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Abstract 

Background  In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be 
increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, 
and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, 
co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals 
from an early age.

Results  We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 
Danish children and examined the association between such co-localization and environmental factors as well 
as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence 
genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. 
Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high 
ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. 
The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plas-
mids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term 
increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abun-
dance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility 
than ARGs.

Conclusions  We found that the phenomenon of co-localization between ARGs and other resistance and VGs 
was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore 
indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal hus-
bandry, and daily life to mitigate the escalation of resistance.
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Introduction
The first years of life are pivotal for the maturation of the 
gut microbiome [1, 2] and the healthy development of 
the host immune system [3]. Prolonged perturbation of 
the developing gut microbiome is linked to an increased 
risk for subsequent diseases, such as asthma [4] and aller-
gies [5]. Together with the maturing gut microbiome, the 
antibiotic resistome—the pool of genes that contribute 
to antimicrobial resistance—also develops in the infant’s 
gut in the first few years of life. We recently showed that 
antibiotic resistance genes (ARGs) were enriched in the 
infant gut, mainly driven by the composition of E. coli [6].

Humans are not always exposed to antibiotics and 
ARGs in the gut may be maintained partly through a 
mechanism of “co-selection” between ARGs and other 
resistance genes. The physical linkage of multiple genes 
encoding different resistance phenotypes on the same 
genetic element (co-localization) is a widespread co-
selection phenomenon [7] (Additional file  1: Figure S1). 
Through co-localization, selection for resistance against 
one antibacterial agent can result in the maintenance of 
resistance against other agents, termed “co-selection” 
[8]. Co-selection can favor a variety of ARGs in bacte-
rial hosts that are more likely to be exposed to diverse 
co-selection agents and can further increase the persis-
tence of certain bacteria and plasmids in the gut. Co-
selection between ARGs and genes conferring resistance 
against agents such as antibacterial biocides and metals 
is frequently detected in the environment or animal gut 
[9–12]. However, the prevalence of this phenomenon 
in the human gut is largely unknown—especially in the 
immature gut, which is vital to understanding the spread 
and development of ARGs. This is a critical knowledge 
gap considering that humans are frequently exposed to 
co-selective agents in their daily lives such as biocides, 
which are usually utilized as antiseptics on the skin to 
prevent microbial infection [13], and metals, which are 
indispensable for humans.

In addition to resistance genes, bacteria have numer-
ous other genetic tools to help them persist and thrive in 
their environments. In particular, virulence genes (VGs) 
play a critical role in determining bacterial pathogenic-
ity and pose an important threat to human health [14]. 
Like ARGs, many VGs have been transferred among bac-
teria by horizontal gene transfer (HGT) [15, 16], which 
is one of the main ways in which human opportunistic 
pathogens acquire virulence in the course of evolution 
[17]. However, the early establishment of VGs in the 
gut microbiota remains unclear. It is possible that co-
localization between VGs and ARGs may confer a selec-
tive advantage on VGs in bacteria that are likely to be 
exposed to antibiotics. To date, though, there have been 
no comprehensive investigations on the co-localization 

of VGs and ARGs in the infant gut microbiome. A better 
understanding of co-selection phenomena during early 
life could help elucidate the maintenance and prolifera-
tion of both ARGs and VGs, which is of key importance 
for efforts to alleviate the spread of ARGs and VGs.

To aim at a better understanding of co-selection phe-
nomena in early life, we performed a comprehensive 
analysis of co-localization between ARGs and metal, 
biocide resistance genes and VGs, and characterized 
the common bacterial hosts in which this phenom-
enon occurs, through metagenomics sequencing of 
662 fecal samples from healthy infants in the Copenha-
gen Prospective Studies on Asthma in Childhood 2010 
(COPSAC2010) birth cohort (Table 1). We also evaluated 
the effects of antibiotic use on mobile ARGs and investi-
gated the association between co-localization and micro-
bial maturation of the infant’s gut.

Materials and methods
Study population and sample collection
The study subjects were participants in the population-
based COPSAC2010 mother-child cohort consisting of 
700 mother-child pairs [18, 19]. The fecal samples inves-
tigated in this study were gathered from infants aged 
11  months to 2  years (median age 1  year), either at the 
COPSAC research unit or by the parents at home, follow-
ing instructions. The fecal samples were collected in ster-
ile plastic containers and transported to Statens Serum 
Institut (Copenhagen, Denmark) with a median trans-
port time of 2 days at ambient temperature. Each sample 
was mixed on arrival with 1 mL of 10% vol/vol glycerol 
broth (SSI, Copenhagen, Denmark) and frozen at – 80 °C 
until further.

Covariates
At scheduled visits to COPSAC clinics, participants 
provided information regarding the use of antibiotics 
(including any treatment prior to sampling; summarized 
in Additional file  1: Figure S2), in addition to various 
demographic details such as age, sex, race, gestational 
age at delivery, siblings, living area, birth season, income, 
smoking, type of home, and pet ownership (Table  1). 
This information was cross-checked against registration 
records.

Metagenomics sequencing and data processing for fecal 
samples
Bacterial DNA from 663 fecal samples was extracted 
using the PowerMag® Soil DNA Isolation Kit optimized 
for the epMotion robotic platform model according to 
extraction instructions. The Kapa Hyper Prep kit (for 
Illumina) was used for sequencing library preparation. 
Fecal DNA samples were sequenced using the Illumina 
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NovaSeq apparatus by Admera Health (USA). Out of 
the 663 samples, one sample failed to produce a library. 
To mitigate a batch effect, the 662 samples were pro-
cessed in the same batch, including library preparation 

and DNA extraction. GNU Parallel v20180722 [20] was 
used for parallelized preprocessing during bioinformatics 
analysis. The adapter sequences were trimmed by BBDuk 
(BBTools v38.19) using the default setting except for the 

Table 1  The cohort information in the study

Antibiotic information for infants refers to antibiotic use during 1st year prior to sampling. Antibiotic information for pregnancy refers to antibiotics used during 
delivery

