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Abstract 

Background The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. 
The observed changes, however, have not been linked to host function and therefore it remains unclear how specific 
changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non‑invasive techniques 
to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated 
in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabo‑
lomic changes in an equine model of non‑steroidal anti‑inflammatory drug (NSAID)‑induced intestinal inflammation 
and (2) apply computational data integration methods to examine host‑microbiota interactions.

Methods Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phe‑
nylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed 
with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoli‑
ated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational 
techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all 
computational approaches.

Results Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integra‑
tion identified correlation of specific bacterial genera with expression of several genes and metabolites that were 
linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic 
reticulum stress and unfolded protein response within the intestinal mucosa.

Conclusions Results of integrative analysis identified an important role for oxidative stress, and subsequent cell 
signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non‑
invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota 
changes have broad application for the field of gastroenterology.

Keywords Host‑microbiota interactions, Exfoliome, Metabolome, Mucosal transcriptome, Oxidative stress, Non‑
invasive, Computational biology

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

*Correspondence:
C. M. Whitfield‑Cargile
wcana@uga.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-024-01785-1&domain=pdf


Page 2 of 20Whitfield‑Cargile et al. Microbiome           (2024) 12:74 

Background
The mammalian gastrointestinal (GI) tract is a complex 
system both anatomically and physiologically that is fur-
ther complicated by the vast collection of microorgan-
isms inhabiting it. It is well appreciated that combinatory 
biology of the host (GI) tract and microbiota play an 
essential role in the digestion of nutrients and production 
of energy [1, 2]. Importantly, changes in the microbiota 
have been linked to a diverse array of both GI and non-
GI health conditions in people and animals and there 
are several reviews that describe these associations [3, 
4]. In human and veterinary medicine, the decreasing 
cost and increasing availability of culture-independent 
approaches (i.e., next generation sequencing) to study 
the microbiome have resulted in a wealth of descriptive 
studies examining the microbiota in the context of health 
and disease. These studies augment our understanding 
of how the composition of the microbiota can be altered 
in various disease states. Studies linking these micro-
bial changes to host function are uncommon, however, 
because they are challenging to conduct. Without the 
combination of both microbial and host data, it remains 
unclear whether microbiomic changes are the cause or 
effect of a disease, limiting the utility of the information. 
Thus, the ability to sequentially interrogate changes in 
both the host and microbiome is needed to unravel the 
complex interplay between the host and the microbiome.

While non-invasive coprological approaches have been 
widely used to capture information regarding the micro-
bial niche, there is a paucity of non-invasive approaches 
to capture similar information regarding host func-
tion. One such approach is the use of exfoliomics. This 
platform has been utilized in rodents [5], pigs [6], adult 
humans [7], and human neonates [8]. We recently also 
validated this approach in horses [9]. Non-steroidal anti-
inflammatory drug (NSAID)-induced intestinal injury 
(i.e., enteropathy) is a clinical syndrome widely recog-
nized in human medicine with a similar disease in ani-
mals albeit different anatomic sites affected depending on 
the animal species [5, 10, 11]. NSAID-induced intestinal 
injury of mice, rats, and pigs has been used as a model 
system for studying inflammatory bowel disease (IBD) 
in people [12–14]. Both the clinical syndrome and the 
model are characterized by microbiota changes, neutro-
philic intestinal inflammation, and gross intestinal lesions 
ranging from subclinical evidence of mucosal injury to 
potentially fatal intestinal bleeding and perforations [15, 
16]. We have developed an equine model of NSAID-
induced intestinal inflammation [17–19], which mirrors 
the microbiota changes and damage to both the upper 
and lower GI tract observed with NSAID-induced intesti-
nal injury in both clinical cases and other animal models. 
Moreover, the inducible, mild, predictable, and reversible 

nature of this model make it an attractive platform to 
examine the intersection of host and microbial func-
tion in the context of GI intestinal injury. Importantly, 
the severity of injury is mild. Therefore, changes in the 
microbiome and host gene expression are not masked by 
the overwhelming inflammatory cascade that accompa-
nies more severe injury. In addition, use of this model has 
potential clinical benefits for horses as any information 
gained about host and microbiota interactions could be 
leveraged to develop preventative or treatment strategies 
for GI diseases of horses. This is important because GI 
diseases, including colic and colitis, are of considerable 
importance to horses and the horse industry, second only 
to old age as a cause of death [20]. Further, gaining infor-
mation about the equine GI tract is challenging from a 
clinical perspective due to the immense size of the horse, 
which precludes the use of advanced imaging modalities 
and the acquisition of diagnostic endoscopic biopsies in 
many cases. Thus, use of the equine model of NSAID-
induced intestinal inflammation not only enables a novel 
platform for understanding host-microbiota interactions 
in the context of GI disease across species but also can 
aid in the identification of mechanisms for preventing GI 
disease and NSAID-induced injury in horses.

Another major limitation that has hampered under-
standing of host-microbiota interactions is the chal-
lenging computational analysis of large omic datasets. 
High-dimensional data are inherently noisy, and this 
becomes even more problematic when the sample 
size is small [21]. Here, we attempted to overcome this 
challenge by application of multiple computational 
approaches to select features that were commonly iden-
tified by all approaches. Taken together, our model and 
computational analysis provides a potential platform for 
elucidating host-microbiota interactions by identifying 
initiating events of injury in a robust and accurate man-
ner. Our objectives were to first characterize changes in 
the host gene expression profiles, fecal microbiota, and 
fecal metabolome changes in an equine model of intesti-
nal inflammation and then to apply multiple methods of 
computational data integration to examine host-microbi-
ota interactions in the context of GI inflammation.

Methods
Study design
The protocol for this study was approved by the uni-
versity Institutional Animal Care and Use Com-
mittee (IACUC 2018–003). The equine model of 
NSAID-induced intestinal injury was performed, as pre-
viously described [17–19]. Briefly, twenty healthy adult 
horses from the university herd were utilized for this 
study. Pairs of horses were matched based on breed, age 
(± 2  years), weight (± 45  kg), and sex. One horse from 
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each pair was randomly assigned to either the control 
group or the NSAID group. The two groups were housed 
in separate but neighboring pastures. There was a 75-day 
acclimation period prior to the 9-day model (Supp. Fig-
ure 1). During both the acclimation period and the treat-
ment period, all horses were managed identically. Horses 
were confined to sand dry lots only and thus no graz-
ing occurred. The diet consisted of free-choice coastal 
Bermuda hay all from the same cutting and free choice 
water. On day 0, baseline feces and blood was collected 
and gastroscopy was performed (see below). Beginning 
on day 1, the NSAID  phenylbutazonea was administered 
[4.4  mg/kg orally q24 hours] to the NSAID group and 
horses assigned to the control group were given an equiv-
alent volume of placebo (base of phenylbutazone paste). 
These treatments were administered for 9  days. On day 
10, fecal and blood samples were collected and gastros-
copy repeated. A physical examination was performed on 
all horses each day during the 9 days of phenylbutazone 
administration. Rectal temperature, heart rate, and res-
piratory rate were recorded. The dosage of phenylbuta-
zone was chosen based on label directions as this dosage 
is frequently used to manage common inflammatory con-
ditions in horses (e.g., osteoarthritis) [22–24].

