
Masuda et al. Microbiome           (2024) 12:95  
https://doi.org/10.1186/s40168-024-01812-1

RESEARCH

Global soil metagenomics reveals 
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of Deltaproteobacteria in nitrogen‑fixing 
microbiome
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Abstract 

Background  Biological nitrogen fixation is a fundamental process sustaining all life on earth. While distribution 
and diversity of N2-fixing soil microbes have been investigated by numerous PCR amplicon sequencing of nitroge-
nase genes, their comprehensive understanding has been hindered by lack of de facto standard protocols for ampli-
con surveys and possible PCR biases. Here, by fully leveraging the planetary collections of soil shotgun metagenomes 
along with recently expanded culture collections, we evaluated the global distribution and diversity of terrestrial 
diazotrophic microbiome.

Results  After the extensive analysis of 1,451 soil metagenomic samples, we revealed that the Anaeromyxobacte-
raceae and Geobacteraceae within Deltaproteobacteria are ubiquitous groups of diazotrophic microbiome in the soils 
with different geographic origins and land usage types, with particular predominance in anaerobic soils (paddy soils 
and sediments).

Conclusion  Our results indicate that Deltaproteobacteria is a core bacterial taxon in the potential soil nitrogen fixa-
tion population, especially in anaerobic environments, which encourages a careful consideration on deltaproteobac-
terial diazotrophs in understanding terrestrial nitrogen cycling.
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Introduction
Biological nitrogen fixation driven by diverse soil micro-
organisms is a distinct process providing the pedosphere 
with nitrogen, the major limiting factor for primary 
production [1]. Microbial players for nitrogen fixation 
(diazotrophs) in the soil have drawn significant atten-
tion since their discovery in the late nineteenth century 
[2]. In particular, the distribution and diversity of the 
diazotrophs in the soil have been one of the most active 
research topics and is constantly updated along with the 
accumulation of knowledge and technological innova-
tions [3–5].

Although nitrogenase genes (nif) are conserved in 
a broad taxonomic range of prokaryotes [6], nif genes 
derived from Alphaproteobacteria, Betaproteobacteria, 
and Cyanobacteria have been frequently detected in 
various soil environments such as farmland, grassland, 
forests, rice paddy fields, riparian zones, and tundra by 
PCR amplicon surveys targeting nif genes [7–11]. Conse-
quently, these bacteria are considered the primary nitro-
gen fixers in soil [12, 13]. In our previous work, however, 
shotgun metagenomic and metatranscriptomic analyses 
of paddy soil at one site in Japan have detected highly 
abundant nif genes and transcripts from the families 
Anaeromyxobacteraceae and Geobacteraceae within Del-
taproteobacteria (also classified as the phyla Myxococcota 
and Desulfobacterota, respectively) compared with the 
conventional diazotrophic groups [14]. Several ampli-
con-based studies have also reported the occurrence 
of Geobacteraceae nitrogenase genes in soils [15–18]. 
Considering their prevalence across many soil types as 
revealed by 16S rRNA gene-based surveys [19–21], mem-
bers of the families Anaeromyxobacteraceae and Geo-
bacteraceae may thus represent universal and/or major 
components of diazotrophic microbiome in various ter-
restrial environments. However, these clades, which are 
well-known iron-reducing bacterial groups [22], have 
received considerably less attention as diazotrophs in soil 
than the conventional groups.

One potential problem is that genomic information of 
Anaeromyxobacteraceae and Geobacteraceae has been 
poorly represented in reference databases because pure 
isolates of these bacteria have been difficult to obtain. 
Fortunately, recent studies significantly enriched the ref-
erence sequence databases by isolating dozens of novel 
members within these families using our previously 
developed slurry incubation method; preincubated soil 
slurry and Reasoner’s 2A (R2A) agar supplemented with 
fumarate were used as isolation source and medium, 
respectively, as described in details in Materials and 
methods section [23–31]. All of the novel isolates har-
bor nitrogenase genes, whereas some of them have been 
shown to present diazotrophic activities [25, 26, 29, 30].

Another problem is that amplicon sequencing tend 
to incur major biases in microbiome studies. Universal 
primers often fail to detect (even dominant) genes due to 
mismatches or abnormal GC contents of template DNA, 
whereas they may amplify homologous but unrelated 
genes [32–37]. Moreover, the primer sets (and accord-
ingly PCR conditions) used for nitrogenase gene (typi-
cally nifH) amplification are not standardized among a 
plethora of amplicon sequencing studies [38]. This sug-
gests that different studies bear different types and 
degrees of PCR biases. These call for extensive analyses of 
shotgun metagenomic data, rather than amplicon-based 
data, to establish minimally biased knowledge on diazo-
trophic communities in terrestrial microbiomes.

In this study, we aimed to re-evaluate the global dis-
tribution and diversity of the terrestrial diazotrophic 
microbiome considering the presence of Anaeromyxo-
bacteraceae and Geobacteraceae bacteria. We scrutinized 
a global trend of the terrestrial diazotrophic microbi-
ome using 1,451 shotgun metagenomic datasets, mak-
ing full use of recently published genomic information 
on Anaeromyxobacteraceae and Geobacteraceae isolates. 
Our analyses revealed that Anaeromyxobacteraceae and 
Geobacteraceae are ubiquitous constituents of the diazo-
trophic microbiome in terrestrial ecosystems, particu-
larly with high dominance in anaerobic environments.

Results and discussion
Diversity of nif‑harboring genomes in public databases
We first reviewed the currently known diversity of 
nitrogen-fixing prokaryotes in public databases. KEGG 
included 7,152 bacterial genomes (KEGG ftp as of August 
31, 2022), and 697 of them encoded all three structural 
genes of nitrogenase, namely nifH, nifD, and nifK. Among 
these genomes, those of Alphaproteobacteria, Firmicutes, 
and Gammaproteobacteria, as well as Deltaproteobacte-
ria, were abundant (Fig. 1a).