Category Variable Statistics no. (%)

Child Age, median (range)—years 1 (11 months–2)

Sex (male) 341 (51.5)

Race (Caucasian) 632 (95.5)

Gestational age, median (range)—week 40 (29–42)

Living area:

Rural 292 (46.5)

Urban 336 (53.5)

Birth Season:

Spring 177 (26.7)

Summer 139 (21)

Autumn 141 (21.3)

Winter 205 (31)

Delivery mode:

Vaginal 520 (78.5)

Cesarean 142 (21.5)

Siblings 382 (72.1)

Type of home:

House 229 (42.4)

Apartment 311 (57.6)

Food:

Breastfeeding + solid food 98 (14.8)

Solid food 562 (85.2)

Breastfeeding history 653 (98.9)

Total days of breastfeeding (mean ± sd) 250 ± 165

Fish oil 327 (49.5)

Antibiotics in the year prior to sampling 311 (47)

During pregnancy Pet:

Cat 133 (20.2)

Dog 123 (18.8)

Antibiotics 271 (40.9)

Smoking 47 (7.1)

Alcohol 34 (5.1)

Maternal information Age, median (range)—years 32 (19–48)

Mother BMI—kg/m2 (mean ± sd) 23.6 ± 4.3

Income level:

Low 63 (9.5)

Medium 352 (53.3)

High 246 (37.2)

Education level:

Low 53 (8%)

Medium 423 (63.9%)

High 186 (28.1%)
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following parameters: “ktrim=r k=23 mink=11 hdist=1 
hdist2=0 ptpe tbo”. Reads shorter than 50 bases and low-
quality sequences were removed by Sickle v1.33 [21]. 
Human genome contaminants were filtered out using 
BBMap (BBTools v38.19) with the default setting. Short 
reads were assembled into contigs individually using 
SPAdes v3.12.0 under the default settings [22]. Metagen-
omic sequencing coverage was analyzed using Nonpareil 
v3.30 with kmer mode [23].  Taxonomic classification of 
microbial communities was inferred with MetaPhlAn 
v2.7.5 [24], which is embedded in the humann2 v0.11.2 
pipeline [25]. The binning of metagenomics contigs into 
metagenomically assembled genomes (MAGs) individu-
ally was performed by three binners in the metaWRAP 
pipeline (v1.2.2) [26]: MetaBAT2 v2.12.1 [27], MaxBin2 
v2.2.6 [28], and Concoct v1.0.0 [29]. The quality assess-
ment of MAGs was carried out using CheckM v1.0.12 
[30], and only MAGs with at least 90% integrity and no 
more than 5% contamination were retained. One sample 
did not generate any MAGs. In total, 452 dereplicated 
MAGs were generated for the 661 samples. GTDB-Tk 
toolkit (v1.7.0 and GTDB-Tk reference data r202) was 
used to infer the bacterial taxonomic assignments of 
MAGs [31]. Open reading frames (ORFs) in contigs were 
identified with Prodigal v2.6.3 in META mode [32].

Identification of resistance genes, MGEs, virulence genes, 
and integrons
Resistance Gene Identifier [33] was used to search 
for ARGs within the predicted ORFs by aligning the 
amino acid sequences of ORFs to the Comprehen-
sive Antibiotic Resistance Database (CARD v3.0.7). 
The significance cut-offs “Perfect” (100% identity and 
100% reference sequence coverage) and “Strict” (a 
match higher than the bitscore of the curated BLASTP 
bitscore cutoff ) were used as the thresholds for filter-
ing ARGs. Diamond blastp was used to search for bioc-
ide resistance genes (BRGs) and metal resistance genes 
(MRGs) in the predicted ORFs by aligning the amino 
acid sequences of ORFs to sequences in a database of 
antibacterial biocide and metal resistance genes (Bac-
Met v2.0) [34] using the more sensitive mode and 
k1 option [35]. Thresholds of 90% identity and 80% 
query coverage were used to predict BRGs and MRGs. 
Mobile genetic element (MGE) homologs were charac-
terized using the PFAM [36] and TnpPred [37] data-
bases through HMMSEARCH (v3.1b2)[10, 38], with 
“-cut_ga” as the threshold. If ORFs had multiple hits, 
we only kept the one with the lowest E-value. Dia-
mond blastp search was also performed to predict the 
families of bacterial virulence factors from the amino 
acid sequences of the predicted ORF using the VFDB 
(Virulence Factor Database) (updated version on Sep 

10, 2021) [39] with the more sensitive mode and k1 
option [35]. Thresholds of 90% identity and 80% query 
coverage were used to predict VGs. AttC recombina-
tion sites, promoters, and attI sites for the integrons 
were identified by IntegronFinder with the default set-
ting [40]. The distribution of resistance genes and VGs 
in bacterial species is shown in Additional file  1: Fig-
ure  S3. The profiles of resistance genes and VGs are 
shown in Additional file  1: Figure  S4. The choice of 
different gene thresholds using Diamond blastp was 
based primarily on different databases and the need 
to balance specificity and sensitivity. For CARD, the 
recommended “Perfect” and “Strict” cutoffs were used 
for stringent characterization, whereas for BacMet 
and VFDB, they were used to capture a wider range of 
genetic determinants.

Calculation of gene abundance
The alignment of clean reads against the ORFs was per-
formed by the Bowtie2 aligner [41]. Samtools idxstats 
[42] was used to calculate the number of mapped reads in 
the bam file. We used values of gene coverage per million 
(GCPM) for ORFs to normalize the length of ORFs and 
sequencing depth [10]. Because the sum of GCPM values 
of all the ORFs in each sample is the same, the abundance 
of ORFs is thus comparable between samples. The for-
mula to calculate GCPM is  (counts /gene length)×106

n
1 counts /gene length

 , where 
counts represent the number of mapped reads, gene 
length represents the ORF length, and n represents the 
total number of predicted ORFs in each sample.