Gastroscopy, fecal collection, and blood collection
Fecal samples were collected by rectal palpation using 
one rectal sleeve per animal on days 0 and 10. Feces 
were collected in a sterile container, immediately placed 
on dry ice, and transferred to a − 80  °C freezer for long-
term storage. For exfoliomic analysis, an additional 1 g of 
feces was homogenized in 20 mL of RNA Shield® (Zymo 
Research, Irvine, CA, USA) and stored at − 80  °C until 
processed (see below). Whole blood (10  mL) was col-
lected on days 0 and 10 from an aseptically prepared jug-
ular vein. Blood was collected in a serum separator tube 
(Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA) and processed within 60 min. Serum was collected 
after centrifugation (1000 RCF, 10 min, 20 °C) and stored 
at − 80 °C until utilized for an ELISA (see below).

Gastroscopy was performed on days 0 and 10 as pre-
viously described [18]. Briefly, each horse was held off 
feed for 18 h and water for 3 h before gastroscopy. Horses 
were sedated using xylazine hydrochloride (0.4  mg/kg 
IV) and a 3-m endoscope was passed into the stomach. 
The entire stomach was examined, including the pylorus, 
and assigned a score by a single observer board certified 
in large animal internal medicine and blinded to treat-
ment group. Squamous scoring was based on a previously 
published scoring system: 0 = intact normal mucosa; 
1 = intact mucosa with reddening, hyperkeratosis, or 
both; 2 = small single or small multifocal ulcers; 3 = large 
single or large multifocal ulcers; and 4 = extensive (often 

coalescing) ulcers with areas of deep ulceration [25]. 
Glandular ulcers were scored using the same criteria as 
described for squamous ulcers (without consideration of 
lesion depth).

Tumor necrosis factor ELISA
Tumor necrosis factor (TNF) was quantified from serum 
on days 0 and 10 using a commercially available kit (R&D 
Systems, Minneapolis, MN, USA), according to manufac-
turer’s protocol.

Metabolome
Global non-targeted mass spectrometry metabolomics 
analysis was performed at Metabolon, Inc (Metabo-
lon, Inc, Durham, NC), a commercial supplier of meta-
bolic analysis, which has developed a platform that 
integrates chemical analysis (including identification 
and relative quantification) and quality assurance. To 
maximize compound detection and accuracy, 3 separate 
analytical methods were utilized including ultra-high 
performance liquid chromatography-tandem mass spec-
trometry (UHPLC-LC–MS) in both positive and negative 
ion modes and gas chromatography/mass spectrometry 
(GC–MS) [26, 27]. Targeted analysis and quantification 
of eight short chain fatty acids (SCFA) was determined 
with LC–MS/MS.

Sample preparation was performed by the automated 
Mircolab STAR system (Hamilton Company, Salt Lake 
City, UT, USA). To remove, dissociate small molecules, 
and to recover chemically diverse metabolites, proteins 
were precipitated with methanol under vigorous shak-
ing for 2 min (GenoGrinder 2000, Glen Mills, Clifton, NJ, 
USA) followed by centrifugation. The resulting extract 
was placed briefly on a TurboVap® (Zymark Corporation, 
Hopkinton, MA, USA) to remove the organic solvent. 
The sample extracts were stored overnight under nitro-
gen before preparation for analysis. Bioinformatics for 
metabolite data consisted of 4 components, the Labora-
tory Information Management System (LIMS), the data 
extraction and peak-identification software, data process-
ing tools for QC and compound identification, and a col-
lection of information interpretation and visualization. 
These analyses were all performed on the LAN backbone, 
and a database server running Oracle 10.2.0.1 Enter-
prise Edition. Prior to analysis, values were normalized 
in terms of raw area counts and the rescaled to set the 
median equal to 1.

Microbiota
DNA extraction, 16S rRNA gene PCR, and sequenc-
ing were performed, as previously described in a sep-
arate publication [18]. Briefly, 200  mg of feces was 
chipped from the frozen fecal sample and genomic 



Page 4 of 20Whitfield‑Cargile et al. Microbiome           (2024) 12:74 

DNA was isolated using a commercially available fecal 
DNA isolation kit (QIAamp® Fast DNA Stool Mini Kit, 
Qiagen, Germantown, MD, USA) according to manu-
facturer’s protocol with slight modification. The modi-
fications included a bead beating step with 50  mg each 
of sterile DNAase-free 0.1- and 0.5-mm silica zirconium 
beads for 90 s at 6 m/s using a Bead Mill Homogenizer 
(VWR, Radnor, PA, USA). The sample then was heated at 
70 °C for 10 min. The remainder of the protocol was per-
formed according to manufacturer’s protocol.

Amplification and sequencing of the V3-V4 variable 
region of the16S rRNA gene was performed commercially 
(Zymo Research, Irvine, CA, USA). Briefly, a library was 
prepared using a commercially available 16S rRNA prep 
kit (Quick-16S NGS Prep Kit, Zymo Research, Irvine, 
CA, USA), samples were barcoded, and PCR primers for 
the V3-V4 hypervariable region of the 16S rRNA gene 
were used. Sequencing was performed on a MiSeq (Illu-
mina, San Diego, CA, USA) following the manufactur-
er’s guidelines. The software Quantitative Insights Into 
Microbial Ecology (QIIME2—ver 2019.1) (https:// qiime2. 
org), dada2 (ver 1.6), and phyloseq (ver 1.28.0) were used 
for data processing and analysis [28–30]. Sequences were 
quality filtered and assigned to amplicon sequence vari-
ant (ASV) using dada2. Qiime2 was used to assign tax-
onomy to these ASVs against the Greengenes database 
(ver. gg_13_8) filtered at 97% identity for 16S rRNA gene 
sequences. Count tables with assigned taxonomy and 
phylogenetic trees constructed in QIIME2 were exported 
to R (ver. 3.6.1). Phyloseq was used to collapse ASV tables 
to the genera level. Any genera that were present in 5 
or fewer samples were removed. ASV genus level count 
tables were then exported for further analysis.

Exfoliome
The global gastrointestinal transcriptome was assessed 
using exfoliomics from day 10 samples only. PolyA + RNA 
was isolated from fecal samples, as previously described 
[9]. Briefly, RNA was extracted using a commercially 
available kit (Active Motif, Carlsbad, CA, USA), quan-
tified (Nanodrop spectrophotometer; Thermo Fisher 
Scientific, Waltham, MA, USA), and quality assessed 
(Bioanalyzer 2100; Agilent Technologies, Santa Clara, 
CA, USA). Each sample was processed with the NuGen 
Ovation 3′-DGE kit (San Carlos, CA, USA) to convert 
RNA into cDNA. Following cDNA fragment repair and 
purification, Illumina adaptors were ligated onto frag-
ment ends and amplified to create the final library. 
Libraries were quantified using the NEBNext Library 
Quant kit for Illumina (NEB, Ipswich, MA, USA) and 
run on an Agilent DNA High Sensitivity Chip to confirm 
sizing and the exclusion of adapter dimers. Sequencing 
data were demultiplexed and assessed for quality using 

FastQC. Reads were aligned using Spliced Transcripts 
Alignment to a reference software with default param-
eters and referenced against the genome of the horse 
(EquCab 3.0) [31]. The resulting count table was used for 
subsequent statistical analysis.

