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Abstract 

Background The gut microbiome plays a crucial role in understanding complex biological mechanisms, includ-
ing host resilience to stressors. Investigating the microbiota-resilience link in animals and plants holds relevance 
in addressing challenges like adaptation of agricultural species to a warming environment. This study aims to char-
acterize the microbiota-resilience connection in swine. As resilience is not directly observable, we estimated it using 
four distinct indicators based on daily feed consumption variability, assuming animals with greater intake variation 
may face challenges in maintaining stable physiological status. These indicators were analyzed both as linear and cat-
egorical variables. In our first set of analyses, we explored the microbiota-resilience link using PERMANOVA, α-diversity 
analysis, and discriminant analysis. Additionally, we quantified the ratio of estimated microbiota variance to total 
phenotypic variance (microbiability). Finally, we conducted a Partial Least Squares-Discriminant Analysis (PLS-DA) 
to assess the classification performance of the microbiota with indicators expressed in classes.

Results This study offers four key insights. Firstly, among all indicators, two effectively captured resilience. Secondly, 
our analyses revealed robust relationship between microbial composition and resilience in terms of both composi-
tion and richness. We found decreased α-diversity in less-resilient animals, while specific amplicon sequence variants 
(ASVs) and KEGG pathways associated with inflammatory responses were negatively linked to resilience. Thirdly, con-
sidering resilience indicators in classes, we observed significant differences in microbial composition primarily in ani-
mals with lower resilience. Lastly, our study indicates that gut microbial composition can serve as a reliable biomarker 
for distinguishing individuals with lower resilience.

Conclusion Our comprehensive analyses have highlighted the host-microbiota and resilience connection, contrib-
uting valuable insights to the existing scientific knowledge. The practical implications of PLS-DA and microbiability 
results are noteworthy. PLS-DA suggests that host-microbiota interactions could be utilized as biomarkers for moni-
toring resilience. Furthermore, the microbiability findings show that leveraging host-microbiota insights may improve 
the identification of resilient animals, supporting their adaptive capacity in response to changing environmental 
conditions. These practical implications offer promising avenues for enhancing animal well-being and adaptation 
strategies in the context of environmental challenges faced by livestock populations.
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Background
Resilience, as per the definition proposed by Holling [1], 
refers to a system’s ability to maintain or rapidly recover 
from adverse events. In the context of biological systems, 
it signifies the system’s capacity to cope with external dis-
turbances [2].

Recently, resilience has gained significant attention in 
animal and plant science [3, 4]. Understanding the com-
plex biological processes that govern resilience is not 
only scientifically attracting but also highly relevant for 
addressing emerging challenges, such as developing agri-
cultural methods capable of adapting to climate change 
[5].

In the livestock sector, resilience is an active area of 
investigation, particularly in the face of the numerous 
challenges stemming from high-productivity systems [6, 
7]. These challenges include concerns about animal wel-
fare, the emergence of antibiotic-resistant bacteria posing 
risks to human health, disease outbreaks, and subse-
quent economic losses [8]. Consequently, identifying the 
mechanisms that regulate animal resilience is crucial for 
fostering robust, healthy, and productive livestock [9]. 
Additionally, exploring resilience in species such as pigs, 
which serve as a valuable model organism, can provide 
significant insights and enhance our understanding when 
analyzing plasticity in human physiological functions and 
diseases response [10].

The recent emphasis on precision farming in the live-
stock sector has been bolstered by advancements in 
high-throughput phenotyping technologies [11]. These 
emerging technologies, such as computerized feed intake 
record systems [12], have confirmed their value in iden-
tifying and studying novel phenotypes, including resil-
ience [13]. Since resilience is tightly linked to an animal’s 
response to various stimuli, these technologies represent 
a promising opportunity to capture such responses more 
effectively through continuous monitoring.

In recent years, these advancements in technology have 
expanded the range of measurable phenotypes that can 
be used to assess resilience, based on the within-animal 
variability in such phenotype [14, 15]. One particular 
phenotype that has gained significant attention is feed 
intake [16]. In fact, studies have demonstrated a clear 
connection between anomalies in feed consumption (i.e., 
deviations from normal feeding behavior) and underly-
ing stressors or diseases [17] in both human and livestock 
populations [13].