Identification of bacterial origin of genes
The bacterial species from which gene-containing chro-
mosomal contigs originated were traced from the taxo-
nomic classification of MAGs. In this way, we were able 
to classify genes according to their bacterial species of 
origin.

Co‑localization analysis and stochasticity analysis 
of co‑localization
Co-localization represents the physical relationship 
between genes on the same assembly contig. We selected 
representative plasmid contigs to demonstrate class 1 
integrons; first, we deduplicated co-localization contigs 
based on gene combinations, then removed the co-local-
ization contigs whose gene combinations were included 
in other co-localization contigs and the representation 
contigs were finally obtained. Gene arrangements in the 
representative contigs were visualized using gggenes 
(https://​wilkox.​org/​gggen​es/). In this study, we refer to 
co-localization associated with MGEs occurring on plas-
mids as mobile co-localization. The three types of mobile 

https://wilkox.org/gggenes/
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co-localization phenomena investigated here are (1) 
ARGs, BRGs, and MGEs; (2) ARGs and MGEs; and (3) 
VGs and MGEs. The ARGs and VGs in categories 2 and 3 
are also referred to as mobile ARGs and mobile VGs.

In addition, we assessed the stochasticity of co-localiza-
tion using an enrichment score, which we defined as the 
fold difference between the actual and the expected num-
bers of co-localized contigs. This was calculated as 
actual number of co−localization contigs

expected number of co−localization contigs . A score higher than 1 
served as evidence of enrichment in the gut. In which, the 
expected number of co-localization contigs was calcu-
lated as the total number of contigs ∗ The expected probability p 
(shown below). A binomial test with FDR adjustment [43] 
(R function “binom.test”) was used to test whether the 
actual number of co-localization contigs was significantly 
higher than the expected number of co-localization contigs 
(p  <  0.001 as significance cutoff), i.e. whether an enrich-
ment score was statistically significant and a given pattern 
of gene co-localization occur by chance. The x, n, and p in 
the R function “binom.test” represent the actual number of 
co-localization contigs carrying resistance genes for drugs 
A and B, the total number of contigs, and the expected 
probability of contigs carrying resistance genes for drugs 
A and B, respectively. The expected probability p (the 
probability of two genes being located in the same contigs) 
is calculated as 

(

the number of contigs carrying drug A resistance
the totalnumber of contigs

)

×
(

the number of contigs carrying drug B resistance
the total number of contigs

)

.

Source identification of co‑localization contigs
We used PPR-Meta v1.1 [44] to classify metagenomics 
sequences as coming from chromosomes, plasmids, or 
phages. As the software suggested, a probability score 
of 0.7 (between 0 and 1) was used as the threshold. The 
bacterial species of origin of chromosomal contigs was 
traced from the taxonomic classification of MAGs.

Statistical analysis
The statistical software “R” was utilized for data organi-
zation and statistical analyses [45].

Modeling analysis of co‑localization between ARGs 
and BRGs among different bacteria
To check for differential patterns of co-localization 
between ARGs and BRGs in different bacteria and adjust 
for the different lengths of co-localized contigs, we built 
a generalized linear model with a quasipoisson distribu-
tion using R function “glm”, to evaluate the association 
between the numbers of co-localized ARGs (dependent 
variable), the presence of BRGs, and the log-transformed 
length of co-localized contigs in the four main bacterial 
phyla. In this model, the number of co-localized ARGs 

is modeled as a function of the presence of BRGs with 
an offset by the logarithm of contig length, under the 
assumption of a quasipoisson distribution with a log link 
function.

Modeling analysis of mobile ARGs and virulence genes 
in plasmid contigs
We built a logistic regression with a binomial distri-
bution using R function “glm” and used a binomial 
regression to explore the association between the pres-
ence of mobile VGs or ARGs (i.e., VGs or ARGs with 
MGEs) in contigs (dependent variable), the presence 
of these contigs in plasmids, and the log-transformed 
length of these contigs. This model represents a logis-
tic regression model where the binary response vari-
able the presence of mobile VGs or ARGs is modeled 
as a function of the predictor variables the presence of 
these contigs in plasmids and the logarithmically trans-
formed length of contigs, under the assumption of a 
binomial distribution.

Correlations between gut microbial maturity 
and the abundance of co‑localized ARGs
In previous work, we demonstrated how to calculate 
a microbiota-by-age z-score (MAZ) for evaluating gut 
microbiome maturity across ages and asthma risk at age 
5, respectively [2]. Here, we created a linear model using 
the R function “lm” to explore the linear association 
between MAZ scores at 1 year of age generated from the 
previous work (as the response variable) and the abun-
dance of E. coli or co-localized ARGs (as dependent vari-
ables). This analysis aims to understand to what extent 
MAZ scores are affected by E. coli or co-localization 
ARG abundance.

Results
Co‑localization in the infant gut was most common 
between tetracycline or fluoroquinolone ARGs and other 
ARGs
We conducted a comprehensive investigation into 
the co-selection of ARGs, with a focus on two phe-
nomena: (1) co-resistance (multiple ARGs conferring 
resistance to different drugs that are all located in 
the same genetic element, and (2) MDR ARGs (mul-
tidrug resistant ARGs). Of all the contigs that were 
found to contain ARGs, 21.2% carried multiple ARGs 
and more than half of these contained ARGs known 
to confer resistance against different drugs (Fig.  1A). 
Using metagenomics assembled genomes (MAGs), we 
traced the contigs carrying multiple ARGs with differ-
ent resistance profiles to 55 bacterial species of origin, 
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representing 5 phyla. The majority of the traceable 
contigs were from Proteobacteria, particularly E. coli 
(Fig. 1B).