The representations of Geobacteraceae and Anaero-
myxobacteraceae sequences in public databases were 
recently improved. At the end of 2018, RefSeq contained 
23 genomes from Geobacteraceae and 5 from Anaero-
myxobacteraceae, whereas these numbers tripled by Sep-
tember 28, 2022. Approximately 50% of these increases 
could be attributed to isolates obtained by the slurry 
incubation method since 2019 (Table  1) [23–31], and 
all of these isolates bear the core nif genes (nifHDK) in 
their genomes. Apart from these isolates, we obtained 
two other distinct strains belonging to the genus Geo-
monas, namely Red32 (isolated from paddy soil in Joetsu, 
Niigata, Japan) and Red276 (pond sediment in Myoko, 
Niigata, Japan; Table  1). These strains displayed 96.3%–
97.4% similarity (based on 16S rRNA gene sequences) to 
all Geomonas type strains, which was below the standard 
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threshold (98.65%) for species delineation [39]. The 
genomes of these strains also encoded nifHDK.

In addition to the presence of nif genes on the 
genomes, we confirmed the nitrogen-fixing activities 
of bacterial strains from these clades. In this study, we 
demonstrated that two type species within Geobacte-
raceae, namely Geomonas oryzae S43T and Oryzomonas 
japonica Red96T (Table 1) [27, 28], were able to grow on 
N2 as the sole nitrogen source (Fig. 1b). While the acety-
lene reduction activity of some strains within Geobacter 
and Geomonas has been previously tested [25, 29, 40], 
the ammonium-independent steady growth of Geomonas 
and Oryzomonas suggests that nitrogen fixation is ener-
getically available. The present result, combined with the 
previously reported N2-dependent growth and acetylene 
reduction activity of Anaeromyxobacter and Geobacter 
strains [26, 40], indicate that Anaeromyxobacteraceae 
and Geobacteraceae are likely to be physiologically rel-
evant to nitrogen fixation. We suspected that the use of 
their genomes as references would yield a better sensitiv-
ity in shotgun metagenomic analyses of deltaproteobac-
terial diazotrophs.

Global distribution of diazotrophs in terrestrial 
environments
To assess the global distribution of nitrogen-fixing 
populations, we collected 1,433 shotgun metagenomic 
datasets from public databases, namely NCBI SRA and 
MG-RAST [41, 42], coming from various environments 
including cropland soils, forest soils, grassland soils, 
paddy soils, sediments (including wetlands), and tundra 

soils (Fig. 2a and Table S1). Since metagenomes of Japa-
nese soils (including volcanic soils) were poorly rep-
resented in public databases, we also collected 18 soil 
samples in Japan (Table S2) and sequenced their metage-
nomes. It should be noted that we only used metagen-
omic data in the present study, which indicate the 
quantity and diversity of potential diazotrophic microbes 
but do not serve as direct evidence of their diazotrophic 
activities.

Following preprocessing and curation of these data-
sets (i.e., merging of paired-end reads, quality filtering), 
we identified reads bearing nitrogenase genes (nifDK for 
molybdenum nitrogenase, vnfDK for vanadium nitroge-
nase, anfDK for iron-only nitrogenase [43]), 16S rRNA 
genes, or single-copy ribosomal protein genes conserved 
in most bacterial genomes [44] (Table S3). The phyloge-
netic compositions of 16S rRNA gene sequences indi-
cated that 100 of these datasets could be contaminated 
by members of order Lactobacillales or plants’ plas-
tids (amounting up to 80.5% of Lactobacillales or 71.6% 
of Chloroplast 16S rRNA gene reads: Fig.  S1), and the 
remaining 1,351 were used for further analyses (Fig. 2b). 
Some of the 1,351 metagenomes were redundant (e.g., 
technical replicates), so we clustered metagenomes taken 
from environmental samples within 1 km of each other. 
This ended up in 321 samples (Fig. 2b), each considered 
to bear independent information. The 321 samples were 
overall dominated by well-known soil-dwelling bacterial 
clades such as phyla Proteobacteria, Acidobacteria, Actin-
obacteria, etc. (Fig. 2c) and showed no obvious hallmarks 
of abnormality or technical contamination.

Fig. 1  Currently known diversity of diazotrophs. a A genome-based phylogenetic tree consisting of potential diazotrophic bacteria 
[i.e., the genomes of which harbor all three core genes of nitrogenase (nifH, nifD, and nifK)], including the genomes of new isolates 
of Anaeromyxobacteraceae and Geobacteraceae (Table 1). The colors of branches and the band surrounding the tree denote the phyla 
and proteobacterial classes. Genomes of families Anaeromyxobacteraceae and Geobacteraceae, the foci of the present study, are highlighted 
with circled letters (A and G) and colored backgrounds (blue and pink, respectively). b Growth curves of the type strains of two type species 
within the family Geobacteraceae, namely Geomonas oryzae S43T and Oryzomonas japonica Red96T. The two isolates were grown on MFM 
medium with N2 as the sole nitrogen source. Average and standard deviation of each time point (n = 3) are indicated. Some error bars are shorter 
than the symbol size
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From each of the 321 samples, we detected 110–
5,714,345 reads (median: 8,050 reads) of ribosomal pro-
tein genes listed in Table S3. The number of nitrogenase 
gene reads were normalized by the number of ribosomal 
protein gene reads, taking into account the differences 
in gene lengths between orthologs (corrected by RPKM: 
see Materials and Methods). The relative abundances of 
nitrogenase gene reads were higher in paddy soils, sedi-
ments, and tundra soils (i.e., anaerobic environments) 
than those in aerobic environments, namely cropland, 
forest, and grassland soils (P < 0.05 in post-hoc pair-
wise Brunner–Munzel test with Bonferroni correction, 
Fig. 2d; Please note that only four data belonged to tun-
dra). On average, nitrogenase genes were detected 17.6 
times more frequently in the anaerobic samples than 
aerobic samples. This is consistent with both the well-
established notion that biological nitrogen fixation is 

an anaerobic process and the oxygen-sensitive nature of 
nitrogenase [45].