Owing to what stated above, multiple studies have been 
undertaken to elucidate the genetic mechanisms respon-
sible for resilience. These investigations have employed 
diverse approaches, ranging from high-throughput phe-
notypic technologies [13, 16] to conventional data collec-
tion systems [18, 19]. All of these studies underscore how 

it exists a direct genetic control of resilience. Particularly, 
a complex set of genes, seemingly associated with the 
immunity system [12, 13, 17], appear to play a significant 
role. In spite of these efforts though, the precise regula-
tory mechanisms governing resilience remains elusive.

However, the understanding of resilience must move 
beyond a simplistic view that attributes its control 
solely to the environment and the host genome [20]. 
This approach may overlook important intermediate 
layers that exist between resilience and the host or ani-
mal’s physiology. Recent studies [21, 22] highlight one 
such intermediate layer by demonstrating the value of 
new ’omics’ approaches, particularly gut metabolomics 
and microbiome, in identifying novel factors, such as 
the inflammatory response, that are linked to the ani-
mal’s resilience. In fact, research on the host-microbiota 
relationship has emerged as a valuable tool in elucidat-
ing eco-evolutionary processes, including resilience and 
its phenotypic expression [23]. In the context of animal 
production systems, the microbiota has expanded our 
knowledge of biological processes related to meat pro-
duction and quality [24], feed behavior [25], and environ-
mental impact [26]. Consequently, the microbiota holds 
great promise as (i) a cost-effective “marker” for indicat-
ing the biological status of animals [27] and (ii) a mean 
to select superior animals to achieve improved outcomes 
[28].

The main objective of this research is to investigate 
the relationship between the composition of the micro-
biota (i.e., the collection of microorganisms in an ani-
mal’s body) and its resilience. We aim to understand how 
the microbiota changes over time and between different 
groups of animals, and how these changes may be linked 
to resilience. Specifically, we will explore the connection 
between resilience and the richness and composition of 
the microbiota by (a) defining meaningful indicators of 
resilience in swine based on feeding data, (b) quantify-
ing the association between microbial composition and 
resilience indicators, and (c) evaluating the potential of 
specific microbial composition to discriminate between 
resilient and non-resilient individuals.

By conducting this study, we hope to advance our 
understanding of how the microbiota influences an ani-
mal’s ability to cope with challenges and maintain its 
health. Ultimately, our findings may provide valuable 
insights and tools for managing and improving animal 
well-being.

Results
Defining indicators of resilience
This study aimed to leverage the concept of “variabil-
ity” in feed consumption as an indicator of animals’ 
resilience. We hypothesized that animals exhibiting 
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higher day-to-day variability in feed consumption 
might be more susceptible to external disturbances, 
including environmental and social stressors or dis-
ease, which could subsequently influence their feeding 
patterns. To obtain a comprehensive understanding of 
resilience, we investigated multiple indicators of this 
“variability.”

Figure  1 illustrates the rationale adopted to derive 
the various resilience indicators in this study. In order 
to facilitate understanding of this process, we chose to 
present two distinct individuals: one with higher resil-
ience, represented by lower LnVar values (Panel A), and 
another with lower resilience and higher LnVar (Panel B). 
The first column of Figure 1 displays the observed values, 

Fig. 1 Process for obtaining the four different resilience indicators. Part A represents animals with the least variability, while Part B represents 
animals with higher variability. Each part includes the following representations: A1, B1 the predicted values (in red) and the observed values 
(in green); A2, B2 the periods of consecutive negative errors highlighted in red; A3, B3 local minima depicted in red and local maxima depicted 
in yellow
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depicted by the green line, which represents a moving 
median calculated over a 5-day period of feed consump-
tion data (FCD). As a predictive model, linear regression 
was employed, and the resulting prediction is reported 
by the red line. Subsequently, we derived the Lag1 and 
LnVar indicators from the residual values (i.e., predicted 
values subtracted from the observed values) obtained 
through the regression analysis.

In the middle column of each panel (A2 and B2) of Fig-
ure 1, we illustrate the occurrence of “negative periods” 
in red, representing instances where there were more 
than two consecutive days of negative residual values, 
indicating when the predictor exceeded the observed val-
ues. The largest area of negative period was identified and 
designated as the third resilience indicator, referred to as 
MaxArea.