To reflect gene co-resistance more intuitively, we trans-
formed the co-resistance network of 4276 ARG-carrying 
contigs into a network that depicts resistance against 31 
classes of drugs. We collapsed together all genes confer-
ring resistance to a given drug class based on the CARD 
database and examined how often a resistance gene for 
one class was found to be co-localized with a resist-
ance gene for another class (Fig.  1C). Genes potentially 
conferring resistance to cephalosporin, penam, fluoro-
quinolone, and tetracycline were the most likely to be 
co-localized with other drug resistance genes. Co-local-
ization with fluoroquinolone and tetracycline resistance 
genes was most common, followed by macrolides, cepha-
losporin, and penam.

Instead of setting the threshold of contig length, we 
used enrichment scores from a broader perspective to 
assess the stochasticity of co-localization in terms of 
antibiotic drugs to which genes can potentially convey 
resistance. Among different types of ARGs, enrichment 
scores for co-localization ranged from 1.65 to 4126 
(mean (SD): 365(554), Fig.  1C). With the exception of 
ARGs related to lincosamide, most of the co-localiza-
tion between ARGs was significantly enriched com-
pared to the expected values (binomial test; adjusted 
p < 0.001), suggesting that the co-localization was not 
the result of chance.

Among the 409 antibiotic-resistance genes detected 
in the infant’s gut, 167 potentially provided resistance 
against at least two antibiotics. These MDR ARGs 
potentially conferred resistance against 27 drug classes 
in total. Of these, multiple resistances to tetracycline, 
phenicol, and fluoroquinolone were most prevalent 
(Fig.  1D). Indeed, the most abundant MDR ARGs in 
the infant gut were those that potentially conferred 
resistance against both tetracycline and fluoroqui-
nolone (Fig. 1D).

Co‑localization between ARGs and biocide or metal 
resistance genes is frequently detected in the infant gut, 
especially in E. coli
We investigated in detail the co-localization between dif-
ferent types of resistance genes in the early gut, with 
respect to both co-resistance and MDR genes (a single 
gene conferring resistance to both antibiotics and biocides, 
ABRGs). Among all of the contigs that contained ARGs, 
26.1% also carried BRGs that targeted a different mode 
of resistance (Fig. 2A). When we used MAGs to trace the 
bacterial origin of these contigs, we found that they origi-
nated from 5 phyla and 47 species; 92.2% of the traceable 
contigs carrying ARGs and BRGs with different resistance 
profiles came from Proteobacteria, of which 84.5% origi-
nated from E. coli (Fig. 2A). In the same way, we found that 
15.5% of contigs with ARGs also carried MRGs (Fig. 2B), 
and 99.5% of the traceable co-localized contigs were of 
Proteobacterial origin, 91% from E. coli (Fig. 2B).

To better visualize gene co-resistance, we transformed 
the co-resistance network between ARGs and BRGs into 
a network representing 29 antibiotic drug classes and 32 
biocide drug classes (Fig. 2C). The ARGs that most fre-
quently co-occurred with BRGs were those that targeted 
fluoroquinolone, penam, tetracycline, cephalosporin, and 
macrolides. Moreover, ARGs associated with resistance 
to fluoroquinolone, penam, macrolides, and aminoglyco-
side were found to be co-localized with BRGs associated 
with all 32 biocides. The co-resistance network between 
ARGs and MRGs involved 28 antibiotic drug classes and 
21 metals (Fig. 2D). The ARGs that most frequently co-
occurred with MRGs were those potentially conferring 
resistance to penam, fluoroquinolone, aminocoumarin, 
tetracycline, and macrolides; genes for penam resistance 
were found to be co-localized with resistance genes asso-
ciated with all 21 metals. The co-localization enrichment 
scores were between 1.65 and 40,580 for combinations 
of ARGs and BRGs (mean (SD) 537(1814)) (Fig. 2C) and 
between 0.47 and 4,651 for ARGs and MRGs (mean (SD): 
236(473)) (Fig. 2D). With the exception of ARGs related 

(See figure on next page.)
Fig. 1  Overview of co-selection between ARGs in the infant gut. A Proportion of contigs carrying different numbers of ARGs. B Taxonomic origin 
of contigs carrying multiple ARGs with different resistance profiles. C Co-localization bubble chart representing the drug classes related to different 
ARGs. The number of connections between ARGs targeting different drug classes in the contigs, and the associated enrichment scores, are shown 
in the figure. On the y-axis, the number to the right of the name indicates the number of other drug classes represented in the co-localization 
arrangements. The size of the bubble indicates the number of connections in the contigs. The enrichment scores higher than 1 are indicative 
of enrichment in that co-localization arrangement. A binomial test with FDR adjustment was used to test the statistical significance of enrichment 
patterns (p < 0.001 was set as the significance cutoff; red square frame represents p < 0.001 and blue square frame represents p > 0.001). 
A significant p value indicates that the occurrence of that specific pattern of gene co-localization would not be expected by chance. The size 
of the square frame represents the magnitude of the enrichment score. D The bubble chart represents the drug classes targeted by 167 MDR 
ARGs. The size of the bubble is proportional to the abundance of MDR ARGs potentially conferred resistance to two drug classes. On the y-axis, 
the number to the right of the name indicates the number of other drug classes represented in the co-localization arrangements.
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to lincosamide, most of the co-localization between 
ARGs and BRGs was significantly enriched compared 
to expected values (binomial test; adjusted p  <  0.001, 
Fig. 2C), while 15% of the co-localization between ARGs 
and MRGs could have occurred by chance (binomial 

test; adjusted p > 0.001, Fig. 2D). With respect to multi-
ple resistances, approximately 10% of ARGs in the infant 
gut also conferred resistance to biocides. The antibiotic 
and biocide resistance profiles that were most commonly 
implicated in multiple resistances were those related to 

78.8%

8.7%
12.5%

Contigs carrying single ARG (26,906)
Contigs carrying multiple ARGs with 
various resistance profiles (4276)
Contigs carrying multiple ARGs with 
same resistance (2961)

Species (number of contigs) | Phylum

Bacteroides dorei (20) | Bacteroidetes
Bacteroides fragilis (27) | Bacteroidetes
Bacteroides uniformis (176) | Bacteroidetes
Citrobacter werkmanii (28) | Proteobacteria 
Enterobacter himalayensis (17) | Proteobacteria 
Escherichia coli (2243) | Proteobacteria 
Klebsiella oxytoca (52) | Proteobacteria 
Klebsiella pneumoniae (43)  | Proteobacteria 
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fluoroquinolone and quaternary ammonium compounds 
(QACs), respectively (Additional file 1: Figure S5).