Relative abundances of nitrogenase gene reads exhib-
ited major variations among samples from aerobic envi-
ronments (i.e., cropland, forest, and grassland), with 
some harboring low numbers, and others dominated by 
diazotrophs. Although the reason for such variation is 
not clear and require further experimental validation, 
here we list several hypotheses. First, several soil phys-
icochemical properties, including total carbon, nitrogen, 
and available phosphorus contents, have been shown to 
affect the abundance of species which encode nitroge-
nase gene [16, 46]. It is also possible that cropland and 
grassland samples are affected by the roots of leguminous 
plants and nodule symbionts therein; alphaproteobacte-
rial N2-fixing rhizobia such as Bradyrhizobium, Azospiril-
lum, and Mesorhizobium were detected more frequently 

Table 1  Novel bacterial members within the families Anaeromyxobacteraceae and Geobacteraceae that have been recently isolated 
using a slurry incubation method and published to date, including ones isolated in this study. Relevant publications, as well as 
genomic information, are also indicated

a  Type species of each genus; ICNP: International Code of Nomenclature of Prokaryotes

Strain Accession No. of genomic data Note Reference

Anaeromyxobacteraceae

  Anaeromyxobacter diazotrophicus Red267T GCF_013340205.1 [24, 26]

  Anaeromyxobacter oryzae Red232T GCF_023169945.1 [24]

  Anaeromyxobacter paludicola Red630T GCF_023169965.1 [24]

Geobacteraceae

  Geomonas azotofigens Red51T GCF_018919395.1 [29]

  Geomonas diazotrophica Red69T GCF_018919385.1 [29]

  Geomesophilobacter sediminis Red875T a GCF_016458275.1 [31]

  Geomonas propionica Red259T GCF_016458235.1 [31]

  Geomonas anaerohicana Red421T GCF_016458305.1 [31]

  Geomonas silvestris Red330T GCF_014193515.1 [23]

  Geomonas paludis Red736T GCF_014193585.1 GCF_023221575.1 is included 
in KEGG

[23]

  Geomonas paludis RG22 GCF_023221575.1 [30]

  Geomonas limicola Red745T GCF_014193675.1 [23]

  Oryzomonas japonica Red96T a GCF_008802365.1 [27]

  Oryzomonas sagensis Red100T GCF_008802355.1 [27]

  Oryzomonas rubra Red88T GCF_008369015.1 [27]

  Geomonas oryzae S43T a GCF_004117875.1 [28]

  Geomonas edaphica Red53T GCF_004917075.1 [28]

  Geomonas ferrireducens S62T GCF_004917065.1 [28]

  Geomonas terrae Red111T GCF_004791675.1 [28]

  Geomonas fuzhouensis RG17T GCF_020179575.1 [30]

  Geomonas agri RG53T GCF_020179605.1 [30]

  Geomonas sp. Red32 JAKLOY010000000 This study

  Geomonas sp. Red276 BLXW01000000 This study

  Geomonas oryzisoli RG10T GCF_018986915.1 Included in KEGG [25]

  Geomonas subterranea RG2T GCF_019063845.1 Included in KEGG [25]

  Geomonas nitrogeniifigens RF4T GCF_019063885.1 Included in KEGG [25]
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in legume crop soils than in non-legume crop soils [46, 
47]. Some samples from aerobic environments may be 
locally anaerobic, and this might explain the variance in 
the relative abundance of diazotrophs. We also acknowl-
edge the ambiguity in distinguishing forest or grassland 
soils from wetland sediments. For example, samples from 
Disney Wilderness Preserve (DWP), which are labeled 
as “area of pastureland or hayfields” in MG-RAST and 
presented the highest relative abundances of nitrogenase 
genes among “grassland” samples, may have originated 
from wetland-like environments, as the landscape of 
DWP bears patches of wetlands [48].

Global diversity of diazotrophs in terrestrial environments
The taxonomic compositions of diazotrophic communi-
ties were further investigated for a more limited data-
set of 88 samples, each of which comprised at least 50 
sequences of nifD/K (Fig. 2b and Fig. S2). Please note that 
nifD/K serve as more accurate markers of diazotrophs 
compared with nifH (i.e., the conventional marker of 
diazotrophs [36]: see Materials and Methods for detail).

Reads encoding nifD/K from class Deltaproteobacteria, 
especially Geobacteraceae and Anaeromyxobacteraceae, 
were consistently dominant in anaerobic environments 
such as paddy soils and sediments, as well as in some of 
the aerobic samples (Fig.  3ab). While nitrogenase genes 
have a complicated history of horizontal gene trans-
fer (HGT) that may hinder accurate taxonomic annota-
tion [49, 50], Deltaproteobacterial NifD/K within Group 
I nitrogenase [49] are monophyletic (bootstrap value = 
1.00, Fig. S3) and no clear hallmark of recent HGT [51]. 
Fortunately, a major part of deltaproteobacterial NifD/K 
within metagenomes belonged to this group (Fig. S4), and 
therefore it is unlikely that the dominance of Deltapro-
teobacteria nifD/K in this metagenomics is a byproduct 
of HGT. In addition, the proportion of deltaproteobacte-
rial 16S rRNA genes (i.e., genes less prone to HGT) and 
frequency of deltaproteobacterial nitrogenase genes were 
significantly correlated (Fig.  S5: Spearman’s ρ = 0.859 
and P < 2.2×10–16 when tested using all samples; ρ = 
0.738 and P < 2.2×10–16 when tested using only anaero-
bic samples). These results suggest that members of 

Fig. 2  Overview of metagenomic datasets used in this study and distribution of diazotrophs therein. a The sampling locations for each 
metagenomic datasets used in this study. Six types of environments are differentiated by the shapes and colors of symbols. b Filtering procedure 
of metagenomic datasets. The filtering criteria, as well as the aggregation of geographically similar samples, are explained in the panel. c 
Phylum-level prokaryotic community structure of the 321 metagenomic datasets estimated by 16S rRNA gene sequences. d The dominance 
of nitrogen-fixing population in each environment. For each of the 321 metagenomic datasets, the ratio of reads per kilobase of reference sequence 
per million sample reads (RPKM) of nitrogenase genes to the RPKM of ribosomal protein genes is displayed. The letters on the right side of the box 
indicates the statistical significance in RPKM ratio between different environmental categories (P < 0.05, Brunner–Munzel test with Bonferroni’s 
correction). First, second, and third quantiles are indicated by solid lines. The whiskers, if any, denote 1.5*[interquartile range] from first or third 
quartile



Page 6 of 16Masuda et al. Microbiome           (2024) 12:95 

Geobacteraceae and Anaeromyxobacteraceae are one of 
the prominent drivers of nitrogen fixation in terrestrial 
ecosystems. While previous studies in wheat-soybean 
rotation croplands [16] and paddy soils [14, 52] are in line 
with our results, the metagenomic datasets analyzed here 
covering a wide range of environments provide a gener-
alizable insight into the potential contributions of these 
clades to nitrogen fixation processes in the pedosphere.

