superfamily), COG1115 
(amino acid carrier protein), and COG0580 (water chan-
nel activity) were considered to be closely related to the 
microbial salinity adaptation (Fig. 3). These COGs repre-
sented various microbial strategies for salinity adaptation, 
highlighting the diverse osmoregulation mechanisms 
of the microbial communities in the PRE (Additional 
file 2: Supplementary Tables S8, S9, and S10) [7]. In this 
context, the COGs related to the “salt-in” strategy were 
referred to as SIR COGs, while those related to the “salt-
out” strategy were referred to as SOR COGs. According 

Fig. 3 Feature importances and relative abundances of selected COGs. a Featured importances of the selected COGs. Each boxplot represents 
the importance values computed from up to 8000 permutations. The solid blue dots highlight the COGs that are discussed in the text and shown 
in (b) and (c). ShadowMax, maximum score of the shadow matrix; ShadowMean, mean score of the shadow matrix; ShadowMin, minimum 
score of the shadow matrix. Boxplot components, center lines, medians; box limits,  25th and  75th percentiles; whiskers, 1.5 × interquartile range 
from the  25th and  75th percentiles; red dots, outliers. b, c Heatmaps representing the relative abundances of the discussed COGs in bacterial 
and archaeal MAGs, and the phylogenetic trees. The background color of each MAG ID represents its salinity category while the color bars 
preceding the heatmaps represents its phylum affiliation. The euryhaline MAGs of different salinity inclinations are marked by dots of different 
colors. The functional categories of the COGs are indicated by the color bars below the heatmaps. The solid black dots label branches 
with a bootstrap value greater than 0.95. Source data are provided in Additional file 2: Supplementary Table S10
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to the importances assessed by the Boruta algorithm, 
these COGs were ranked in descending order as follows: 
COG0168, COG0580, COG0530, COG0477, COG3158, 
COG1115, COG0038, and COG0591 (Fig.  3a). In the 
phylum Actinobacteriota, COG0477 was consistently 
found in high abundance across all salinity categories, 
with a notable absence of COG0168 in low-salinity 
MAGs. For instance, within the family Mycobacteriaceae, 
only intermediate-salinity MAGs were annotated with 
COG0168. In another major microbial phylum, the Pro‑
teobacteria, COG0168 was widely annotated in the inter-
mediate-salinity, high-salinity, and euryhaline categories, 
but only two low-salinity MAGs (bin6 and bin125) were 
annotated. COG0477 was also frequently annotated, 
except for bin4 (high-salinity category). However, 
COG0530 was not annotated in low-salinity  MAGs. In 
the family Rhodobacteraceae (a major marine bacterial 

group), annotations of COG0168, as well as COG0591 
and COG0477, were found in all MAGs (Fig.  3b). For 
the archaeal MAGs, except for bin104 (classified under 
the phylum Asgardarchaeota), annotations of COG0168 
and COG0530, alongside COG0591 and COG0477, were 
present in the remaining MAGs. Excluding bin104 and 
bin105, annotations of COG0580, associated with the 
regulation of water channel activity, were found in all 
archaeal MAGs (Fig. 3c).

In the subsequent sections, we investigated the abun-
dance patterns of SIR COGs and SOR COGs (Figs. 4, 5, 
and 6), as well as COG0580 (regulation of water chan-
nel activity) at both the metagenome and MAG lev-
els (Fig.  6, Additional file  1: Supplementary Figure S5, 
Additional file  2: Supplementary Table  S9, Additional 
file 2: Supplementary Table S10).