Virulence genes are associated with an immature gut 
microbiome
The establishment and development of VGs in the 
human gut is still unknown. Here we assessed the 
association between the abundance of VGs and gut 
microbial maturity at 1  year (Fig.  3A). In our previ-
ous study [2], we obtained ‘microbiota by age’ z-score 
(MAZ) for each infant by training 16S datasets at dif-
ferent time points by machine learning. This allowed 
us to assess gut microbial maturity, with higher MAZ 
values representing higher maturity, as shown in our 
previous paper [2]. In this study, we utilized MAZ 
scores at 1 year of age derived from our previous study. 
Spearman correlation analysis revealed that a higher 
load of VGs was significantly correlated with lower 
MAZ scores (Fig. 3A, R = − 0.27, p < 0.001), indicating 
that infants with a high load of VGs had more imma-
ture gut microbiomes.

We investigated the co-localization of ARGs and 
VGs in bacterial contigs in the infant gut; 9% of con-
tigs with VGs also carried ARGs, with 94% of the 
traceable co-localized contigs originating from E. coli 
(Fig.  3B). The co-localization network of ARGs and 
VGs involved 28 drug classes and 11 virulence factors 
(Fig. 3C). Of particular interest were genes associated 
with virulence gene regulation and secretion systems, 
which were found to be co-localized with ARGs rep-
resenting 27 different classes of antibiotics. Similarly, 
genes associated with invasion, adhesion, and iron 
uptake systems, also frequently appeared on the same 
contigs as ARGs. Enrichment scores for co-localiza-
tion arrangements ranged from 0.98 to 1,943 (mean 
(SD): 97(177)) (Fig.  3C), and most of this enrichment 
was considered significant (binomial test; adjusted 
p < 0.001, Fig. 3C).

The high frequency of co‑localization in Proteobacteria 
is independent of high ARG content and contig length
Overall, we found that co-localization was more likely to 
occur in genomes in phylum Proteobacteria, especially 
in E. coli. The potential explanation for a high frequency 
of co-localization could simply be high ARG content 
(both including copy number and the number of contigs) 
or variance in contig length. To test this hypothesis, we 
investigated patterns of co-localization between ARGs 
and BRGs (Fig. 4).

In the 50 bacterial species examined, we did not detect 
a significant positive correlation between the ratio of co-
localized ARGs and total ARG abundance (Pearson cor-
relation; R = − 0.091, p = 0.53). This suggests that there 
may beno uniform pattern of co-localization between 
ARGs and BRGs in all bacteria; instead, it appears that 
patterns of co-localization are specific to individual taxa. 
As shown in Fig.  4, despite the large numbers of ARGs 
present in most species of Bacteroidetes, Firmicutes, and 
Actinobacteria, only a small number of these were found 
to be co-localized with BRGs. To further verify this dis-
proportionate pattern of representation and exclude any 
confounding effect of possible differences in the lengths 
of assembled contigs, we built a generalized linear model 
with a quasipoisson distribution to explore the associa-
tion between the number of ARGs (the dependent vari-
able), the presence of BRGs, and the log-transformed 
length of contigs in the four main phyla. It turned out 
that Proteobacteria explained ≈  29% of the variance in 
the co-localization of ARGs and BRGs (Additional file 1: 
Figure  S6), suggesting that this phylum was indeed the 
most important source for the co-localization of ARGs 
and BRGs.

Antibiotics cause short‑term abundance change in mobile 
ARGs; virulence genes exhibit higher potential for mobility 
than ARGs
Resistance and VGs can be widely transferred horizon-
tally between bacteria via plasmids. We next explored 

Fig. 2  Co-localization between ARGs and BRGs or MRGs was frequently detected in the infant gut, especially in E. coli. A Proportion of contigs 
carrying ARGs and BRGs, and the taxonomic origin (bacterial species and phylum) of contigs carrying ARGs and BRGs with different resistance 
profiles. The red and blue modules on one ABRG gene graphically symbolize antibiotic and biocide resistances, respectively. B Proportion of contigs 
carrying ARGs and MRGs, and taxonomic origin (bacterial species and phylum) of contigs carrying ARGs and MRGs with different resistance profiles. 
The red and blue modules on one ABRG gene graphically symbolize antibiotic and biocide resistances, respectively. C, D Co-localization bubble 
charts representing drug classes targeted by ARGs and BRGs with different resistance profiles (C) and between drug classes targeted by ARGs 
and metals targeted by MRGs (D). The number of connections in the contigs between ARGs and BRGs/MRGs with different targets, along with the 
enrichment scores, are shown in the figure. On the y-axis, the number to the right of the antibiotic drug class indicates the number of biocide drug 
classes (C) or metals (D) represented in the co-localization arrangement. The size of a bubble indicates the number of connections in the contigs. 
A binomial test with FDR adjustment was used to test the statistical significance of enrichment patterns (p < 0.001 was set as significance cutoff; red 
square frame represents p < 0.001 and blue square frame represents p > 0.001). A significant p value indicates that the occurrence of that specific 
pattern of gene co-localization would not be expected by chance. The size of the square frame indicates the magnitude of the enrichment score.

(See figure on next page.)
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mobile co-localization phenomena on plasmids. The gene 
elements carried on plasmids and co-localization profiles 
are listed in Additional file 1: Figure S7.