Other major clades within nitrogen-fixing popula-
tions included Alphaproteobacteria, such as Nitrobacte-
raceae and Rhizobiaceae (Fig. 3ab), although some (e.g., 
Bradyrhizobium and Rhizobium) in these families are 
symbiotic diazotrophs and thus possibly incapable of 
independent nitrogen fixation outside their host plants. 

The community compositions were significantly differ-
ent between the aerobic and anaerobic samples (permu-
tational analysis of variance (PERMANOVA) of UniFrac 
distances, R2 = 0.114, P = 0.001), as further evidenced 
by a distinct grouping of the two types of samples in 
nonmetric multidimensional scaling (NMDS) analysis 
(Fig. S6).

Another characteristic of the diazotrophic communi-
ties of anaerobic environments (with the exception of 
tundra) is the high similarity between samples (Fig.  3). 
While all the paddy soil and sediment samples are domi-
nated by Deltaproteobacteria and present overall low 
beta-diversity levels, environments such as cropland, for-
est, and grassland are dominated by more diverse clades 

Fig. 3  Phylogenetic compositions of nitrogenase genes in the metagenomic datasets with at least 50 reads of nifD and nifK (n = 88 in total). a 
Upper panel: phylum- and proteobacterial class-level composition. Lower panel: breakdown of deltaproteobacterial composition at the family level. 
The category “Possibly Geobacteraceae or Anaeromyxobacteraceae” comprises deltaproteobacterial reads that were unannotated at the family level 
but received higher-level annotations consistent with family Geobacteraceae or family Anaeromyxobacteraceae. b Family-level distribution of nifD 
and nifK reads. The correspondence with the phylum- and proteobacterial class-level taxonomy is noted in parentheses: Delta, Deltaproteobacteria; 
Alpha, Alphaproteobacteria; Gamma, Gammaproteobacteria; Beta, Betaproteobacteria; Firm, Firmicutes; Actino, Actinobacteria; Cyano, Cyanobacteria. 
The area size (not the radius) of each plot is proportional to the relative abundance of each family within each dataset
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of diazotrophs showing high beta-diversity levels. One 
possible explanation is the heterogeneity among aerobic 
samples: some of the cropland, forest, and grassland sam-
ples may be associated with leguminous vegetations (i.e., 
affected by nodule-associated bacteria) [18, 46] or origi-
nated from soil physicochemical properties/conditions 
[16], but they are not explicitly considered in this study. 
Another explanation for this divergence in community 
structures is ecological drift [53, 54]. Diazotrophs have 
smaller population sizes in aerobic samples (Fig.  2d); 
thus, their communities are expected to be more sensi-
tive to ecological drift, resulting in increased beta-diver-
sities between communities as previously shown [55].

Although we used a limited dataset of 88 samples bear-
ing at least 50 nifDK sequences for the taxonomic compo-
sition analysis, the bias introduced by this manipulation 
is unlikely to be critical. First, the selected samples do not 
necessarily present high relative abundances of diazo-
trophs, since the number of total reads greatly varies 
between samples (Fig. S2ab). Second, the abundance ratio 
of nitrogenase genes to ribosomal protein genes explain 
only 5.0% the phylogenetic diversity of nifDK (R2 = 0.050, 
P = 0.036) within aerobic samples (Fig. S2c).

As a side note, we also analyzed the abundance and 
phylogeny of nifH, a conventional marker for nitrogen-
fixing populations. Because the lengths of nifH, nifD, and 
nifK genes are approximately 3:5:5 (Table S3), the num-
ber of these genes should also be around 3:5:5 in each 
metagenome. However, some samples harbored dispro-
portionally higher number of nifH compared with nifD/K: 
nine of the metagenomic samples included 1.5 times or 
higher number of nifH reads than can be expected from 
the number of nifD/K reads (blue points in Fig. S7a). This 
implies that some soil samples bear significant amount of 
pseudo-nifH genes [36], which are encoded on prokary-
otic genomes lacking other essential components of 
nitrogenase genes (e.g., nifD and nifK). We suspect that 
nifD/K, rather than nifH, serve as a reliable marker gene 
for nitrogen-fixing populations (especially in shotgun 
metagenomic studies). Regarding 79 samples with lower 
amounts of pseudo-nifH, deltaproteobacterial nifH were 
dominant (Fig.  S7b) in congruence with the results of 
nifDK analyses (Fig. 3a).

An approximate estimation of the global dominance 
of deltaproteobacterial diazotrophs
Analyses of the global metagenomic dataset indicated 
that anaerobic environments harbor high abundances 
of diazotrophic prokaryotes and that Anaeromyxobacte-
raceae and Geobacteraceae are the dominant diazotrophs 
in these environments. Wetlands (possibly including 
waterlogged paddy soils) represent between 5.2% [56] 
and 8% [57] of all lands, with microbial biomass carbon 

therein amounting to 10.3% of the microbial biomass 
in all lands [calculated from the data presented in [56]]. 
Thus, although wetland is a limited area of land, given 
that the relative abundance of nitrogen fixers was 17.6 
times higher in anaerobic microbial communities than in 
aerobic ones (Fig. 2d), wetland could be a large reservoir 
of nitrogen fixers on terrestrial environments.