Data analysis
Several statistical models were used to identify variables 
to discriminate the control and NSAID groups in each 
dataset. Initially, the discriminatory power of each vari-
able was evaluated with Model-Free Feature Screening 
for Ultrahigh Dimensional Discriminant Analysis (MV-
SIS) [32]. MV-SIS measures individual variables’ ability to 
discriminate between the control and NSAID groups and 
produces a measurement that represents the discrimina-
tory power of each variable. Subsequently, Multi-Group 
Sparse Discriminant Analysis (MGSDA) was performed 
[33]. This procedure jointly identifies discriminatory 
variables and estimates a subspace that separates the two 
groups based on identified variables. Unlike the marginal 
selection of MV-SIS, MGSDA accounts for the correla-
tion structure of variables and selects only a subset of 
variables when informative variables are highly corre-
lated. Lastly, we utilized Joint Association and Classifica-
tion Analysis of multi-view data (JACA) to integrate data 
and classify [34]. JACA simultaneously identifies discrim-
inative variables from the three data sets (microbiome, 
exfoliome, and metabolome). The selected variables from 
each data set provide coherent information to the model 
in that the signals corresponding to selected variables 
have high correlation across data sets.

To avoid data overfitting resulting in biased variable 
selection, we identified a set of informative variables 
based on out-of-sample prediction accuracy using Leave-
One-Out Cross-Validation (LOO-CV). Specifically, for 
MGSDA and JACA, we fitted a model leaving one obser-
vation out and predicted the class (control or NSAID) 
of the left-out observation using the fitted model. We 
repeated this process for each observation and selected 
the set of variables that produced the smallest total num-
ber of misclassifications. The procedure was not applied 
to MV-SIS as it does not perform the variable selection, 
but rather provides a ranking for all variables in terms of 
their individual discriminatory power.

Graphical data presentation included principal com-
ponent analysis (PCA) plots and Venn diagrams made 
in R (ver 4.1.3) with the R packages FactoMineR and 
FactoExtra and Venn. Random forest analysis was per-
formed with the R package RandomForest. Gene pathway 
enrichment was determined using QIAGEN IPA (QIA-
GEN Inc., https:// digit alins ights. qiagen. com/ IPA) [35] by 
uploading appropriate gene lists with fold changes.

https://qiime2.org
https://qiime2.org
https://digitalinsights.qiagen.com/IPA
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Cell culture
For all in  vitro assays, chemicals were obtained from 
Thermo Fischer Scientific (Waltham, MA, USA) unless 
otherwise noted. YAMC cells were kindly provided by Dr. 
Robert Whitehead [36]. Unless otherwise stated, YAMC 
cells were cultured in RPMI 1640 media containing Glu-
taMAX, Hepes and supplemented with 5% fetal bovine 
serum, ITS (Corning, Tewksbury, MA, USA), and mouse 
interferon gamma (Sigma-Aldrich, St. Louis, MO, USA).

p62 nuclear translocation studies
To determine the effect of NSAIDs on nuclear translo-
cation of p62, YAMC cells were seeded in 6-well plates 
(7.5 × 105 cells/well) and incubated under non-permis-
sive conditions at 37 °C/5%  CO2. The next day, media was 
replaced with media containing the appropriate treat-
ments suspended in 0.04% dimethylformamide (VWR, 
Radnor, PA, USA), 0.4  mM ibuprofen (Cayman Chemi-
cal Co., Ann Arbor, MI, USA), 0.4  mM phenylbutazone 
(Cayman Chemical Co.), 0.25  mM indomethacin (Cay-
man Chemical Co.), 0.5 or 0.1  mM  H2O2 and returned 
to the incubator. Twenty-four hours later, cells were 
washed once with Dulbecco’s phosphate-buffered saline 
(DPBS), detached, and transferred to a centrifuge tube. 
Cytosolic and nuclear fractions were collected, as previ-
ously described [37]. Briefly, samples were centrifuged at 
500 × g for 10 min, washed once with 1 mL of DPBS and 
cell pellets were resuspended in 1440 µL of hypotonic 
solution (20 mM Tris–HCl (pH 7.4), 10 mM KCl, 2 mM 
 MgCl2, 1 mM EGTA, 0.5 mM DTT, 0.5 mM PMSF). Sam-
ples were incubated on ice for 3 min, supplemented with 
NP-40 to a final concentration of 0.1%, and vortexed for 
10  s vigorously prior to centrifugation at 3000 × g and 
4  °C for 5  min. Supernatants containing cytosolic frac-
tions were transferred into a clean tube and pellets were 
kept on ice for nuclear fraction isolation. Cytosolic con-
taining supernatants were centrifuged at 15,000 × g and 
4 °C for 3 min to remove any residual debris, transferred 
into a clean tube and stored at − 80 °C until western blot 
analysis. Pellets containing the nuclear fraction were 
washed once with isotonic solution supplemented with 
0.3% NP-40 to remove any residual cytosolic proteins, 
centrifuged (3000 × g and 4 °C for 3 min) and lysed with 
100 µL of radioimmunoprecipitation assay buffer (RIPA; 
150  mM sodium chloride, 1.0% NP-40, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM Tris, 
pH 8.0) supplemented with protease inhibitor cock-
tail (Sigma-Aldrich, St. Louis, MO, USA). Samples were 
stored at − 80  °C until western blot analysis. The day of 
analysis, nuclear fractions stored in RIPA buffer were 
centrifuged at 3000 × g and 4° for 3 min before measur-
ing protein concentration. Protein concentration was 

measured from the cytosolic and nuclear fractions using 
the bicinchoninic acid assay.

Western blot analysis
Protein lysates (12.5–50 µg for cytosolic fractions 
and 10–15 µg for nuclear fractions) in 1X SDS/β-
mercaptoethanol buffer were resolved on a 4–20% TGS 
stain free gel (BioRad, Hercules, CA, USA) and electro-
transferred onto a polyvinylidene difluoride transfer 
membrane. Western blot analysis was performed using 
mouse anti-lamin A/C (1:2000; Cell Signaling Technol-
ogy #4777, Danvers, MA, USA), rabbit anti-SQSTM1/
p62 (1:1000; Cell Signaling Technology #5114) or rabbit 
anti-GAPDH (1:1000; Cell Signaling Technology #5174) 
and horseradish peroxidase-conjugated goat anti-rabbit 
(1:2000; Cell Signaling Technology #7074) or goat anti-
mouse (1:5000, Abcam #ab6789, Waltham, MA, USA) 
antibodies. Protein bands were visualized by chemilumi-
nescence using a ChemiDocTouch Imaging System (Bio-
Rad, Hercules, CA, USA). Bands were quantified using 
the ImageLab software version 5.2.1.