Fig. 4 Relative abundances of the  SIR COGs in metagenomes and stenohaline MAGs. a–d Relative abundance trends of COG0168, COG3158, 
COG0530, and COG0038 at the metagenome level. The regression R-squared values and p values are embedded within the graphs. e–h Relative 
abundances of the four SIR COGs in stenohaline MAGs. All R-squared values and p values fall within the 95% confidence interval of bootstrap 
tests and are marked with solid blue dots. Number of MAGs involved in statistical calculations: low-salinity category, n = 33; intermediate-salinity 
category, n = 36; high-salinity category, n = 44. The crosses in the figures indicate the mean relative abundances. Statistical significance symbols: 
****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns p > 0.05 (Kruskal–Wallis rank-sum test with Dunn’s multiple comparison test). Source data are 
provided in Additional file 2: Supplementary Tables S9 and S10
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The “salt‑in” strategy
When facing elevated salinity, microorganisms have 
demonstrated their adaptive capabilities by regulating 
inorganic ion transport, known as the “salt-in” strategy. 
This adaptive approach is characterized by the trans-
port of vital ions, such as  K+,  Ca2+, and  Cl−, which may 
play a critical role in maintaining cellular homeostasis 
under salt-induced stress [7, 64, 65]. Considering the 
functional roles of COG0168 (Trk-type  K+ transport 
system), COG3158 (Kup-type  K+ transport system), 
COG0530  (Ca2+:  K+/Na+ antiporter), and COG0038 
 (Cl− channel), these were assumed to be implicated in 
the “salt-in” strategy. In our study, the relative abundance 
profiles of these COGs exhibited different characteristics 
with changes in salinity.

The “salt‑in” strategy of the estuarine microbial com‑
munity Our analyses revealed distinct patterns in the 

relative abundances of COG0168 (Fig. 4a, R2 = 0.7778, p = ), 
COG3158 (Fig.  4b, R2 = 0.7517, p = 0.0007155), COG0530 
(Fig. 4c, R2 = 0.8586, p = 0.00010327.204e-05), and COG0038 
(Fig. 4d, R2 = 0.4173, p = 0.02591), in response to increasing 
environmental salinity. Specifically, COG0168, COG0530, 
and COG0038 exhibited an upward trend, while COG3158, 
annotated as the Kup-type  K+ transport system, displayed 
a linear decline with rising salinity. The research findings 
concerning stenohaline MAGs also uncovered significant 
differences in the relative abundances of these four COGs 
across different salinity categories (Kruskal–Wallis rank-
sum test: p < 0.05, Fig.  4e–h). COG0168 and COG0530 
exhibited similar abundance patterns and showed signifi-
cant differences between the high- and low-salinity catego-
ries, as well as between the intermediate- and low-salinity 
categories. Moreover, these two COGs showed the highest 
average relative abundances in the high-salinity category, 
followed by the intermediate-salinity category, but were 

Fig. 5 Relative abundances of the SIR COGs in Actinobacteriota and Proteobacteria stenohaline MAGs and phylogeny of COG0168. a–d Relative 
abundances of the SIR COGs in stenohaline MAGs affiliated with Actinobacteriota and Proteobacteria. All p values fall within the 95% confidence 
interval of bootstrap tests and are marked with solid blue dots. Number of MAGs involved in statistical calculations: low-salinity category 
Actinobacteriota, n = 17; low-salinity category Proteobacteria, n = 11; intermediate-salinity category Actinobacteriota, n = 10; intermediate-salinity 
category Proteobacteria, n = 16; high-salinity category Actinobacteriota, n = 3; and high-salinity category Proteobacteria, n = 13. Boxplot components, 
center lines, medians; box limits,  25th and  75th percentiles; whiskers, 1.5 × interquartile range from the  25th and  75th percentiles; red dots, outliers. 
Statistical significance symbols: ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns p > 0.05 (Kruskal–Wallis rank-sum test with Dunn’s multiple 
comparison test). Source data are provided in Additional file 2: Supplementary Table S10. e Phylogenetic tree constructed based on the amino acid 
sequences of COG0168 from all MAGs. Different background colors of the labels indicate different salinity categories, while the color bars indicate 
the microbial phyla and subunit types. The solid black dots label branches with a bootstrap value greater than 0.95
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almost negligible in the low-salinity category (Fig. 4e and g). 
In contrast, COG3158 exhibited the highest average rela-
tive abundance in the low-salinity category, and significant 
differences were also observed between the high- and low-
salinity categories, and the intermediate- and low-salinity 
categories (Fig. 4f). COG0038 showcased a distinctive pat-
tern, with the highest average relative abundance being 
observed in the intermediate-salinity category, followed 
by the high-salinity category and the low-salinity category. 
Significant differences in relative abundance were found 
between the high- and intermediate-salinity categories, as 
well as between the intermediate- and low-salinity catego-
ries (Fig. 4h).