Within the infant gut, class 1 integrons were the most 
common co-localization genetic elements residing on 
plasmids (Additional file  1: Figure  S8). We detected 36 
representative plasmid contigs carrying ARGs, BRGs, 
and MGEs. Of these, 22 contained a complete class 1 
integron, featuring a 3′-conserved segment containing a 
sulphonamide resistance gene (sul) and a QAC resistance 
gene (qac), a 5′-conserved segment carrying an integrase, 
and a gene cassette. In total we found that 17 ARGs were 
integrated into the cassette, including six aminoglycoside 

resistance genes (aadA/2/3/5/6/8b), seven diaminopy-
rimidine resistance genes (dfrA1/5/7/12/15/16/17), two 
sulfadiazine resistance genes (sul1/3), one beta-lactamase 
resistance gene (CARB-3), and one phenicol resistance 
gene (cmlA1).

We identified 80 mobile ARGs that co-localized with 
51 MGEs on plasmids (Fig. 5A). Of the mobile ARGs, 26 
potentially encoded resistance to β-lactams, 17 to ami-
noglycoside, and 10 to tetracycline. Among the different 
MGEs, transposases, and integrases were most com-
monly found beside ARGs on plasmids. When we exam-
ined the influence of antibiotic use on the abundance 
of mobile ARGs in the infant gut, we found a transient 
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Fig. 3  The association between VGs and gut microbial maturation, and co-localization between ARGs and VGs. A The association between total 
abundance (log-transformed) of VGs and MAZ score. The confidence interval for the slope of the linear regression line is plotted as an illustration; 
the inference was performed with the Spearman correlation coefficient R and the corresponding p-value (p < 0.05 as significance cutoff ). B 
Proportion of contigs carrying ARGs and VGs, and taxonomic origin (bacterial species and phylum) of contigs carrying both ARGs and VGs. C 
Co-localization bubble chart depicting drug classes associated with ARGs and virulence factors encoded by VGs. The number of connections 
in the contigs between ARGs representing different drug classes and genes encoding different virulence factors is shown in the figure, 
along with enrichment scores. On the y-axis, the number to the right of each virulence factor indicates the number of antibiotic drug classes 
represented in the co-localization arrangements. The size of the bubble indicates the number of connections in the contigs. A binomial test 
with FDR adjustment was used to test the statistical significance of enrichment patterns (p < 0.001 was set as the significance cutoff; red square 
frame represents p < 0.001 and the blue square frame represents p > 0.001). A significant p-value indicates that the occurrence of that specific 
pattern of gene co-localization would not be expected by chance. The size of the square frame indicates the magnitude of the enrichment score.
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effect: in infants who received antibiotics, the total abun-
dance of mobile ARGs in the gut peaked on the first 
day after treatment (Fig. 5B), significantly declined over 
the next ca. 45  days (Pearson correlation, R  =  −  0.35, 
p  =  0.002), and finally reached a stable plateau close 

to the levels found in the guts of infants who had not 
received any antibiotic treatment. In contrast, putatively 
non-mobile ARGs, i.e., those not on the same contigs as 
MGEs, did not exhibit any change in abundance in the 
45 days after antibiotic usage (R = − 0.1, p = 0.22). These 
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Fig. 4  The log-transformed total abundance of ARGs and the ratio of co-localized ARGs with BRGs in different bacterial species

(See figure on next page.)
Fig. 5  Co-localization of ARGs, BRGs/VGs, and MGEs on plasmids in the infant gut. A Co-localization bubble chart representing ARGs and MGEs 
in plasmid contigs. The size of the bubble is proportional to the number of connections in the contigs. B The effects of antibiotic treatment 
on log-transformed total abundance of mobile ARGs and non-mobile ARGs with time. The confidence interval for the slope of the linear regression 
line is shown. Orange and blue dots represent the 311 infants who received antibiotics in the first year. Infants lacking detectable mobile ARGs are 
not represented in the figure. The X coordinate represents the time of the most recent antibiotic treatment prior to sampling for each infant. The 
significance level and Pearson correlation coefficient R are shown in the figure; dotted lines denote the window in which the Pearson correlation 
was calculated (from 0 to 45 days). AB represents antibiotics. C The relative proportions of mobile and non-mobile VGs related to seven virulence 
factors. Pairwise Fisher’s exact test was carried out for the comparison of the relative proportions of mobile and non-mobile genes within each 
of the seven groups. Multiple comparisons were adjusted for FDR. Except for the pairwise comparison of adherence- and regulation-associated 
genes (p = 0.06, indicated by ns), there were significant differences between all paired comparisons (p < 0.001). D The proportion of all contigs 
with ARGs/VGs and MGEs that were found in plasmids. p value from Fisher’s exact test is shown in the figure
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results also indicate that antibiotic treatment exerted an 
influence mainly on mobile ARGs.

Among 2128 VGs detected, 321 of them were mobile 
(Fig.  5C and Additional file  2: Table  S1) in which genes 
associated with toxins showed the strongest mobility. 
We detected significant differences in the proportions of 
mobile genes among virulence categories (pairwise Fish-
er’s test with FDR adjustment, p < 0.001 for each compar-
ison excluding genes related to adhesion and regulation, 
Fig.  5C). In particular, we observed that a significantly 
higher proportion of plasmid contigs carrying VGs than 
of the plasmid contigs carrying ARGs (Fisher’s exact test, 
p < 0.001, odds ratio = 3.2 (95% CI 2.84–3.53)) (Fig. 5D). 
To exclude the confounding influence of assembled con-
tig lengths, we built a logistic regression with a binomial 
distribution to explore the association. It turned out that 
even after adjusting for contig length, significantly more 
VGs were detected in plasmids (odds ratio =  1.88 (95% 
CI 1.74–2.04), p < 0.001).

The abundance of co‑localized ARGs associates with infant 
gut microbial maturity
High ARG abundance is linked to low gut microbial 
maturity in infants [6], and the co-localization of ARGs 
may promote the persistence of this state in the infant’s 
gut. To shed light on this phenomenon, we explored the 
association between the abundance of co-localized ARGs 
and gut microbial maturity at 1 year of age.