Biases behind amplicon sequencing of nitrogenase genes
The prevalence of diazotrophic Geobacteraceae has actu-
ally been reported in some of PCR amplicon sequencing 
analyses of nif genes [15, 16, 58], but the dominance of 
Anaeromyxobacteraceae has been overlooked in such 
PCR-based analyses. We suspected that this discrepancy 
is due to PCR biases behind amplicon sequencing. It is 
commonly accepted that results of amplicon sequenc-
ing are dependent on a series of PCR conditions such as 
primer sets and DNA polymerases [37, 59]. The GC con-
tents of templates, as well as primer mismatches, can also 
affect the amplification efficiency and therefore cause 
biases [34, 35, 37]. Notably, nif genes of Anaeromyxo-
bacteraceae have higher GC contents (65.6–69.7%) than 
those of the other bacteria (Fig. S8).

To elucidate the PCR biases of nif genes, we performed 
amplicon sequencing of nitrogenase genes in six soil 
DNA samples and compared the results directly with 
shotgun sequencing of the same samples. We prepared 
amplicon libraries under ten PCR conditions with differ-
ent primer sets and DNA polymerases (Tables S4 and S5). 
Please note that we here targeted nifH, rather than nifDK, 
for the sake of consistency with conventional amplicon 
sequencing methods. Primer mismatches will not be 
extensively discussed here, because nifH of Anaeromyxo-
bacteraceae and other clades present similar identities to 
the primers (Fig. S9).

As expected, we found that the phylogenetic composi-
tions of nifH amplicons were dependent on type of DNA 
polymerases and primer sets (Fig. S10a–f), and the dis-
crepancy was particularly remarkable in the proportion 
of Anaeromyxobacteraceae nifH. Anaeromyxobacteraceae 
nifH were consistently more highly represented in KOD 
One libraries than in DreamTaq libraries (Fig.  S10g). 
In addition, their proportion in shotgun metagenomic 
sequences were comparable to those in KOD One librar-
ies, although dependent on sample identities and primer 
sets (Fig.  S10h). These suggest that DreamTaq failed to 
amplify Anaeromyxobacteraceae nifH. What we focus 
on here is the high GC contents of nif genes in Anaero-
myxobacteraceae (Fig.  S8). According to the manufac-
turers’ reports (https://​lifes​cience.​toyobo.​co.​jp/​user_​
data/​pdf/​produ​cts/​manual/​KMM-​101_​201.​pdf [in 
Japanese; accessed Jan 5, 2024]), KOD One is robust to 
amplify GC-rich templates, while DreamTaq shows a low 

https://lifescience.toyobo.co.jp/user_data/pdf/products/manual/KMM-101_201.pdf
https://lifescience.toyobo.co.jp/user_data/pdf/products/manual/KMM-101_201.pdf


Page 8 of 16Masuda et al. Microbiome           (2024) 12:95 

performance (https://​www.​therm​ofish​er.​com/​order/​catal​
og/​produ​ct/​EP1701?​SID=​srch-​srp-​EP1701 [accessed 
Jan 5, 2024]), which aligns with the present results. We 
speculate that GC richness of Anaeromyxobacteraceae 
nifH may be one reason why they have been poorly repre-
sented in amplicon surveys.

We also argue that these results represent the major 
biases behind amplicon sequencing. Provided that nifH 
gene compositions were largely dependent on the type 
of DNA polymerases and primer sets, comparing the 
results obtained from multiple studies might be difficult. 
In this respect, meta-analysis of shotgun metagenomic 
data should be a straightforward, solid, and less biased 
approach (as has been discussed in Kim et al. [60]).

Even in shotgun metagenomic sequencing, it should 
be noted that the abundance of diazotrophic Anaero-
myxobacteraceae may be underestimated. First, library 
preparation for shotgun sequencing often involves PCR 
(typically 8–12 cycles), which may fail to amplify GC-rich 
nucleotide fragments [61, 62]. Second, Illumina sequenc-
ing technology is known to be biased against sequencing 
GC-rich nucleotide fragments even in shotgun sequenc-
ing [63]. Considering these biases, the proportion of 
Anaeromyxobacteraceae in the soil, the nitrogenase 
genes of which are GC-rich (66.9%–69.0%, 65.6%–67.0%, 
and 66.9%–69.7% for nifH, nifD, and nifK, respectively, 
Fig.  S8), might be even higher than estimated in this 
study. The former issue may be addressed using PCR-free 
library preparation protocols [62]. Long-read sequenc-
ers (i.e., PacBio and Nanopore) are less prone to GC 
bias [63] and potentially rectify the latter issue, although 
their current yield is orders of magnitude smaller than 
those of short-read sequencers such as Illumina HiSeq 
and NovaSeq, and thus currently not a good fit for the 
characterization of samples as heterogenous and rich in 
diversity as soil metagenomes.

Benefits of expanding culture collection
Previous and current efforts to enrich culture collections 
[23, 24, 26–29, 31] have substantially expanded the avail-
able repertoire of Anaeromyxobacteraceae and Geobac-
teraceae strains. In fact, an average of 56.9% and 23.9% 
of NifD/K sequences derived from Anaeromyxobacte-
raceae and Geobacteraceae members, respectively, dis-
played higher similarity to our novel strains than to any 
other nitrogenase sequence in KEGG from these families 
(Fig. 4).

Interestingly, this trend was consistent among a wide 
variety of environments including aerobic and anaerobic 
environments, although the majority of the novel strains 
were isolated from paddy soils or sediments under anaer-
obic conditions. Based on the present and previous find-
ings, paddy soils and sediments appear to be promising 

environments for isolating free-living diazotrophs, repre-
senting diverse terrestrial environments including aero-
bic environments such as cropland, forests and grassland.