The “salt‑in” strategy of the estuarine dominant microbial 
phyla We further investigated the differences in the 
relative abundances of these COGs in MAGs belonging 

to the two dominant phyla, Actinobacteriota and Proteo‑
bacteria. In both phyla, the high-salinity category dem-
onstrated a significantly higher relative abundance of 
COG0168 compared with the low-salinity category, with 
a similarly significant difference observed between the 
intermediate- and low-salinity categories (Fig. 5a). In the 
phylum Actinobacteriota, the annotations of COG3158 
were confined to a small subset of the low-salinity MAGs. 
In contrast, within the phylum Proteobacteria, a signifi-
cant difference in the relative abundance of COG3158 
was observed between the intermediate- and low-salinity 
categories, as well as between the high- and low-salinity 
categories. For each phylum, the average relative abun-
dance of COG3158 was higher in the low-salinity cate-
gory (Fig. 5b). The relative abundance of COG0530 in the 
phylum Actinobacteriota showed no significant differ-
ence across salinity categories. However, in the phylum 

Fig. 6 Relative abundances of the SOR COGs and COG0580. a–d Relative abundance trends of the SOR COGs and COG0580 at the metagenome 
level (R-squared values and p values shown in the plots). e–h Relative abundances of the SOR COGs and COG0580 in stenohaline MAGs. All 
R-squared values and p values fall within the 95% confidence intervals from bootstrap tests (solid blue dots). Number of MAGs involved in statistical 
calculations: low-salinity category, n = 33; intermediate-salinity category, n = 36; high-salinity category, n = 44. The crosses in the figures indicate 
the mean relative abundances. Statistical significance symbols: ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns p > 0.05 (Kruskal–Wallis rank-sum 
test with Dunn’s multiple comparison test). Source data are provided in Additional file 2: Supplementary Table S10
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Proteobacteria, the relative abundance of this COG was 
significantly higher in both the high- and intermediate-
salinity categories than in the low-salinity category 
(Fig.  5c). As for COG0038, significant differences were 
observed solely between the intermediate- and low-salin-
ity categories in these two phyla, with a higher relative 
abundance in the intermediate-salinity category (Fig. 5d).

Phylogenetic analysis of COG0168 COG0168 repre-
sents the Trk-type K+ transport system, which is one 
of the main  K+ transport systems in microorganisms [7, 
66]. Using the Boruta feature selection model, this COG 
was identified as the top-ranked in terms of importance. 
Phylogenetic analysis was conducted on the amino acid 
sequences of COG0168 extracted from all MAGs. Within 
a substantial portion of MAGs, TrkH served as the trans-
membrane subunit of the Trk-type  K+ transport system, 
rather than its homologous counterpart, TrkG. This 
observation implied that TrkH likely dominated as the 
transmembrane subunit in estuarine ecosystems, regard-
less of salinity category. Furthermore, the selection of 
transmembrane subunits of the Trk-type  K+ transport 
system was likely to be closely related to the taxonomy. 
This was illustrated by the TrkG subunit being  annotated 
in all MAGs of Cyanobacteria, and the TrkH subunit 
being almost universally annotated in MAGs of Actino‑
bacteriota and Proteobacteria (Fig. 5e).

The “salt‑out” strategy and the regulation of water channel 
activity
The “salt-out” strategy is an alternative and widely 
adopted approach employed by microorganisms to adapt 
to high-salinity habitats. This strategy entails the biosyn-
thesis and accumulation of compatible solutes, thereby 
facilitating the maintenance of osmotic equilibrium and 
circumventing the detrimental impacts of excessive salt. 
COG0591, COG0477, and COG1115 were recognized 
as contributors to the “salt-out” strategy, facilitating the 
uptake of compatible solutes, such as glycine betaine, 
proline, and alanine, from the external environment 
into the cell [66, 67]. Regulating water transport across 
membranes is also a way for microorganisms to prevent 
osmotic damage. According to annotations in the egg-
NOG v5.0, KO, and GO databases, COG0580 is linked to 
GO: 0015250, and its function is to enable the facilitated 
diffusion of water [68–70].