Linear regression analysis revealed that a higher abun-
dance of co-localized ARGs was significantly correlated 
with lower MAZ scores (Fig. 6A), i.e., immaturity. How-
ever, given the vital role played by E. coli in providing co-
localized ARGs to the microbial community, it is possible 
that the association between co-localized ARG abun-
dance and gut maturity may depend solely on the abun-
dance of E. coli. To investigate this hypothesis, we first 
fit a linear regression model with the log-transformed 
relative abundance of E. coli as the explanatory variable 
and MAZ score as the dependent variable and found an 
association between the two (Fig. 6B, estimate − 0.16 SD 
per log10 fold change, 95% CI [− 0.23, − 0.08], p < 0.001). 
This suggested that the high abundance of E. coli in the 
gut of 1-year-old infants was associated with low gut 
microbial maturity, which can also be verified by a grad-
ual decline in E. coli relative abundance with age (Addi-
tional file 1: Figure S9). When we added the abundance of 
co-localized ARGs and BRGs to the model (Fig. 6C), we 
found that this was also associated with the MAZ score 
(p  =  0.02) and, in fact, the significance and effect size 
between E. coli and MAZ changed (p = 0.21). Likewise, 
when we added the abundance of co-localized ARGs 
and MRGs or VGs to the model, this was also associated 
with the MAZ scores (p =  0.0005, 0.0002) and changed 

the significance and effect size between E. coli and MAZ 
(p=  0.19, 0.42) (Fig.  6C). Thus, after accounting for the 
abundance of co-localization in these cases, the abun-
dance of E. coli was no longer a significant factor in the 
models. This suggests that E. coli is not a sole variable in 
terms of the association with maturity.

Discussion
In this study, we comprehensively analyzed genetic 
co-localization involving ARGs and the association of 
this phenomenon with environmental factors and gut 
microbial maturation in a cohort of 662 Danish chil-
dren. Collectively, the multidrug resistances in the infant 
gut microbiome were primarily associated with the 
broad-spectrum antibiotics fluoroquinolone and tetra-
cycline and derived largely from E. coli (with an average 
relative abundance of 5.41%, the second most abundant 
species, Additional file  1: Figure  S10). Multidrug resist-
ance against fluoroquinolones and tetracycline has also 
been reported to be prevalent in ESBL producers (e.g., 
E. coli) isolated from multiple ecological settings, includ-
ing water bodies and the feces of animals and healthy 
humans [46–48]. This pattern is consistent with the 
extensive use of these antibiotics in animal husbandry 
and medicine in recent decades and also involves the 
HGT of resistance genes on MGEs [49–54]. Besides, the 
bacterial diversity in the infant gut was low while E. coli 
was one of the major early colonizers with a high relative 
abundance (Additional file 1: Figure S9).

With the extensive use of other antimicrobial agents, 
co-selection of resistance to antibiotics, biocides, and/or 
metals has been commonly detected in bacteria from the 
environment, animal farming, and the human microbi-
ome [10, 12, 54–58]. Similarly, we observed many ARGs 
and BRGs or MRGs co-occurring on the same contigs 
in the infant gut at frequencies significantly higher than 
those expected by chance, suggesting an enrichment 
effect. However, the extent to which antimicrobial agents 
and MGEs drive this enrichment effect, i.e., the mecha-
nism of co-selection and the underlying drivers, is not 
entirely clear [59]. The statistical model showed that this 
enrichment was primarily found in Proteobacteria, espe-
cially in the clinically relevant bacterial family Entero-
bacteriaceae, independent of the high ARG content and 
length of contigs. The high prevalence of co-localization 
in the family Enterobacteriaceae was also observed in 
previous research [10, 12].

The presence of VGs together with ARGs may result 
in the emergence of novel “superbugs” [60]—patho-
genic bacteria with multi-resistant phenotypes. A 
recent large genomics investigation confirmed abun-
dant co-localization between VGs and ARGs in 
human pathogenic bacteria, and this co-occurrence or 
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correlation was observed across various ecological set-
tings [61–64]. Similarly, our study identified abundant 
co-localization in opportunistic pathogens such as E. 
coli, H. parainfluenzae, Klebsiella spp., Enterococcus 
spp., and Citrobacter spp. in infants. Through the HGT 
of plasmids, multiple co-localized resistance genes can 
easily spread among bacteria. In the plasmids examined 
in this study, class 1 integrons were identified as the 
predominant genetic loci for the transfer of ARGs with 
BRGs and/or MRGs in the infant gut. This is consistent 

with previous work reporting that most known ARG 
cassettes are located in class 1 integrons [65], which 
have been identified in more than 70 clinical bacterial 
species and are affected by human activities [66]. Over 
the last few decades, QACs have been widely used as 
cationic surfactants in household products, and this has 
been accompanied by a concomitant increase in QAC 
resistance genes in bacteria, thereby increasing the risk 
of co-selection of antibiotic-resistant bacteria [67–69]. 
Accordingly, our study reveals that co-selection of QAC 
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resistance genes and ARGs has occurred in healthy 
infants.

We explored mobile ARGs and VGs in the infant’s gut. 
Our results demonstrate that antibiotic treatment caused 
a short-term change in the total abundance of mobile 
ARGs in the infant gut, suggesting that antibiotic use 
facilitated the acute spread of resistance among bacteria, 
with MGEs as vectors. A similar association between oral 
antibiotic use and increased intestinal MGE abundance 
was reported in a study on the gut microbiome of fish 
[38]. Here, we found a significantly higher proportion 
of mobile VGs than mobile ARGs. The transfer of VGs 
is one of the main ways in which bacterial pathogens 
acquire virulence in the course of evolution [17], and, as 
reported here, a variety of VGs, including adherence fac-
tors, secretion systems, and toxins, have been detected 
in plasmids [70–72]. HGT events involving VGs pose 
a particular threat to health through, for example, the 
emergence of novel pathogens [73] and the formation of 
defense islands or pathogenicity islands over time [74].