Microscopy
YAMC cells were seeded in 2-well chamber cover glass 
(1.5 ×  105 cells/well) and incubated under non-permissive 
conditions (37 °C, 5%  CO2). Thirty-six hours post seed-
ing, media was replaced with the appropriate drug and 
cells were returned to the incubator. One-hour post drug 
addition, the reactive oxygen species (ROS) indicator 
(CM-H2DCFDA) was added to the wells at a final con-
centration of 2 ng/µL. Cells were returned to the incuba-
tor. One-hour post addition of ROS indicator, cells were 
washed once with media before imaging with a confocal 
laser scanning microscope (Olympus FV 3000, Shinjuku, 
Tokyo, JP). The ROS positive area was measured using 
Image J [38].

Results
All horses completed the study but we were unable to 
collect one or both fecal samples from 2 horses (one 
from each group). Therefore, all fecal-based analyses are 
based on a sample size of 9 horses per group. All horses 
included in the study were geldings. The mean age in 
years ± SD for the control group and NSAID group was 
14.7 ± 3.5 and 14.8 ± 3.2, respectively. Throughout the 
study, there was no clinical evidence of negative effects 
related to phenylbutazone administration, with vital 
parameters in all horses remaining within normal ref-
erence ranges. This is typical of the equine model of 
NSAID-induced intestinal injury [17]. All NSAID-treated 
horses in this study had prototypical evidence of sub-
clinical intestinal injury including gastric ulcers and GI 
inflammation (Supp Figure 2).
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Individual data analysis
Metabolome
Untargeted metabolomics was performed on fecal sam-
ples collected before and after 10 days of phenylbutazone 
administration for both the control and NSAID group. A 
total of 553 known compounds were identified (Supple-
mental Table 1). Phenylbutazone, only present in treated 
horses, was removed from the list of metabolites for all 
analyses. Principal component analysis (PCA) was per-
formed to examine the ability of the entire fecal metab-
olome to separate the groups. There was overlap of all 
samples at day 0 but clear visual shifts of the fecal met-
abolic profile from day 0 to day 10, most notable in the 
NSAID group (Fig. 1). To further highlight differences in 
the fecal metabolome, random forest (RF) analysis was 
performed comparing control and NSAID groups at day 
0 and day 10. RF analysis at day 0 resulted in an overall 
predictive accuracy of 60%, where a predictive accuracy 
of 50% would occur by chance alone. In contrast, fol-
lowing treatment, RF was 80% accurate at binning the 
samples.

Next, feature selection was performed with MV-SIS, 
which screens for important predictors for the ultra-
high dimensional discriminant analysis with a cate-
gorical response. MV-SIS examines each variable (i.e., 
metabolite) individually and provides a number that 

represents the ability of that metabolite to discrimi-
nate between groups. These analyses were performed 
on data that represented the difference between day 
10 and day 0 for each group. The 50 most informative 
metabolites selected by MV-SIS and their distribution 
among samples are shown in Fig. 2A. The top 300 fea-
tures selected by MV-SIS were used for subsequent 
analyses (i.e., MGSDA and JACA). MGSDA jointly 
identifies discriminatory variables and, based on the 
variables, estimates a subspace that separates the two 
groups the most. Unlike the marginal selection of MV-
SIS, MGSDA accounts for the correlation structure of 
variables and selects only a subset of variables when 
informative variables are highly correlated. Thus, if 
non-selected variables have high correlations (R > 0.9) 
with a MGSDA selected variable, then it is desired to 
investigate the non-selected variables because they 
have similar discriminatory power as the selected vari-
able [33]. MGSDA identified the very long chain fatty 
acid (VLCFA) 2-hydroxynervonate as being the most 
informative metabolite. No additional metabolites were 
highly correlated with 2-hydroxynervonate. The aver-
age misclassification rate for this metabolite alone was 
0.278. When MGSDA was allowed to select more vari-
ables, 4 additional metabolites were selected with an 
increased overall error rate (0.44) (Fig. 2B).

Fig. 1 Fecal metabolome is altered by phenylbutazone administration. PCA of fecal metabolites grouped by treatment (NSAID or control) and day 
(day 0 = before NSAID administration and day 10 = after NSAID administration). Ellipses represent 95% CI around the group mean points. Point size 
indicates quality of representation  (cos2) of individuals on the PCA; the larger point size reflects higher quality representation
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Microbiota
There were 21,622 unique ASVs identified in the 16S 
rRNA gene sequence data. These were aggregated to the 
genera level for further analysis. We initially performed 
PCA based on relative abundance at the genus level. In 
order to improve visualization of the PCA, we removed 
genera that we present in fewer than 6 samples among 
the 36 samples that were available for analysis. Similar 
to the fecal metabolome of these horses, there was over-
lap of both groups at day 0 and clear visual shifts from 
day 0 to day 10 for both groups, although the direction 
of the population changes were different between the 
groups (Fig.  3A). Feature screening with MV-SIS was 
initially performed (Fig.  4A). MGSDA was applied to 
the features and the genus Sarcina was selected as the 
best discriminator of groups with an error rate of 0.11. 
Selection of the next most informative genera, Fibrobac-
ter, Pseudobutyrivibrio, Sutterella, and Syntrophomonas 
increased the error rate to 0.22 (Fig.  4B). The contribu-
tion of each bacterial genus to group separation on the 
PCA is demonstrated in the biplot along with the percent 

relative abundance of these genera (Fig. 2A and B). Taken 
together, these findings highlight the importance of the 
bacterial genera selected by MGSDA.

Gastrointestinal transcriptome
The RNA isolated from 2 samples, one from each group, 
was of insufficient quality to proceed with sequenc-
ing and therefore, exfoliome data from 8 horses in each 
group was analyzed. These 16 horses mapped to 14,092 
genes out of the 30,000 genes in the EquCab 3.0 genome. 
PCA plots of the global transcriptome revealed nearly 
complete overlap of both groups; however, the NSAID 
group was tightly clustered whereas the control group 
was widely dispersed (Fig.  5A). In addition, many of 
the most informative genes were downregulated in the 
NSAID group relative to the control group (Fig.  5B), 
although there were no differences in library size between 
the groups nor expression of house-keeping genes (Supp. 
Figure 3). We next employed MV-SIS to screen the exfo-
liome data (Fig.  5C). MGSDA selected 6 genes with a 
misclassification rate of 0.125, although LCORL was 

Fig. 2 Specific fecal metabolites discriminate between control and NSAID‑treated horses. A Heat map showing the distribution of the difference 
in fecal metabolites between day 10 and day 0 among the samples for the 50 most discriminative metabolites selected by MV‑SIS. Values are scaled 
around zero as indicated by the key. Negative numbers (purple/blue) indicate lower concentration at day 10 compared to day 0 whereas positive 
numbers (orange/red) indicate higher concentration at day 10 compared to day 0. MGSDA‑selected metabolites are shown in red text. B Bar chart 
indicating the magnitude of the loadings of MGSDA‑selected metabolites. The misclassification rate (MCR) is indicated by the number at the top 
of each bar(s)
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the most informative (Fig. 5D). In addition, LCORL was 
highly correlated (R > 0.95) to 10 other genes that were 
also selected by MV-SIS (Table 1). Therefore, these addi-
tional genes were not selected by MGSDA because they 
were considered redundant due to their high correlation 
but possess similar discrimination ability as LCORL.