The “salt‑out” strategy and the regulation of water chan‑
nel activity of the estuarine microbial community In the 
context of the “salt-out” strategy, metagenomic analyses 
unveiled distinctive trends in  relative abundance of the 
three relevant COGs. COG0591 (Fig.  6a, R2 = 0.6467, 

p = 0.003077) exhibited an increase in relative abun-
dance with rising environmental salinity, while COG0477 
(Fig.  6b, R2 = 0.6608, p = 0.002599) displayed a declining 
pattern. Furthermore, COG1115 (Fig.  6c, R2 = 0.8093, 
p = 0.0002428) demonstrated a significant increase in 
relative abundance. Regarding the regulation of water 
channel activity, COG0580 presented a decreasing trend 
in relative abundance with increasing salinity (Fig.  6d, 
R2 = 0.4783, p = 0.01603).

In the stenohaline MAGs, the relative abundance of 
COG0591 was significantly higher in the high-salinity 
category than in the low-salinity category, and a signifi-
cant difference was observed between the intermediate- 
and low-salinity categories (Fig.  6e). COG0477 exhib-
ited an opposite trend, aligning with the result obtained 
from the metagenomic perspective (Fig.  6b). Specifi-
cally, this COG demonstrated a significantly higher rela-
tive abundance in the low-salinity category compared 
with the intermediate- and high-salinity categories, with 
the intermediate category also showing higher abun-
dance than the high-salinity category (Fig. 6f ). The rela-
tive abundance of COG1115 was higher in the high- and 
intermediate-salinity categories compared to the low-
salinity category, akin to COG0591 (Fig. 6g). Despite the 
Kruskal–Wallis rank-sum test indicating a significant 
difference in relative abundance across the three steno-
haline categories for COG0580, pairwise comparisons 
revealed statistical significance only between MAGs cat-
egorized as intermediate- and low-salinity (Fig. 6h).

The “salt‑out” strategy and the regulation of water channel 
activity of the estuarine dominant microbial phyla In 
the stenohaline MAGs of the phyla Actinobacteriota 
and Proteobacteria, the relative abundances of the SOR 
COGs showed no significant difference across the three 
stenohaline categories (Additional file 1: Supplementary 
Figure S5a, S5b, and S5c). In the phylum Actinobacte‑
riota, both COG0591 and COG1115 exhibited negligi-
ble relative abundances, as they were annotated in only 
one or two MAGs of the low- and intermediate-salinity 
categories (Additional file  1: Supplementary Figure S5a 
and S5c). On the other hand, all SOR COGs were exten-
sively annotated in the phylum Proteobacteria, with 
COG0477 displaying a negative correlation with salinity 
and COG1115 showing a positive correlation (Additional 
file 1: Supplementary Figure S5a, S5b and S5c). COG0477 
was annotated in the predominant microbial phyla of 
the PRE, with a high relative abundance being observed 
in the phylum Actinobacteriota (Fig. 3, Additional file 1: 
Supplementary Figure S5b). The relative abundance pat-
tern of COG0580 was also analyzed within those two 
dominant microbial phyla. The results revealed that while 
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there was no significant difference between Proteobacte‑
ria stenohaline MAGs, there was a significant difference 
between Actinobacteriota stenohaline MAGs of low- and 
high-salinity categories. In the phylum Actinobacteriota, 
the relative abundance of COG0580 was higher in the 
low-salinity category, whereas in the phylum Proteobac‑
teria, it was higher in the high-salinity category (Addi-
tional file 1: Supplementary Figure S5d).

Genes conferring resistance to environmental stresses 
beyond salinity tolerance
Microorganisms have developed various mechanisms 
that allow them to adapt to a wide range of environmen-
tal stresses including salinity. Here, several COGs related 
to microbial adaptation to abiotic factors other than 
salinity were identified (Fig. 3a, Additional file 2: Supple-
mentary Table S9 and S10). These COGs were considered 
to be associated with heavy metal resistance (COG2217, 
COG0861, COG2059), drug resistance (COG2409), 
organic solvent resistance (COG0767), and sulfate 
metabolism (COG1613). Metagenomics showed that the 
relative abundances of these COGs decreased as salin-
ity increased (Additional file  1: Supplementary Figure 
S6a-c, g-i). This trend was also reflected in the stenoha-
line MAGs, with the relative abundances of these COGs 
in the low-salinity category often higher than those in 
the intermediate- or high-salinity categories (Additional 
file  1: Supplementary Figure S6d–f, j–l). These results 
indicated that in areas closer to land with lower salini-
ties, environmental stresses, such as high concentrations 
of heavy metals, drugs, and organic solvents, may cause 
changes in the functional characteristics of the micro-
bial communities [71]. COG1613 (sulfate transport) was 
more abundant in the areas of lower salinities, which may 
be an adaptive strategy for microorganisms to cope with 
low oxygen condition in the low-salinity environment, 
with sulfate acting as an electron acceptor to sustain 
microbial life.