Finally, the last column (A3 and B3) of each panel high-
lights the local minima (in red) and local maxima (in 

yellow). We utilized the sum of the local minima as the 
last resilience indicator, labeled as SumMin.

Figure  2 illustrates the distribution of the four resil-
ience indicators. The normality assumption of these phe-
notypes is paramount for the subsequent analysis. In all 
cases, normality assumption was not violated. To investi-
gate potential distributional differences among the breeds 
considered, we conducted a post hoc test using the Tukey 
method within a linear mixed model framework. The 
model incorporated effect of breed of the animal, as well 
as the nested effect of pen within room and the random 
effect of family (sire) of the animal. The results indi-
cated that there were no significant differences observed 
among the breeds (P > 0.05). For more detailed informa-
tion, please refer to Supplementary Material 1.

We performed a Spearman correlation analysis to 
examine the association of the resilience indicators with 
various performance traits of the pigs. These phenotypes 

Fig. 2 Density plot of distribution of the four different phenotypes divided by breed: Duroc (DR), Landrace (LR), Large White (LW). The dotted line 
represents the mean value for each breed of each phenotype: lag of 1 day of residual (Lag1), natural logarithm of residual variance (LnVar) area 
under the curve for periods with largest consecutive negative errors (MaxArea), sum of residual’s local minima (SumMin)
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included the percentage of muscle, backfat, and intra-
muscular fat, which were obtained at the end of the per-
formance test, as well as the body weight measures at 
the end of the performance test, at an age of 156 ±2.68 
days. Additionally, we incorporated two traits measured 
during the period in which the resilience indicators were 

calculated: average daily feed consumption and average 
daily body weight.

The Spearman correlation values estimated using all 
individuals are presented in the top-left pane of Figure 3 
(ALL), the correlation estimates subsetting individuals 
from each breed Duroc (DR), Landrace (LR), and Large 

Fig. 3 Plot representing the Spearman correlation between the four resilience indicators and other productive phenotypes. Resilience indicator 
were lag of 1 day of residual (Lag1), natural logarithm of residual variance (LnVar) area under the curve for periods with consecutive negative errors 
(MaxArea), and sum of residual’s local minima (SumMin). Productive phenotypes were average feed daily consumption (FCD) and average body 
weight (Weight) estimated in the period of which the four resilience indicators were estimated (99–140 days). Phenotype collected before slaughter 
as percentage of muscle (Muscle), and backfat and intramuscular fat (IMF) and body weight (Final_Weight). Correlation was calculated for all 
animals (ALL) or for animals of same breed Duroc (DR), Landrace (LR), and Large White (LW)
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White (LW) are depicted in the other panels of Figure 3 
(LW, LR, DR).

From the correlation between resilience indicators, a 
few clear patterns emerged. The Lag1, LnVar, and Max-
Area exhibited positive correlations with each other, 
while SumMin revealed negative correlations with all 
other indicators, ranging from −0.32 (0.043) to −0.39 
(0.04). The strongest correlation was observed between 
LnVar and MaxArea, with a coefficient of 0.79 (0.015). 
The Lag1 showed a correlation of 0.39 (0.028) with LnVar 
and a stronger correlation of 0.60 (0.024) with MaxArea.

When examining the correlations between resilience 
indicators and other productive traits, we discovered a 
negative correlation between the three positively cor-
related indicators—Lag1, LnVar, and MaxArea—and the 
percentage of muscle, with an average correlation coeffi-
cient of −0.15 with an average standard error of 0.04. The 
strongest correlation was observed between MaxArea 
and the percentage of muscle, with a coefficient of −0.21 
(0.016). Our analysis did not reveal any significant associ-
ations between the resilience indicators and the percent-
age of backfat, intramuscular fat, or final body weight.

When examining the correlation between resilience 
indicators and traits measured during the same time 
window, we observed that only LnVar showed a positive 
correlation with average FCD and average weight. On the 
other hand, despite the high correlation between Max-
Area and LnVar, MaxArea exhibited an almost null cor-
relation with FCD.