Conclusions and outlook
Contrary to the conventional view, our large-scale com-
parative metagenomics analyses revealed the global 
distribution and substantial abundance of Anaero-
myxobacteraceae and Geobacteraceae in terrestrial 
diazotrophic microbiome, highlighting the potential 

Fig. 4  Contribution of nitrogenase gene sequences from newly 
isolated strains in the bioinformatic analyses of metagenomes. 
a A schematic of the analysis. NifD/K sequences annotated 
as Anaeromyxobacteraceae or Geobacteraceae in metagenomes were 
mapped onto already known sequences of NifD/K (right-upper) 
and those in our new isolates (right-bottom). Only the top hit for each 
query sequence (i.e., one from metagenomes) was considered. b 
Relative abundance of metagenome-derived NifD/K sequences 
that were most similar to already known sequences (yellow) 
and those from our new isolates (green), as well as those equally 
similar to the nitrogenase genes of already known genomes and our 
new isolates (dim green), are summarized. Only datasets with 10 
or more sequences of NifD/K for each family are displayed

https://www.thermofisher.com/order/catalog/product/EP1701?SID=srch-srp-EP1701
https://www.thermofisher.com/order/catalog/product/EP1701?SID=srch-srp-EP1701
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importance of Deltaproteobacteria members (phyla 
Myxococcota and Desulfobacterota) in terrestrial, espe-
cially anaerobic, ecosystems. Although Anaeromyxobac-
teraceae and Geobacteraceae have been well known as 
iron- and other metals- reducing bacteria in soil environ-
ments, this study is the first to report that they are the 
most dominant group of terrestrial diazotrophic microbi-
ome on a global scale.

Moreover, nitrogen-fixing bacteria have long been 
considered useful microorganisms for improving soil 
nitrogen fertility, and methods to promote their activ-
ity have been developed for sustainable agriculture [64]. 
For example, in paddy soils, recent studies showed that 
application of iron-bearing materials could enhance the 
nitrogen-fixing activities of indigenous iron-reducing 
bacteria within the families Anaeromyxobacteraceae and 
Geobacteraceae and maintain rice yields under reduced 
nitrogen-fertilizer application [65, 66]. Given the ubiquity 
of iron-reducing diazotrophs (Fig.  3), this strategy may 
be effective in a variety of other crop fields. More gener-
ally, careful and precise updates of our understanding of 
functional microorganisms in soil environments should 
advance such attempts towards sustainable agriculture.

It should be noted that the pivotal thing for microbi-
ome discovery is to improve the accuracy of metagen-
omics, i.e., to expand the available genomic information 
of microorganisms. In this study, thousands of obtained 
nitrogenase sequences exhibited high proximity to 
our newly isolated strains. Our results warrant further 
efforts to improve culture collections, which would fill 
the knowledge gaps in the diversity and ecology of diazo-
trophs. Especially in soil environments, the enormity of 
uncultured but predominant clades of prokaryotes, as 
represented by members of Acidobacteria and Verru-
comicrobia [67–69], is widely recognized. To advance our 
knowledge of the terrestrial diazotrophic microbiome, 
strategies for their cultivation and isolation should be 
also updated, for example, by using single-cell sorting.

There is no doubt that Anaeromyxobacteraceae and 
Geobacteraceae are important diazotrophic members in 
soils that should not be underestimated or undervalued 
as they have been. However, unfortunately, it is impos-
sible to estimate how much Anaeromyxobacteraceae and 
Geobacteraceae actually contribute to nitrogen fixation in 
soil environments based on the results of this study alone, 
since the contribution cannot be directly inferred from 
the detected amount of genes. The insights into the con-
tribution of each diazotrophic taxon to terrestrial nitro-
gen fixation will be foreseeable, for instance, through 
stable isotope probing (SIP) with 15N2 under more natu-
ral conditions, using various soil samples. Although pre-
liminary, a recent study based on 15N-DNA-SIP analysis 
revealed a high contribution of Anaeromyxobacteraceae 

and Geobacteraceae for nitrogen fixation in a paddy soil 
[70], supporting our conclusion.

Materials and methods
Isolation and genomic sequencing of new soil strains
The Geomonas strains Red32 and Red276 were iso-
lated from paddy soil (Joetsu, Niigata, Japan) and pond 
sediment (Myoko, Niigata, Japan) following the slurry 
incubation method used to isolate new members of Geo-
bacteraceae [27, 28]. The soils collected from the paddy 
field in Nagaoka, Niigata, Japan were air-dried, placed in 
a 15-mL serum bottle and suspended in distilled water 
(soil:water, 2:3, w/v). After autoclaving at 120°C for 20 
min, 0.1 g of undried soil was added to the bottle as a 
microbial inoculum with and without vitamin solution 
for strains Red276 and Red32, respectively [26]. Then, 
we sealed the bottles with butyl rubber stoppers and 
aluminum caps, replaced headspace gas with with N2/
CO2 (80:20, v/v), and incubated them at 30°C for 2 weeks 
without shaking. Afterward, 200 μL of incubated soil 
slurry was transferred to a new bottle of autoclaved soil 
slurry and incubated at 30 °C for 2 weeks. After repeat-
ing this step once (for strain Red276) or twice (for strain 
Red32), the incubated soil slurry was streaked on 1.5% 
agar plates of the R2A broth “DAIGO” (Nihon Pharma-
ceutical, Tokyo, Japan) supplemented with 5 mM diso-
dium fumarate. The plates were incubated at 30°C for 10 
days under anaerobic conditions using the AnaeroPack 
system (Mitsubishi Gas Chemical, Tokyo, Japan). Red-
colored colonies, a typical hallmark of Geobacteraceae 
strains [23, 27, 28, 71, 72], were purified by a single-col-
ony isolation using the same medium plates. Genomic 
DNA was extracted from the two isolated strains using a 
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) 
and sequenced using an Illumina HiSeq sequencer (Illu-
mina, CA, USA) for 2×150 paired-end configuration. The 
resulting sequences were assembled using Velvet v1.2.10 
[73] as previously described [27, 28].