Discussion
In this study, we applied metagenomics to explore the 
taxonomic and functional profiles of the microbial com-
munities across the salinity gradient in the PRE, a typical 
subtropical estuary characterized by its short residence 
time. Furthermore, we aimed to unveil the mechanisms 
of estuarine microorganisms to cope with salinity stress, 
while also shedding light on the specific salinity adapta-
tion strategies employed by the  dominant taxa in the 
PRE.

The characteristics of the estuarine microbial commu-
nities are shaped by both salinity and hydrodynamic con-
ditions. The residence time of the PRE was estimated to 

range from 3 to 12 days, which was shorter than that of 
other water bodies, such as the Baltic Sea (3 to 30 years) 
[13, 31]. However, it was comparable to the Columbia 
River Basin, where the water residence time was esti-
mated to be an average of 1 to 2 days [12]. Salinity can 
exert a crucial influence on natural selection. This is evi-
denced by the differences in microbial community com-
position observed along the salinity gradient (Fig.  1a). 
Concerning the functional traits of the microbial com-
munities, the low-salinity metagenomes formed a clus-
ter separate from the intermediate- and high-salinity 
metagenomes, while the latter two clustered together. 
This pattern is consistent with that observed in the 
Columbia River short residence-time estuary and under-
scores the significant role of salinity in shaping the func-
tional characteristics of the microbial communities, yet 
the influence of hydrodynamic conditions should not be 
underestimated in short residence-time estuaries [17]. In 
particular, active water exchange and short spatial dis-
tance may be contributing factors. Thus, we postulate 
that the microbial communities in intermediate- and 
high-salinity environments may share a great propor-
tion of genes associated with the survival mechanisms 
required for living in the dynamic near-shore ecosystem 
and that insights into salinity adaptation mechanisms 
may be gleaned from studying specific functional genes. 
The findings of this study support a previous hypothesis, 
suggesting that estuaries with short residence times—
typically spanning only a few days—undergo significant 
taxonomic shifts along the salinity gradient. Despite 
these shifts, changes at the functional level appear to be 
less pronounced [17].

The  K+ uptake-based “salt-in” strategy may be the key 
mechanism allowing estuarine microorganisms to adapt 
to salinity stress in the PRE, especially for the two major 
estuarine phyla Actinobacteriota and Proteobacteria. 
In our study, over a quarter of the selected COGs were 
categorized as “inorganic ion transport and metabolism,” 
indicating the crucial role of this process for microbial 
survival and proliferation in the estuarine region (Addi-
tional file  2: Supplementary Table  S8) [72]. In terms of 
osmoregulation, representative COGs were identified 
for both “salt-in” and “salt-out” strategies, with the most 
important COG being related to the “salt-in” strategy 
(COG0168). Interestingly, of the four SIR COGs, three 
were associated with  K+ transport, including COG0168, 
which emerged as the top-ranking COG according to 
the Boruta algorithm (Fig.  3a, Additional file  2: Supple-
mentary Table  S8). Previous metagenomic studies have 
shown that  K+ plays a role in the osmoregulation of the 
freshwater planktonic microbial communities [73, 74]. 
Here, we highlight that  K+ uptake is also crucial for the 
adaptability of nearshore microorganisms to salinity 
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stress, as demonstrated by Actinobacteriota and Proteo‑
bacteria, the two major microbial phyla inhabiting estu-
aries (Fig. 5). Moreover, the presence of at least one  K+ 
transport system in nearly all euryhaline MAGs under-
scores the important role of  K+ in microbial adaptation 
to osmotic stress fluctuation (Fig.  3b, Additional file  2: 
Supplementary Table S10) [75–77].