The correlation results suggest that resilience indicators 
are traits that show low or null collinearity with tradition-
ally recorded traits in swine production. Correlation pat-
terns within breeds remained consistent, as observed in 
Figure 3 (LW, LR, DR). While the numeric values of the 
correlations may have varied slightly, the overall patterns 
remained unchanged.

Association between microbial composition and resilience
To investigate the potential association between 
the microbiota and resilience, we conducted a PER-
MANOVA analysis to determine whether variations in 
the composition of the microbiota were linked to the four 
resilience indicators. To account for possible confound-
ing effects, we included the effects of room and breed in 
the analysis, along the resilience indicators.

The results of the PERMANOVA model are presented 
in Table 1. We found that all resilience indicators exhib-
ited a significant association with microbial composi-
tion. Specifically, LnVar and MaxArea had the most 
pronounced influence on the microbiota composition (P 
< 0.001), followed by SumMin (P = 0.003), and Lag1 (P 
= 0.023). It is noteworthy that, although not the primary 
focus of this study, we also identified a significant impact 

of room and breeds (P < 0.001), which is further detailed 
in Supplementary Material 2. The different indicator 
explained a range of 0.2% (for Lag1) to 0.6% (for LnVar 
and MaxArea) of the total variance. In contrast, breed 
and room contributed 9 and 4%, respectively, to the total 
microbiota variance.

We investigated the association between resilience and 
microbiota richness by performing a regression analysis, 
where we used the α-diversity of bacterial communities 
as the predictor variable and the resilience measures as 
the outcome variables. To quantify microbiota richness, 
we employed two diversity indices: the inverse of Simp-
son’s index and the Shannon index. These indices capture 
both the richness (number of unique bacterial species) 
and evenness (distribution of species abundances) of the 
microbiota (Fig. 4).

A significant (P < 0.01) and consistent decrease in both 
α-diversity measurements was observed as LnVar and 
MaxArea values increased. This suggests that animals 
with higher variability, indicating lower resilience, exhib-
ited reduced microbiota richness, with an R that range 
from −0.27 to −0.15. Similarly, negative trends were 
observed for Lag1, although statistical significance was 
not reached for the inverse Simpson index (P = 0.16) and 
the R was small (−0.079 to −0.069). However, when rich-
ness was expressed using the Shannon diversity measure, 
the negative trend for Lag1 was slightly above the signifi-
cance threshold (P = 0.07). These findings further sup-
port the notion that animals with higher variability and 
lower resilience tend to exhibit lower microbiota rich-
ness. However, when was performed within-breed, sig-
nificant link was observed only for MaxArea and LnVar 
(Supplementary 3).

Conversely, SumMin showed almost negligible trends, 
suggesting that as local minimum values increased, 
α-diversity remained relatively stable. Although the 

Table 1 Results from PERMANOVA analysis for the effect each 
of the four resilience phenotypes on microbial composition. 
The four phenotypes were lag of 1 day of residual (Lag1), natural 
logarithm of residual variance (LnVar), area under the curve for 
periods with the largest consecutive negative errors (MaxArea), 
and sum of residual’s local minima (SumMin). Indicator was 
considered as linear trait

Indicator: Resilience phenotype; SumSq the total variation between the group 
means and the overall mean, F test Pr(>F) P-value of the F statistic, VarExp 
percentage of total variance explained by microbiota composition

Indicator SumSq F Pr(>F) VarExp

Lag1 1595 1.698 0.023 0.295

LnVar 3208 3.416 <0.001 0.634

MaxArea 3408 3.629 <0.001 0.631

SumMin 2550 2.715 0.003 0.472
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trends between Lag1 and microbial composition were 
not statistically significant, a slight decline was observed 
when the Shannon index was used as the richness 
measure.

Consequently, we aimed to identify through differ-
ential abundance (DA) analysis which ASVs and their 

corresponding KEGG pathways were associated with 
these changes in the microbiome. By identifying these 
ASVs, we can gain insights into the specific microbial 
components that contribute to the observed changes in 
the microbiome associated with resilience.