Diazotrophic activity assay
Following a 5-day culture in nitrogen-free modified 
freshwater medium (MFM) as previously described [27, 
28], the cells of Geomonas oryzae S43T and Oryzomonas 
japonica Red96T were transferred to serum bottles con-
taining 20 mL of nitrogen-free MFM [28] and head-
space gas was replaced with N2 gas. No contamination of 
ammonia in used N2 gas was confirmed by no growth of 
non-diazotrophic Anaeromyxobacter strain, A.  dehalo-
genans 2CP-1T [26]. Bacterial growth was monitored by 
measuring the suspension absorbance using a spectro-
photometer (UV-1900 UV-visible spectrophotometer, 
Shimadzu, Kyoto, Japan) at a wavelength of 600 nm. The 
experiments were performed in triplicate.
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Preparation of custom database
We used KEGG database (as of August 31, 2022) for 
functional gene annotations [74]. To increase the sensi-
tivity for genes from Anaeromyxobacteraceae and Geo-
bacteraceae, we customized KEGG database by adding 
genomes belonging to these families obtained using 
slurry incubation methods (Table  1). Genomes already 
included in KEGG were not added. We predicted their 
coding sequences (CDS) using Prodigal [75] with default 
parameters, annotated them using KofamScan ver-
sion 1.3.0 and KOfam version 2022-08-01 with default 
parameters [76], and concatenated the CDS with KEGG 
database (including those received no K number). The 
phylogenies of NifD and NifK within Group I [49] were 
determined using MAFFT v7.505 (with “--auto” option) 
and FastTree 2.1.11 [77, 78] with a bootstrap test of 100 
iterations (otherwise default parameter settings). For the 
bootstrapping tests, we also used “CompareToBootstrap.
pl” script (http://​www.​micro​beson​line.​org/​fastt​ree/​treec​
mp.​html, accessed April 18, 2023) to merge the resam-
pled trees.

Phylogenetic analysis of bacterial genomes harboring nif 
genes
From the aforementioned custom database, we screened 
genomes harboring a set of nif core genes, namely nifH 
(K02588 in KEGG), nifD (K02586), and nifK (K02591). 
Archaeal genomes were excluded from the analysis. The 
universal single-copy gene sequences were identified 
from each genome, translated amino acid sequences, 
and mapped onto multiple sequence alignment (MSA) of 
GTDB R207 using GTDB-Tk v2.1.0 [44, 75, 79, 80]. Here 
“identify” and “align” commands were used with default 
parameter settings. The MSA was fed into FastTree 
(default parameters) and a phylogenetic tree was con-
structed. The tree was manually rerooted using Cyano-
bacteria as the outgroup [81] and visualized on the iTOL 
server [82].

GC content of 16S rRNA genes and nitrogenase genes 
among bacterial genomes
Ribosomal RNA genes were identified from each of the 
bacterial genomes in the custom database explained 
above using barrnap version 0.9 (https://​github.​com/​
tseem​ann/​barrn​ap; accessed April 18, 2023). Only 16S 
rRNA sequences with 1000 bases or longer were picked. 
For each genome with at least one valid 16S rRNA gene 
sequence and all of the identified nifH, nifD and nifK 
(identified as previously described), the GC contents of 
16S rRNA genes, nifH, nifD, and nifK were calculated. 
When a genome had multiple copies of each gene, GC 

content was calculated for the concatenated sequence of 
these copies. Any ambiguous base was excluded from the 
calculation of GC content.

Soil collection and shotgun metagenomic sequencing
We collected 18 surface soil samples from various agri-
cultural fields in Japan at an approximate depth of 0–5 
or 0–10 cm (Table  S1). Following the removal of plant 
residues and additional water from the surface, the soil 
samples were stored at −80 °C or −30 °C until further 
use for DNA extraction. Soil DNA was extracted from 
0.5 g (wet weight) of each soil sample using the ISOIL for 
Beads Beating Kit (Nippon Gene, Tokyo, Japan) accord-
ing to the manufacturer’s instruction with the follow-
ing modifications: prior to the beads beating step, 0.02 
g skim milk was added to the lysis buffer to improve the 
extraction efficiency [83] and post-elution purification 
using RNase A (Takara, Shiga, Japan) and DNA Clean & 
Concentrator (Zymo Research) according to the manu-
facturer’s introduction. Purified DNA was quantified 
using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, 
USA) with Qubit dsDNA HS Assay Kits (Invitrogen). The 
construction of DNA libraries, shotgun sequencing on 
an Illumina MiSeq sequencer, and merging of paired-end 
sequences were performed as described previously [14]. 
Regarding the other 6 soil samples, DNA was extracted 
from 0.25 g of each soil using DNesay PowerSoil Pro 
Kits (QIAGEN, Hulsterweg, Netherland) following the 
manufacturer’s instruction. Shotgun sequencing library 
was prepared using MGIEasy FS DNA Library Prep 
(MGI Tech, Guangdong, China), where the duration of 
fragmentation reaction was customized to four minutes 
and library amplification was performed for eight cycles. 
MGIEasy Circularization Kit and DNBSEQ-G400RS 
High-throughput Sequencing Kit Set were used to con-
struct DNBs, which were sequenced on DNBSEQ-G400 
(MGI Tech) under 2x200 bp paired-end mode. Soil 
pH(H2O) and electrical conductivity were measured in 
a suspension sample with soil-water ratio of 1:5 (w/w). 
Soil total carbon and nitrogen contents were determined 
using dry combustion method. Crop types and chemical 
properties of Japanese soils used in this study were sum-
marized in Table S2.

Collection of publicly available metagenomic data 
and their quality assessment
We further collected reusable datasets of bulk soil 
metagenomes on INSDC [84] and MG-RAST [85] that 
met the following criteria: (i) derived from outdoor sam-
ples exempted from post-sampling treatments that can 
affect the microbial community structure; (ii) sequenced 
on Illumina MiSeq, HiSeq, MiniSeq, NextSeq or NovaSeq 
(i.e., state-of-the-art, highly accurate sequencers); and 

http://www.microbesonline.org/fasttree/treecmp.html
http://www.microbesonline.org/fasttree/treecmp.html
https://github.com/tseemann/barrnap;
https://github.com/tseemann/barrnap;
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(iii) reported in the peer-reviewed literature (with the 
exception of data obtained by the National Ecologi-
cal Observatory Network). Moreover, the datasets from 
rhizosphere soils were not used in this study because 
they are extensively and dynamically affected by the 
plant roots [86] and not representative of the soil micro-
bial communities. In total, we collected 1451 datasets 
as listed in Table S1 [47, 87–121]. The latitude and lon-
gitude of each sampling site were obtained from public 
databases [INSDC BioSamples database [122] and MG-
RAST] and verified with the descriptions in each publica-
tion. The INSDC data were directly obtained from DDBJ 
server, whereas those on MG-RAST were fetched using 
MG-RAST API (with the option “file=050.1”).