Fortunato et  al. revealed that the abundance of  Na+/
H+ antiporters increased with rising salinity, suggesting a 
potential role in microbial adaptation to salinity in estua-
rine ecosystems [17]. However, no related genes were 
identified in our study. Although the concentration of 
 Na+ is higher than that of  K+ in the marine environment, 
excessive accumulation of  Na+ has been found to be toxic 
to the cell. Thus, when salinity is elevated, microorgan-
isms are unlikely to over accumulate  Na+ to maintain 
osmolality [7, 75]. The preferential accumulation of  K+ in 
cells can be attributed to the compatibility of this cation 
with water and protein structures. These advantages per-
sist even at high concentrations due to its ion radius, the 
magnitude of its surface electric field, and its ability to 
form a unique hydration shell [75]. However, the possibil-
ity that  Na+ can partially substitute for  K+ within a range 
of concentrations cannot be ruled out, especially when 
 K+ is lacking [73–75].

The Trk-type  K+ transport system is suggested to be 
the primary transport system for  K+ uptake by microor-
ganisms in the PRE. In our study, two members of the  K+ 
transporter superfamily (SKT)—specifically, the Trk-type 
 K+ (COG0168) and Kup-type  K+ (COG3158) transport 
systems—were selected for analysis and exhibited dis-
tinct and opposite abundance patterns (Figs. 3a and 4a, b, 
e, f ) [75, 77–79]. A previous study has proposed that the 
Trk-type  K+ transport system was critical for microbial 
adaptation to high-salinity stress in coastal sediments and 
soils [80]. This study suggests that the Trk-type  K+ trans-
port system may serve as the primary  K+ transporter for 
microbial adaptation to salinity stress in surface water of 
short residence-time estuaries. This hypothesis is sup-
ported by shreds of evidence, including the top-ranked 
importance of the Trk-type  K+ transport system, as 
determined by the Boruta algorithm, as well as observ-
ing similar patterns of increased relative abundance of 
this system with escalating salinity across the metagen-
omes, stenohaline MAGs, and dominant phyla (Figs. 4a, 
e, and 5a). It has been found that the transcriptional 
levels of the two membrane transporters (TrkH and 
TrkG) of the Trk-type  K+ transport system were not sig-
nificantly affected by the concentration of NaCl (0–1000 
mM) [81]. Therefore, the increased relative abundance 
of the Trk-type  K+ transport system with rising salinity 
may indicate a response of the estuarine microbial com-
munities to osmotic stress. The widespread distribution 

of the Trk-type  K+ transport system in the MAGs (both 
Archaea and Bacteria) supports the idea that it may be 
constitutive in the genomes of estuarine microorgan-
isms that live in intermediate- to high-salinity habitats 
(Additional file 2: Supplementary Table S10). The impor-
tance of the transmembrane subunit TrkH of the Trk-
type  K+ transport system is also emphasized, suggesting 
its potential, rather than TrkG, as a key component of 
the Trk-type  K+ transport system in allowing estuarine 
microorganisms to cope with salinity stress (Fig.  5e). 
This is possibly due to TrkH-mediated  K+ uptake being 
unaffected by  Na+ in the estuarine aquatic environment. 
A potential explanation for TrkG being annotated  in 
all  MAGs of Cyanobacteria is that the intake of  Na+ is 
beneficial for their growth, as TrkG transports not only 
 K+ but also  Na+[81].