Data integration and biological interpretation
Ultimately intestinal biology involves a complex interac-
tion between the microbiota and the host, combined with 
their respective contributions to the intestinal metabo-
lome. To elucidate the interaction between these sets of 
data (i.e., microbiota, exfoliome, and metabolome), we 
performed JACA. JACA jointly identifies discriminative 
variables from the combined three data sets [34]. This 
analytical platform provides coherent information to 
the model in that signals associated with selected vari-
ables have high correlation across data sets. Ultimately, 
3 bacterial genera, 16 metabolites, and 25 host genes 
were selected by JACA (Fig. 6A–C). Pairwise projections 
of the samples in the direction of the selected features 
revealed clear separation of the groups (Fig. 6D–F). The 

correlation of the exfoliome and metabolome was strong 
(0.85) as was the correlation between exfoliome and 
microbiota (0.76). The correlation between the metabo-
lome and microbiota was moderate (0.64).

Traditional statistical approaches that attempt to iden-
tify features that are differentially expressed or abundant 
provide useful information but results of these traditional 
analyses with ultra-high dimensional data and small sam-
ple size can generate suspicious findings due to the size 
and inherent noise in these types of data. Therefore, we 
attempted to overcome this by utilizing analytical tech-
niques which were designed to address these specific 
limitations. Each analysis provided different informa-
tion although there was substantial overlap of the results 
(Fig.  7A–C). Since discriminating features commonly 
selected by multiple techniques are likely to be the most 
robust, we built our mechanistic hypothesis around 
features that were commonly selected by all analytical 
techniques with additional features added to this model 
based on 2 criteria: (1) highly correlative (R > 0.95) to 
the top MGSDA/JACA and MV-SIS features and (2) the 
top 1/3 of JACA-selected features based on magnitude 

Fig. 3 Fecal metabolome is altered by phenylbutazone administration. A PCA with biplot of fecal metabolites grouped by treatment (NSAID 
or control) and day (day 0 = before treatment and day 10 = after treatment). Ellipses represent 95% CI around the group mean points. Point size 
indicates quality of representation  (cos2) of individuals on the PCA; the larger point size reflects higher quality representation. The 4 genera 
highlighted by the red box are the genera selected by subsequent analyses. B Boxplots showing the percent relative abundance of the 4 genera 
selected by subsequent analyses. Horizontal line represents the median, box extends from 25 to 75th percentiles, and whiskers extend to minimum 
and maximum values
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of loadings. This feature selection approach resulted in 
identification of 8 metabolites, 4 bacterial genera, and 
17 host genes (Table 1). We then explored these features 
to identify patterns that might be informative regarding 
host-microbiota interactions in our model.

Interestingly, of the 8 metabolites selected, 2 were 
exclusively metabolized by peroxisomes, the VLCFA 
2-hydroxynervonate and the phyanytic acid derivative 
3-methyladipate. Based on these findings, we extracted 
the metabolites from our data that are routinely assayed 
for the clinical diagnosis of peroxisomal disorders in 
people including VLCFAs, branch chain fatty acids, plas-
malogens, pristanic acid, and phytanic acid in order to 
examine this entire family of metabolites. PCA based 
on these 19 metabolites showed clear separation of the 
groups suggesting that this family of peroxisomal metab-
olites was altered by NSAID administration (Fig. 8A). An 
additional 2 of the 8 metabolites were tryptophan metab-
olites. Similar to peroxisomal metabolites, the family of 
tryptophan metabolites also showed clear separation of 

the groups (Supp Figure 4). The bacterial genera selected 
by our strategy were Sarcina, Pseudobutyrivibrio, Syn-
trophomonas, and Fibrobacter. Of these, the known 
function of Pseudobutyrivibrio production of the short 
chain fatty acid (SCFA) butyrate suggests that loss may 
have important implications for intestinal health. In 
order to determine if loss of this genus also resulted in 
decreased butyrate as expected, targeted metabolomic 
analysis of the primary SCFAs (i.e., propionate, butyrate, 
and acetate) at day 10 of both groups was performed. In 
concordance with loss of Pseudobutyrivibrio, butyrate 
was decreased in the feces of NSAID-treated horses 
(P = 0.009) relative to control horses as was propionate 
(Fig.  8B–D). Ultimately, 17 host genes met criteria for 
inclusion for biological interpretation. The top canonical 
pathways enriched by these 17 genes were EIF2 signaling 
and the protein ubiquitination pathway (Fig. 8E).
Pseudobutyrivibrio is an obligate anaerobic bacte-

ria [39] and therefore, is sensitive to changes in intesti-
nal oxygenation. Oxidative injury within the intestinal 

Fig. 4 Specific fecal bacterial genera discriminate between control and NSAID‑treated horses. A Heat map showing the distribution 
among the samples of the 50 most discriminative bacterial genera selected by MV‑SIS. Values are scaled around zero as indicated by the key. 
MGSDA‑selected metabolites are shown in red text. B Bar chart indicating the magnitude of the loadings of MGSDA‑selected metabolites. The 
misclassification rate (MCR) is indicated by the number at the top of each bar(s)
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mucosa is one mechanism that has been shown to alter 
oxygenation status and loss of commensal anaerobic bac-
teria. NSAIDs are known to induce oxidative injury; how-
ever, the ability of phenylbutazone to induce oxidative 
injury relative to other NSAIDs has not been examined. 
Thus, we compared NSAID-induced ROS accumula-
tion in young adult mice colonocytes (YAMC) cells 
treated with phenylbutazone and 3 other commonly used 
NSAIDs (Fig. 9A and B). The oxidative capability of phe-
nylbutazone was similar to the other classes of NSAIDs 
examined suggesting that phenylbutazone induces simi-
lar oxidative stress as other NSAIDs. Cellular oxidative 
stress induces many cellular responses including endo-
plasmic reticulum (ER) stress [40]. Typically, the cellular 
response to ER stress is to increase protein degradation 
through induction of the ubiquitin proteome system and 
to decrease protein translation through the eukaryotic 
translation initiation factor 2 (eIF2) pathway, the top two 
canonical pathways enriched in this model. One cellular 
indication of ER stress is nuclear accumulation of p62 
that occurs to increase the efficiency of the ubiquitin 
proteome system [41]. Interestingly, we observed nuclear 

accumulation of p62 in mouse colonocytes treated with 
various NSAIDs including phenylbutazone (Fig.  9C). 
Taken together, these data suggest that, in  vitro, phe-
nylbutazone induces oxidative injury to colonocytes and 
that the resulting cellular response may indicate ER stress 
and activation of the proteasome ubiquitin system. Based 
on these data, we have generated a putative mechanism 
describing the effects on NSAIDs with respect to GI 
injury (Fig. 10).