The abundance of co-localized ARGs significantly 
influenced the maturation of the infant gut microbiome, 
with E. coli playing a vital role. As one of the earliest colo-
nizers, the abundant resistance and VGs in E. coli (Addi-
tional file  1: Figure  S11, S3) can grant it a substantial 
selective advantage. However, the prolonged persistence 
of E. coli may disrupt the subsequent colonization of 
beneficial commensal bacteria, thereby leading to a delay 
in the maturation of the infant gut microbiome. Early 
intervention is therefore essential. However, due to the 
high genetic variability of E. coli [75], its persistence and 
harmfulness to the host may vary considerably among 
strains [76, 77]. Future research focused on differentiat-
ing the effects of different E. coli strains on gut microbial 
maturation would be useful in identifying the strains for 
which intervention is most critical.

Conclusion
In conclusion, we observed that co-localization between 
ARGs and other resistance and virulence genes was com-
mon in the early gut and was associated with gut bacteria 
that are indicative of low maturation. The most wide-
spread form of co-localization involved tetracycline and 
fluoroquinolone resistance genes together with other 
ARGs. We evaluated the stochasticity of co-localization 
occurrence using enrichment scores for the first time. 
Co-localization of different resistance genes as well as 
virulence genes was most prevalent in Proteobacteria, 
as verified by statistical models excluding ARG content 
and contig length. Class 1 integrons were identified as 
the predominant genetic elements for co-localization of 
ARGs in the plasmids in the infant gut. We found that 
antibiotic administration caused a 45-day increase in 

the abundance of mobile ARGs, while non-mobile ARGs 
were unaffected. In addition, we found that a high abun-
dance of virulence genes was associated with low matura-
tion of the gut microbiome and observed that such genes 
showed an even higher potential for mobility than ARGs. 
Our study provides new insights into the maintenance 
and transmission of ARGs in the infant gut and indirectly 
emphasizes the need to apply caution in the use of anti-
microbial agents in clinical practice, animal husbandry, 
and daily life to mitigate the escalation of resistance.
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Additional file 1: Figure S1. Emergence and co-selection of multidrug 
resistance in chromosomes or plasmids. A) Progressive acquisition of mul-
tiple resistances from mutations or gene transfer as a result of exposure 
to antimicrobial agents. Co-resistance represents the co-localization of 
multiple resistance genes in the same gene fragment. Cross-resistance 
represents a gene that confers resistance to multiple antimicrobials. B) 
Co-selection between multiple resistance genes upon exposure to any 
of the corresponding antimicrobials. This figure is adapted from the work 
of Cantón and Ruiz-Garbajosa [8]. Figure S2. Summary of antibiotic 
usage for 662 infants during the first year. Figure S3. Distribution of gene 
richness and abundance among bacterial species carrying (A) BRGs, (B) 
MRGs, (C) virulence genes, and (D) MGEs in the infant gut.Figure S4. Total 
abundance (sum of GCPM) of (A) virulence genes in log scale, (B) BRGs in 
log scale, (C) MRGs, and (D) MGEs in log scale in the infant gut. The labels 
on the x-axis describe (A) virulence factors, (B) biocides, (C) metals, and (D) 
categories of MGEs. The red dot in the scatter plot represents the median 
value of the total abundance.Figure S5. Co-localization bubble chart 
representing the drug classes related to 42 ABRGs. The size of the bubble 
is proportional to the abundance of the ABRGs. The drug classes in red 
represent those used in this cohort. Figure S6. The pecent of varience 
explained by different phyla in the co-localization of ARGs and BRGs/
MRGs. Figure S7. Distribution and Co-localization of ARGs, BRGs/VGs, and 
MGEs on plasmids or Chromosome in the infant gut. A) The respective 
abundance (percentage) of contigs, resistance genes, VGs, and mobile 
genetic elements in chromosomes and plasmids. B) Venn diagram depict-
ing the number of contigs with resistance genes and MGEs in chromo-
somes and plasmids. Figure S8. The representative co-localization contigs 
carrying the different types of integrons on plasmids. Based on the ARGs 
on the 22 representative contigs, 16 representative contigs carrying class 1 
integrons were chosen and listed in the figure (each representative contig 
represents a group consisting of 1 to 16 contigs). The complete integron 
in each contig is highlighted in gray. For ease of viewing, we only marked 
the approximate location of the attC recombination site, the constitutive 
promoter Pc for the gene cassettes, the promoter for the integrase gene 
PintI, and the integration site attI. To target potential mobile ARGs, we only 
focused on the co-localization contigs carrying MGEs on the plasmids. The 
location and length of genes are proportional to the actual conditions. 
Figure S9. The mean relative abundance of E. coli in the gut of infants at 
one week, one month, one year, four years, five years, and six years of age 
based on 16S sequencing data. Figure S10. The percent of the 45 most 
abundant bacterial species in the infant gut. Figure S11. E. coli drives the 
bimodal distribution of BRGs, MRGs, and virulence genes in the infant gut. 
A) Density plot of gene richness among infants and Spearman correlation 
analyses between the richness of ARGs and other genes. Y-axis (not shown 
in the density plot) represents the number of infants. The linear regression 
curve and confidence interval are plotted as an illustration; inference 
was performed with the Spearman correlation coefficient R and the 
corresponding p-value (p < 0.05 as the significance cutoff ). B) Average sil-
houette width associated with PAM clustering when different numbers of 
clusters were used, and the total abundance and richness of genes in the 
two clusters. A high average silhouette value indicates strong clustering. 
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k = 2 was the optimal number of clusters. C) Importance of the top five 
bacterial species to the grouping of PAM clusters, as determined with a 
Random Forest-based approach using the mean decrease in accuracy and 
the relative abundance of E. coli in the two clusters. Species are ordered 
top-to-bottom as most-to-least important.

Additional file 2: Table S1. Mobile virulence genes.
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