Typically, an increase in salinity is expected to cause an 
increase in the relative abundances of COGs associated 
with the “salt-in” or “salt-out” strategies that enhance 
microbial osmotic stress tolerance. However, our results 
demonstrated decreases in the relative abundances of 
COG3158 and COG0477 as salinity increased, both in 
the metagenomes and the stenohaline MAGs (Figs.  4b, 
and 6b, f ). Additionally, we noted a significantly lower 
relative abundance of COG0038 in the high-salinity cat-
egory compared with the intermediate-salinity category 
stenohaline MAGs (Fig. 4h). Although both the Trk-type 
and Kup-type  K+ transport systems were considered low-
affinity  K+ transport systems and probably function by 
 H+ symport, salinity may still exert selective pressure on 
them [76, 77]. It has been reported that the Kup-type  K+ 
transport system (COG3158) was more effective at trans-
porting  K+ under low pH condition and that its activity 
was inhibited under elevated osmolarity [82, 83]. Thus, 
the negative correlation observed between the relative 
abundance of the Kup-type  K+ transport system and 
salinity could be attributed to the lower pH of the low-
salinity samples, as compared with that of the inter-
mediate- and high-salinity samples. Another possible 
explanation involves high external osmotic stress. This 
stress could potentially suppress the Kup-type  K+ trans-
port system, thereby rendering Kup-dependent microor-
ganisms unable to adapt to high-salinity environments. 
As a result, this could lead to a decrease in the relative 
abundance of this functional gene under such condition. 
COG0477 represents the ProP transporter, which can 
transport common osmoregulatory compounds, such 
as proline betaine, glycine betaine, and ectoine [48, 66]. 
In contrast to the overall stenohaline MAGs, COG0477 
did not show any significant difference in relative abun-
dance between the three stenohaline categories in the 
MAGs of the two dominant phyla, Actinobacteriota and 
Proteobacteria (Additional file  1: Supplementary Figure 
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S5b). Moreover, COG0477 generally showed a substan-
tially high relative abundance in the MAGs affiliated with 
Actinobacteriota (Fig. 3b). We postulate that the inverse 
correlation between the relative abundance of COG0477 
and salinity is closely related to the succession of the 
estuarine dominant microbial community. Specifically, 
under high-salinity conditions, the relative  abundances 
of MAGs affiliated with Actinobacteriota decreased, and 
those MAGs harbored a high abundance of COG0477 
(Figs.  1a and 2a). COG0038, annotated as  Cl− channel, 
exhibited a significantly higher relative abundance in 
MAGs of the intermediate-salinity category compared 
with the two other salinity categories, implying its poten-
tial role in regulating osmotic balance that may be limited 
to a specific salinity range (Fig. 4h).

In response to osmotic imbalance, water immediately 
rushes into the cell, from low solute concentrations to 
high solute concentrations, until the salt concentration 
equilibrates across the membrane [64]. The metagenomic 
analysis showed a decreasing trend in the relative abun-
dance of COG0580 with increasing salinity, indicating 
that high-salinity-adapted microorganisms may decrease 
the relative abundance of the water channel activity 
regulation gene to maintain intracellular osmotic pres-
sure (Fig. 6d). However, a similar abundance pattern was 
not observed in the stenohaline MAGs, even exhibiting 
opposite trends in Actinobacteriota and Proteobacteria 
stenohaline MAGs (Fig. 6h, Additional file 1: Supplemen-
tary Figure S5d). This discrepancy is likely due to the fact 
that controlling water channel activity for osmoregula-
tion may not be universally employed by all microorgan-
isms, or to the possibility that the water permeability of 
the cytoplasmic membrane may be sufficiently high [84].

It is noteworthy that the results obtained through 
metagenomics illustrate the genomic characteristics of 
microorganisms and their potential abilities to respond 
to salinity stress. The methodology and objectives of this 
study were not specifically designed to cover all genes 
related to microbial salinity adaptation, especially those 
genes that may not show significant differences in relative 
abundance across different salinity categories yet remain 
crucial to microbial salinity adaptation. In the future, 
as more microbial pure cultures are obtained and other 
omics approaches, such as metatranscriptomics and 
metaproteomics are integrated, along with the utilization 
of more advanced algorithms and research techniques, a 
more comprehensive understanding of microbial adapta-
tion to salinity will be achieved.

Conclusions
The present study aimed to explore the impact of salin-
ity on the microbial communities in the nearshore water 
column and the salinity adaptation characteristics of 