Discussion
Non-invasively acquired data regarding the cellular and 
molecular function of the GI tract has broad implica-
tions in the field of gastroenterology for all animal spe-
cies. Fecal microbiota data have been examined for 
decades in the context of GI diseases in both people and 
animals. While descriptive microbiota data can provide 
useful information, linking microbiota changes to intes-
tinal function increases the value of such data. The major 
limitations of linking microbiota data and GI functional 
information are the difficulties of acquisition of cel-
lular and molecular data regarding the GI tract and the 

Fig. 5 The equine exfoliome is altered by phenylbutazone administration. A PCA plot based on gene expression in the equine exfoliome 
after 9 days of phenylbutazone administration (NSAID) or placebo (control). Ellipses represent 95% CI around the group mean points. Point 
size indicates quality of representation (cos2) of individuals on the PCA; larger point size reflects higher quality representation. B Smear plot 
of the fold differences in exfoliome gene expression between NSAID and control horses. Red dots represent genes with greater than 2‑fold 
difference between the groups. Yellow smear on the left of the graph represents genes with zero or very low counts in one group but not the 
other. C Heat map showing the distribution among the samples of the 50 most discriminative genes selected by MV‑SIS. Values are scaled 
around zero as indicated by the key. MGSDA‑selected metabolites are shown in red text. B Bar chart indicating the magnitude of the loadings 
of MGSDA‑selected metabolites. The misclassification rate (MCR) is indicated by the number at the top of each bar(s)
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challenges of computational analysis of these large data 
sets. We combined novel techniques (i.e., exfoliomics) 
and robust computational approaches to integrate host 
microbiota data in an equine model of NSAID-induced 
GI injury. Our findings recapitulating known mecha-
nisms of NSAID-induced GI injury provide proof-of-
principle for the validity of our non-invasive approach to 
investigate GI diseases in both humans and animals.

Of the many animal models of GI inflammation, chemi-
cally induced models are among the most common. Each 
of these models has advantages and disadvantages and 
these models have been extensively reviewed elsewhere 

[42, 43]. NSAIDs have been used as a chemically induced 
model of GI injury [44, 45]. NSAID-induced GI injury 
is an attractive model because it is a clinically relevant 
condition [46, 47] and shares many pathological fea-
tures with other IBDs [48]. As with IBD, microbiomic 
changes are a key feature of NSAID enteropathy, thus 
enabling use of the NSAID model for examination of 
host-microbiota interactions [49]. Although much of this 
work has been conducted in mice and rats, both clinical 
cases and the equine model of NSAID-induced GI injury 
have GI lesions similar to those in people and mice [17, 
18]. While the equine model has limitations, large animal 
models offer important benefits [50]. We used the model 
of NSAID-induced GI injury [17, 18] in horses and our 
experience with equine exfoliomics [9] and microbiomics 
[19] to integrate host and microbiota data to gain insights 
into the pathogenesis of GI injury.

The most commonly accepted paradigm for lower GI 
injury begins with NSAID accumulation within intestinal 
epithelial cells (IEC). NSAIDs are weak organic acids [51] 
that can easily traverse the plasma membrane of IECs. 
Intracellularly, NSAIDs induce mitochondrial injury and 
subsequently oxidative stress [52]. This has been well-
documented for the cyclooxygenase (COX) non-selective 
NSAID indomethacin, the most common NSAID utilized 
in animal models of GI injury. The ability of phenylbuta-
zone to induce ROS in IECs has not been well-studied; 
however, our results demonstrate that phenylbutazone 
induces ROS accumulation. This is consistent with other 
studies where phenylbutazone induced ROS in other tis-
sues [53, 54].

Oxidative stress induces a myriad of cellular 
responses that are highly cell- and context-depend-
ent. The metabolite identified by all of the analyti-
cal approaches was the VLCFA 2-hydroxynervonate 
which was increased in NSAID-treated horses relative 
to controls. Accumulation of VLCFAs is a hallmark of 
peroxisomal dysfunction. While inherited peroxisomal 
disorders have been described in humans, acquired 
disorders are more common. One of the few defined 
causes of acquired peroxisome disorders is oxidative 
stress which has been demonstrated in diabetes [55] 
and aging [56]. In our model, oxidative stress appears 
to be the most likely cause given our findings and the 
known effects of other NSAIDs on redox homeostasis 
[57]. Peroxisomes are critically involved in redox home-
ostasis, generate large amounts of cellular hydrogen 
peroxide [58], and can be overwhelmed during oxida-
tive stress resulting in dysfunction [59, 60]. While we 
had no means of examining peroxisome function in this 
study, we were able to examine other metabolites asso-
ciated with peroxisomal biogenesis disorders. These 
included plasmalogens, synthesized in peroxisomes 

Table 1 List of features identified as being most informative 
in our model. These include features (i.e., bacterial genera, 
metabolites, and genes) that were selected by all analytical 
approaches (bolded) and those that were added based on 
magnitude of JACA loads or high correlation to the top MGSDA 
selected feature

Exfoliome

LCORL Selected by all
TUBB Selected by all
TARS1 Selected by all
SPOCK3 JACA rank 4

HTATSF1 JACA rank 5

LMAN1 JACA rank 6

ZNF782 JACA rank 3

GGNBP2 LCORL cor

PSMD1 LCORL cor

RPL15 LCORL cor

ERBIN LCORL cor

TRIP11 LCORL cor

LMAN1 LCORL cor

SMURF2 LCORL cor

PRPF4B LCORL cor

KMT2E LCORL cor

RPL7 LCORL cor

Microbiota

Sarcina Selected by all
Pseudobutyrivibrio Selected by all
Fibrobacter JACA rank 3

Syntrophomonas JACA rank 4

Metabolome

2,4,6-Trihydroxybenzoate Selected by all
2-Hydroxynervonate Selected by all
Methyladipate Selected by all
Gamma-aminobutyrate Selected by all
(3′‑5′)‑Adenylyluridine JACA rank 3

Kynurenine JACA rank 2

n‑Acetylhistidine JACA rank 2

Anthranilate JACA rank 5
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and terminated in the ER [61], and other VLCFAs 
[62]. A notable difference in this class of metabo-
lites was observed between the groups. Others have 
demonstrated similar findings associated with per-
oxisomal dysfunction in numerous diseases including 

Alzheimer’s disease [63], Zellweger syndrome [64], and 
various types of cancers [65].

As noted, oxidative stress induces a wide array of cel-
lular responses. The majority of ROS are generated by 
the mitochondria (70%), with peroxisomes providing 

Fig. 6 JACA identifies features that correlate with features in all three datasets and discriminate between groups. JACA‑selected features 
and the magnitude of the loadings of each feature, which indicates both ability of that feature to discriminate between the groups and its 
correlation to features in the other 2 datasets, for A metabolome, B exfoliome, and C microbiota. Pairwise correlation of JACA‑selected features 
and projection of samples in the direction of JACA‑selected features for D metabolome vs. microbiota, E metabolome vs. exfoliome, and F 
microbiota vs. exfoliome

Fig. 7 Venn diagram depicting the congruency of features selected by our analytical approaches for the A metabolome, B microbiota, and C 
exfoliome
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much of the remaining 30% [66]. There is well-recog-
nized cross-talk between peroxisomes and mitochondria 
in terms of fatty acid metabolism for energy and redox 
homeostasis among others [67]. Peroxisomes and mito-
chondria are in close proximity to the ER and contact 
the ER through mitochondrial-associated membranes. 
ROS generated by these organelles diffuse to the ER and 
induce a stress response [55], including the accumulation 
of misfolded proteins within the cell. ER stress initiates 
a highly conserved cell-signaling pathway referred to as 
the unfolded protein response pathway (UPR). The UPR 
attempts to restore protein folding capacity of the cell 
via a series of cell signaling transduction events with 4 
goals that vary based on the severity of oxidative stress 
and other factors. These goals are (1) a global decrease in 
protein synthesis, (2) increased ER folding capacity, (3) 
increased degradation of misfolded proteins, or (4) cell 
death, if uncorrected. Clearly, these diverse and broad 
cellular responses involve a complex interaction of many 
genes, proteins, and transcription factors.