The collected metagenomic data underwent extensive 
curations, followed by homology searches to detect nitro-
genase genes, ribosomal protein genes, and 16S rRNA 
genes. Detailed procedures are provided in the supple-
mentary information. After a series of data curation, we 
decided to use 1,333 metagenomes from public databases 
and newly sequenced 18 metagenomes for downstream 
analyses. Some of the metagenomes were geographically 
redundant, so we merged metagenomes from samples 
taken within < 1 km and treated them as one sample. 
The distances between sampling locations were calcu-
lated based on the latitude and longitude of each sample 
using the geodesic module in GeoPy (https://​geopy.​readt​
hedocs.​io/​en/​stable/#; accessed Jan 5, 2024).

Gene annotations of metagenomic reads
To determine the nitrogen-fixing populations within each 
metagenomic dataset, the filtered sequences were sub-
jected to homology search against the custom database 
explained above (i.e., KEGG database supplemented with 
Anaeromyxobacteraceae and Geobacteraceae genomes), 
followed by the taxonomic annotation of nitrogenase 
gene reads. In short, we determined the relative abun-
dance of nitrogenase-harboring prokaryotes and their 
taxonomic composition for each sample.

Although the details are explained in the supplemental 
text, here we note three key strategies. First, we used nifD, 
nifK, vnfD, vnfK, anfD, and anfK as the marker genes. 
nifH was not used for this purpose because the partial 
primary structure of NifH can be confused with those of 
other proteins irrelevant to nitrogen fixation [36]. Sec-
ond, we normalized the number of reads by those of sin-
gle-copy prokaryotic ribosomal protein genes [81], rather 
than by the total number of metagenomic reads that 
may be affected by plant- and animal-derived sequences. 
Third, we used phylogenetic placement, rather than a 
simple homology search, for taxonomic annotation of nif 
gene reads. The reliability of each taxonomic annotation 
was calculated based on the likelihood of phylogenetic 

relationships between metagenomic reads and reference 
sequences, and therefore we were able to abandon uncer-
tain annotations. For example, short fragmented reads 
may bear little phylogenetic signals, and annotations of 
such reads were to be unreliable and discarded.

Beta‑diversity analyses
Beta-diversity between any pair of diazotrophic com-
munities was calculated using the average of UniFrac 
distances for NifD and NifK, which were determined 
based on the results of phylogenetic placement. We used 
NMDS with two dimensions to summarize overall beta-
diversity between communities. We also performed PER-
MANOVA with 999 times permutation to test the null 
hypothesis that community structures of diazotrophs are 
similar between aerobic and anaerobic environments.

Homology analyses between NifD/K of metagenomes 
and isolate genomes
We further mapped the NifD/K sequences annotated 
as family Anaeromyxobacteraceae or Geobacteraceae in 
metagenomic reads to NifD/K sequences from that fam-
ily in our custom database using the Needleman–Wunsch 
algorithm implemented in USEARCH v11.0.667 [123]. 
We obtained the sequence similarity between each read 
and its nearest sequence in the database. We counted the 
number of reads for which the nearest sequence is from 
the genomes of bacterial isolates obtained via the slurry 
incubation method (Table 1).

Amplicon sequencing of nitrogenase genes using popular 
primer sets
We compared the results of shotgun metagenomic 
sequencing and amplicon sequencing of nitrogenase 
genes using six of the Japanese soil samples. Using the 
four pairs of universal primers (Table S4) and three DNA 
polymerases that differ in performance (DreamTaq DNA 
Polymerase [ThermoFisher Scientific], Ex Taq Hot Start 
Version [Takara], and KOD One [TOYOBO]), and we 
amplified nifH genes contained in each soil metagenome. 
Here we performed two-step tailed PCR to construct 
Illumina library, consisting of the first PCR to amplify 
nifH genes and the second PCR to attach index sequences 
to the amplicons. The amplicon of first PCR were cleaned 
up using AMPure XP (Beckman Coulter, Brea, CA, USA) 
before subjected to the second round of PCR. Detailed 
PCR conditions are summarized in Tables S4 and S5. The 
final PCR products were electrophoresed on agarose gels, 
purified using Wizard® SV Gel and PCR Clean-Up Sys-
tem (Promega, Madison, WI, USA), and sequenced on 
Illumina iSeq in a paired-end mode (151 bp × 2). For each 
combination of soil samples, primer pairs, and DNA pol-
ymerases, we amplified nifH genes and sequenced them 

https://geopy.readthedocs.io/en/stable/
https://geopy.readthedocs.io/en/stable/
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in triplicates. The obtained reads underwent error cor-
rection using DADA2 [124], and the amplicon sequence 
variants (ASVs) were further filtered to eliminate chime-
ras and non-specific amplicons. The filtered ASVs were 
taxonomically annotated using phylogenetic placement. 
Details are explained in supplemental method.

Estimation of mismatches between nif‑harboring genomes 
and nifH universal primers
To determine the mismatches between prokaroytic nitro-
genase genes and their universal primers, we mapped 
sequences of seven primers (PolF, PolR, nifH-F, nifH-
R, Ueda19F, Ueda407R, and univ463r: Table  S4) onto 
12 prokaryotic nifH sequences (Anaeromyxobacter sp. 
Fw109-5, Anaeromyxobacter sp. K, A. diazotrophicus 
Red267T, A. oryzae Red232T, A. paludicola Red630T, 
Azospirillum brasilense Sp7T, Azotobacter vinelandii DJ, 
Bradyrhizobium diazoefficiens USDA110T, Clostridium 
acetobutylicum ATCC824T, Frankia casuarinae CcI3T, 
Geomonas oryzae S43T, and Oryzomonas japonica 
Red96T). We referred to annotations on KEGG or NCBI 
RefSeq to collect nifH sequences. In cases where one 
genome owned multiple copies of nifH, we selected one 
copy that was accompanied by nifDK in their neighbor-
hood [36]. The collected nifH genes were aligned using 
MAFFT v7.505 (with “--auto” option), and then the 
primer sequences were manually aligned onto the MSA.

Throughout the study, we used SeqKit v0.16.1/v2.2.0 
[125] and R 4.0.5/4.1.1 [126], including the package 
“vegan” [127], to handle fastq and fasta files and to per-
form statistical tests, respectively.
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