microorganisms from a community perspective. The 
phyla Actinobacteriota and Proteobacteria constituted 
the main microbial groups in the PRE, and spatial het-
erogeneity in microbial community composition was 
observed along the river-to-ocean continuum. Salinity is 
supposed to influence the functional traits of the micro-
bial communities in the estuarine ecosystem. However, 
in the PRE, the impact of salinity may be mitigated by 
active water exchange. Within the short  residence-time 
estuarine ecosystem, the transport and metabolism of 
inorganic ions were found to be crucial for the micro-
organisms to thrive. These estuarine microorganisms 
were endowed with the ability to adapt to salinity stress 
through multiple strategies, including  K+ uptake, trans-
port of compatible solutes, and regulation of water efflux/
influx. Herein, we highlighted the pivotal role of the  K+ 
uptake-based “salt-in” strategy in microbial adaptation 
to salinity stress, most notably within the dominant Act‑
inobacteriota and Proteobacteria phyla of the estuarine 
microbial communities. Furthermore, the importance of 
the Trk-type  K+ transport system in facilitating this adap-
tive process was emphasized. Taken together, this study 
provides valuable insights into microbial community-
level and population-level adaptation strategies to salinity 
stress. Building upon previous contributions, our find-
ings deepen the current understanding about the spatial 
distribution of microorganisms and their survival mecha-
nisms within the estuarine ecosystem by linking specific 
genes to microbial salinity adaptation. Moreover, con-
tinued advancements in multi-omics approaches, more 
comprehensive gene annotation, and global research 
efforts are expected to provide further insights into the 
specific pathways and evolutionary patterns of salinity 
adaptation by microorganisms with different lifestyles, 
niches, and taxonomic affiliations.
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the taxonomic profiles of the contigs (annotated by Kaiju software). The 
ellipses in the plot mark the 90% confidence interval for MAGs grouped 
by the salinity category. The points representing PR5 and PR7 overlap 
in the figure. (c) Complete linkage hierarchical clustering based on the 
taxonomic profiles of the contigs (annotated by Kaiju software) using 
Bray-Curtis dissimilarities. The salinity categories of the metagenomes 
are denoted using markers of different colors and shapes. Different 
colored boxes indicate the grouping of these branches into four main 
subdivisions. Supplementary Figure S3. (a) NMDS conducted on the 
Bray-Curtis dissimilarities based on the relative abundances of stenohaline 
MAGs across different salinity categories. The ellipses in the plot mark the 
90% confidence interval for MAGs grouped by the stenohaline salinity 
category. The ANOSIM test was used to assess the differences in relative 
abundances of stenohaline MAGs between (b) high-, intermediate-, and 
low-salinity categories; (c) high- and low-salinity categories; (d) intermedi-
ate- and low-salinity categories; and (e) high- and intermediate-salinity 
categories. Dis. rank: rank of dissimilarity entry. Supplementary Figure 
S4. Dendrogram for complete-linkage hierarchical clustering of the rela-
tive abundances of all COGs in all 127 MAGs using the Bray-Curtis dissimi-
larity. Each branch in the dendrogram represents a MAG and each color 
represents a phylum. Dots of different colors stand for different salinity 
categories. Supplementary Figure S5. Relative abundances of (a–c) the 
SOR COGs and (d) COG0580 in stenohaline MAGs affiliated with Actino-
bacteriota and Proteobacteria. All p values are within the 95% confidence 
interval of bootstrap tests (solid blue dots). Number of MAGs involved in 
statistical calculations: low-salinity category Actinobacteriota, n=17; low-
salinity category Proteobacteria, n=11; intermediate-salinity category Act-
inobacteriota, n=10; intermediate-salinity category Proteobacteria, n=16; 
high-salinity category Actinobacteriota, n=3; high-salinity category Pro-
teobacteria, n=13. Boxplot components: center lines, medians; box limits, 
 25th and  75th percentiles; whiskers, 1.5× interquartile range from the  25th 
and  75th percentiles; red points, outliers. Statistical significance symbols: 
****p≤0.0001; ***p≤0.001, **p≤0.01, *p≤0.05, ns p>0.05 (Kruskal–Wallis 
rank-sum test with Dunn’s multiple comparison test). Source data are 
provided in Additional file 2: Supplementary Table S10. Supplementary 
Figure S6. Relative abundances of COGs involved in microbial adaptation 
to other stresses at the metagenomic (a–c, g–i) and MAG (d–f, j–l) levels. 
All R-squared values and p-values are within the 95% confidence interval 
of bootstrap tests (solid blue dots). Number of MAGs involved in statistical 
calculations: low-salinity category, n=33; intermediate-salinity category, 
n=36; high-salinity category, n=44. Boxplot components: center lines, 
medians; box limits,  25th and  75th percentiles; whiskers, 1.5× interquartile 
range from the  25th and  75th percentiles; red dots, outliers. Statistical 
significance symbols: ****p≤0.0001; ***p≤0.001, **p≤0.01, *p≤0.05, ns 
p>0.05 (Kruskal–Wallis rank-sum test with Dunn’s multiple comparison 
test).  Source data are provided in Additional file 2: Supplementary 
Table S10.
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