The host genes selected in our model can be grouped 
based on cellular function into 4 distinct, but overlap-
ping outcomes: (1) ER to Golgi trafficking (TRIP11, 
LMAN1); (2) protein degradation through autophagy 
and ubiquitination (ERBIN, PSMD1); (3) cell cycle regu-
lation (KMT2E); (4) transcription regulation (ZNF782, 
PRP4FB); and (5) EIF2 signaling (RPL15, RPL7). Each of 
these functions is well described events associated with 

the UPR and suggests that NSAIDs induce ER stress, 
possibly through imbalance of redox homeostasis, and 
induction of UPR with associated downstream functions. 
While these findings are known to occur with oxidative 
stress in general, NSAIDs have been shown to induce ER 
stress [68] and associated downstream effects including 
UPR [69]. The mechanisms by which NSAIDs induce ER 
stress are unclear but oxidative stress with mitochondrial 
dysfunction and effects of NSAIDs on cell membranes 
have been implicated [70].

One outcome of activation of UPR is enhanced pro-
tein degradation though proteosomal degradation and/
or autophagy. Many classes of NSAIDs have been shown 
to impact macroautophagy although whether NSAIDs 
inhibit or induce macroautophagy is unclear. Interest-
ingly, ERBIN expression is decreased in people with 
IBD, and ERBIN inhibits autophagy and subsequent 
autophagic cell death in murine models of DSS-induced 
colitis [71]. In our study, the expression of ERBIN was 
downregulated in NSAID-treated horses, consistent with 
other GI inflammatory diseases. p62 is a protein that is 
critically involved in the intersection of autophagy and 
proteosomal degradation. This protein binds to ubiquit-
inated targets resulting in autophagic degradation. p62 is 
also important for pexophagy, the process by which cells 
remove dysfunctional peroxisomes. Notably, our data 
demonstrate that phenylbutazone increases the amount 
of p62 and results in nuclear translocation of p62. This 

Fig. 8 In‑depth exploration of the most informative features selected by our analytical approach. A PCA biplot based on metabolites known to be 
impacted by peroxisomal dysfunction grouped by treatment (control or NSAID). Ellipses represent 95% CI around the group mean points. Point size 
indicates quality of representation (cos2) of individuals on the PCA; larger point size reflects higher quality representation. B Fecal concentration 
(µg/g of feces) of the SCFA butyrate was significantly lower (P = 0.009, independent t‑test) in NSAID‑treated horses compared with control horses. C 
Fecal concentration (µg/g of feces) of the SCFA propionate was significantly lower (P = 0.002, independent t‑test) in NSAID‑treated horses compared 
with control horses. D Fecal concentration (µg/g of feces) of the SCFA acetate was not significantly different between the groups
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is noteworthy, as p62 is specifically required for pex-
ophagy during oxidative stress conditions [72, 73]. Taken 
together, our metabolomic and exfoliomic data highlight 
the role of redox homeostasis and subsequent ER stress 
in phenylbutazone-induced intestinal injury in horses.

While redox homeostasis is important in all cells, the 
impact of imbalances is pronounced in the GI tract and 
has been associated with many GI diseases. One reason 
for this pronounced effect is that, unlike other tissues 
in the body, the GI mucosa is hypoxic under homeo-
static conditions. There are structural and physiologi-
cal reasons for this, including the maintenance of an 

anaerobic environment in the lumen of the GI tract. 
The GI microbiota is a large and diverse system with 
the vast majority of the bacteria known to be faculta-
tive or obligate anaerobes [74]. Redox imbalances can 
result in increased oxygen levels within both the GI 
mucosa and lumen allowing for increased growth of 
aerobic bacteria and loss of obligate anaerobes [75]. 
In our study, one of the bacterial genera identified by 
multiple computational approaches was Pseudobutyriv-
ibrio, which was decreased in horses after NSAID treat-
ment. The reasons for this decreased abundance are 
unclear and, while redox imbalance may have played 

Fig. 9 In vitro data from mouse colonocytes suggests that NSAIDs, including phenylbutazone, induce oxidative stress and a subsequent cellular 
response known to occur when ER stress is induced by imbalanced redox homeostasis. A Fluorescent microscopic images of YAMC cells exposed 
to NSAIDs and  H2O2, at the noted concentration, for 24 h prior to exposure to the ROS indicator CM‑H2DCFDA. Ten images were taken from each 
treatment condition. B Average intensity of fluorescence for each treatment condition was significantly different that control cells (ANOVA) 
except the lowest concentration of  H2O2. Graph represents data from 3 independent experiments. C Western blot of P62 protein from both the 
cytosolic (left blot) and nuclear (right blot) protein fractions of YAMC cells exposed to the NSAIDs at the indicated concentration for 24 h. Loading 
controls were the nuclear protein lamin A/C and the cytosolic protein GAPDH. D Graph of nuclear p62 represented as fold of DMF control from 3 
independent experiments. DMF: dimethylformamide (0.04%), IB: ibuprofen (0.4 mM), PB: phenylbutazone (0.4 mM), IM: indomethacin (0.25 mM), 
 H2O2 (0.5 or 0.1 mM as indicated)
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a role, that cannot be the only explanation as other 
obligate anaerobes increased in relative abundance in 
response to NSAIDs. However, loss of Pseudobutyrivi-
brio may have contributed to disease severity due to 
loss of SCFA butyrate, which is produced in large quan-
tities by Pseudobutyrivibrio [76]. We confirmed that 
loss of this genus was associated with loss of the SCFA 
butyrate. Butyrate is an important bacterial metabolite 
with a broad array of impacts on GI mucosal homeo-
stasis including potent antioxidant activity [77, 78]. 
Butyrate also directly impacts peroxisome proliferation 
and function in IECs [79]. Therefore, phenylbutazone-
induced oxidative injury combined with decreases in 
one of the major antioxidant metabolites (i.e., butyrate) 
may have exacerbated redox imbalances in a vicious 

cycle and further induced peroxisome injury and ER 
stress, ultimately leading to cell death and intestinal 
injury.
Sarcina was another genus of bacteria that was iden-

tified by all computational methods and was the best 
discriminator of the groups. This genus is found in the 
feces of normal healthy humans [80] and other animals 
including horses [81]. However, it has also been impli-
cated in severe gastritis and gastric rupture in humans 
[82] and animals [83]. Whether it causes these patholo-
gies or is simply an opportunistic pathogen remains 
unclear. NSAID-induced gastric ulcers are common [17, 
84] and the horses in this study developed gastric ulcers 
as expected. Because Sarcina is a component of the nor-
mal flora of the equine stomach [85], it is possible that 

Fig. 10 Putative mechanism describing how phenylbutazone induces injury in the GI tract. We propose that phenylbutazone induces oxidative 
injury to colonocytes which subsequently alters several cell signaling responses including ER stress and activation of the proteasome ubiquitin 
system. Further, this combination of host changes results in concommitant alteration of the microbiome, potentially due to lumenal redox 
imbalances. Obligate anaerobic bacteria, and their metabolites (e.g., butyrate), are then depleted due to their sensitivity to lumenal oxygen content. 
Loss of the critical SCFA butyrate then exacerbates cellular injury
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the increased abundance of Sarcina in NSAID-treated 
horses may be due to colonization of NSAID-induced 
gastric ulcers.

The role of the microbiota in GI diseases is well-
recognized and many descriptive studies link micro-
biota changes with various GI diseases. Elucidating 
host-microbiota interactions from a cellular and molecu-
lar perspective, however, is challenging. We attempted to 
address this challenge by combining host, fecal metabo-
lomic, and fecal microbiota data. The power of our study 
lies in the robust computational analysis used for inte-
grating host and microbiota data. Identifying the features 
that are biologically important of high-dimensional data, 
especially with a small sample size, is challenging. Tra-
ditional approaches that attempt classification using all 
features in large datasets can be little more than a guess 
due to the noise inherently present in high-dimensional 
data [86]. Our approach employed multiple analytical 
methods followed by focusing on features that were com-
monly identified among these techniques. Ultimately, 
this methodology identified a sparse set of features from 
each of our datasets (i.e., metabolites, bacterial genera, 
and host genes) that were available for biological inter-
pretation. Biological interpretation of our findings reca-
pitulates many of the known or suspected initiators of 
NSAID-induced intestinal injury which leads credence to 
this analytical approach. Importantly, the mild degree of 
intestinal injury induced by our model allowed us to rec-
ognize of initiating events of NSAID enteropathy. Many 
studies utilize models of NSAID enteropathy that induce 
severe injury which has provided a wealth of information 
about mucosal injury and subsequent inflammatory cas-
cade. In these studies, however, the severe inflammatory 
reaction can mask the initiating events. Identification of 
pathways involved in initiating events can lead to avenues 
for therapeutic intervention designed to prevent NSAID 
enteropathy and, perhaps, other GI diseases character-
ized by imbalances in intestinal redox homeostasis.

The majority of changes observed in all 3 datasets 
can be traced to oxidative stress within the GI tract and 
associated metabolite, microbiota, and gene expression 
changes. However, other changes in these datasets merit 
discussion. Changes were observed in 2 of the 8 selected 
tryptophan-derived metabolites (viz., kynurenine and 
anthranilate). Tryptophan and both its mammalian- and 
microbiota-derived metabolites have been extensively 
studied in the context of immunoregulation and various 
types of IBDs. While some results are conflicting, mul-
tiple authors have demonstrated increased levels of fecal 
tryptophan and increased tryptophan metabolites in 
cases of active IBD [87]. This likely reflects some combi-
nation of increased tryptophan metabolism, decreased 
absorption, or increased loss from injured GI tissues [87, 

88]. We and others have previously examined the effects 
of tryptophan metabolites in a murine model of NSAID-
induced intestinal injury and demonstrated interactions 
between NSAID-induced injury and tryptophan metabo-
lites [16]. The congruency of these findings further sup-
ports the importance of this family of metabolites in GI 
inflammation.

There were several limitations to our study that should 
be recognized. First, the sample size for this study was 
small (n = 9 for fecal-based assays) and in some readouts 
(e.g., exfoliome) the sample size was further decreased 
by logistical issues such as poor RNA quality. Due to 
our small sample size, we attempted to remove as many 
other variables between the groups as possible. For 
example, 75 days of acclimation, same diet, and side-by-
side housing to name a few. Despite these steps, there 
were still differences between the groups at the start of 
this study as evidenced by differences at day 0 for both 
the metabolome and microbiota. While we attempted 
to house horses as similar as possible, it is possible that 
housing differences, even as minimal as adjacent pens, 
resulted in different baseline findings. The combination 
of small sample size and starting with a different baseline 
metabolome and microbiota may have limited our ability 
to detect other important biological signatures. Another 
point that is related to group assignment is the fact that 
there were also changes in the control group over the 
study period. This suggests that NSAIDs were not the 
only cause some of the changes we observed. The reasons 
for the changes in the control group are unclear but may 
be related withholding feed twice within the 10 day treat-
ment period as diet changes have been shown to alter the 
fecal microbiota [89].

Other limitations were related to our sample acquisi-
tion and analyses. We used 16S rRNA gene sequencing 
of fecal samples for microbiota analysis. There are many 
well-described limitations to this approach related to 
taxonomic resolution, lack of functional information, 
and inability to assign taxonomy to a large proportion of 
ASVs [90]. This is further compounded by the fact that 
we used fecal samples only. The ability of fecal samples 
to represent the microbiota of the proximal GI tract is 
questionable at best. Relatedly, we propose a mechanis-
tic hypothesis for NSAID-induced intestinal injury in 
horses, but no additional readouts were performed to 
confirm our hypothesis. The primary reason for that is 
that samples from horses were acquired non-invasively 
and therefore no tissues were available for confirma-
tion nor were microbiota samples representative of the 
proximal GI tract available. Further, host transcriptomic 
data was based on analysis of the equine exfoliome. We 
and others have used this approach in rodents [5], pigs 
[6], people [7], human neonates [8], and horses [9], and 
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demonstrated that exfoliomic data mimic those in tis-
sues but further validation of the exfoliomic methods in 
horses is warranted. Finally, the portion of our mechanis-
tic hypothesis generated by evaluation of the exfoliome 
is based on the function of a small number of genes that 
are not master regulators of the pathways we identified. 
For example, the well-described initiators of UPR are 
inositol-requiring enzyme 1α (IRE1α), pancreatic endo-
plasmic reticulum kinase (PERK), and activating tran-
scription factor 6 (ATF6) [91]; thus, it is logical that our 
analysis should have identified an association between 
these master regulators and NSAID administration. 
None of these canonical drivers of UPR, however, was 
selected by our methodology. This might be attributable 
to the fact that interrogated changes in mRNA expres-
sion; RNA-Seq does not identify initiation events such 
as nuclear translocation or phosphorylation. This might 
also be attributed to some of the other limitations men-
tioned above related to the concern that the samples we 
collected (i.e., feces) were not highly representative of the 
host and microbiota responses that occurred in the prox-
imal GI tract resulting in missing some key cellular and 
molecular signatures.

Conclusions
In summary, our work demonstrates the power of non-
invasive, multiomic approaches and robust computa-
tional analyses to integrate omic methods to interrogate 
host-microbiota interactions. Our findings recapitu-
late some of the known biology and pathophysiology of 
NSAID-induced intestinal injury, thereby adding con-
fidence in the validity of our approach. By leveraging 
a mild model of injury, we have uncovered some of the 
initiating events of NSAID-induced intestinal injury 
which are often masked in more severe models. We 
propose a mechanistic hypothesis based on these find-
ings. Importantly, our findings identify putative targets 
for therapeutics or preventatives in the treatment of 
NSAID enteropathy and other inflammatory GI diseases. 
Additional studies are needed to confirm our findings in 
horses and other animal species.
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