Fig. 4 Scatter plot representing linear regression of the four resilience indicators (x-axis) on the two α-diversity measures (y-axis): Shannon 
(A) and inverse Simpson (B). The four resilience indicators were Lag of 1 day of residual (Lag1), natural logarithm of residual variance (LnVar) area 
under the curve for periods with largest consecutive negative errors (MaxArea), sum of residual’s local minima (SumMin). Coefficient of regression 
(R) and P-values (p) of each regression were reported in each plot
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Figure  5 presents the results of the ASV differen-
tial analysis. In the model, each ASV was treated as an 
independent factor. However, for clarity, the results 
in Figure  5 are aggregated at the genus level, grouping 
together significant ASVs belonging to the same genus. 
In instances where multiple ASVs were associated with 
the same genus, the mean Log Fold Change (LFC) of the 
ASVs within each genus was reported.

Among the resilience indicators, LnVar and MaxArea 
exhibited notable differences in ASV abundance. Spe-
cifically, LnVar showed significant variations in the abun-
dance of 7 ASVs across 4 different genera. On the other 
hand, MaxArea displayed significant differences in the 
abundance of 10 ASVs belonging to 7 different genera. 
These ASVs were associated with six distinct families: 

Lactobacillaceae, Ruminococcaceae, Prevotellaceae, Veil-
lonellaceae, Lachnospiraceae, and Streptococcaceae. It 
is important to note that the last two families were only 
observed in relation to the MaxArea indicator.

Regarding the genera associated with resilience indica-
tors, Lactobacillus exhibited a positive LFC value of 0.46 
for LnVar and 0.51 for MaxArea, indicating its higher 
abundance in animals with greater variability. Lactobacil-
lus was represented by three different ASVs in LnVar and 
by four ASVs (including the three from LnVar) in Max-
Area. Rumminococcacea_UCG-014 displayed the most 
negative LFC values for both indicators, with −0.35 for 
LnVar and −0.6 for MaxArea. This genus was represented 
by two distinct ASVs in LnVar. Then, Misuokella and 
Prevotella_9 exhibited LFC values of −0.34 and −0.28 for 

Fig. 5 Barplot illustrating the absolute value of the log fold change (LFC) abundances for significantly abundant amplicon sequence variants 
(ASVs), for the indicators of natural logarithm of residual variance (LnVar) and area under the curve for periods with largest consecutive negative 
errors (MaxArea). ASVs with positive LFC are represented by yellow bars, while those with negative LFC are represented by light-blue bars. ASVs are 
grouped based on the genera to which they belong, and when multiple ASVs belong to the same genus, the mean of all ASVs within that genus 
is reported. The number of ASVs per genus class is indicated near each bar
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LnVar, and −0.38 and −0.33 for MaxArea, respectively. 
In addition, for MaxArea, ASVs belonging to the genera 
Streptococcus, Rumminococcacea_UCG-003, and Oscil-
lospira were identified, with LFC values ranging from 
approximately −0.29 to −0.27.

In addition to the analysis of individual ASVs, we also 
examined the abundances of KEGG pathways associ-
ated with enzymatic activities using a similar approach 

with the ANACOM-BC procedure. To maintain clarity 
and conciseness, in Figure 6, we present the top 10 most 
influential microbiological enzymatic activities based on 
the absolute values of LFC. Supplementary Material 4 
includes all KEGG pathways that surpassed the threshold 
for corrected P-values (Bonferroni threshold of 0.05).

Specifically, we identified 65 different classes of enzy-
matic activities for LnVar and 44 for MaxArea, indicating 

Fig. 6 Barplot illustrating the absolute value of the log fold change (LFC) abundances for the ten most significantly abundant KEGG pathways, 
for the indicators of natural logarithm of residual variance (LnVar) and area under the curve for periods with consecutive negative errors (MaxArea). 
KEGG pathways, with positive LFC, are represented by yellow bars, while those with negative LFC are represented by light-blue bars
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the potential involvement of a diverse range of microbio-
logical enzymatic functions in relation to the resilience 
indicators.

In both indicators, LnVar and MaxArea, the most sig-
nificant enzymatic activities were associated with the 
malonate cycle. Specifically, Malonate decarboxylase 
holo-[acyl-carrier protein] synthase (EC:2.7.7.66 as well as 
Malonyl-S-ACP decarboxylase (EC:4.1.1.87) and Acetyl-
S-ACP:malonate ACP transferase (EC:2.3.1.187)) were 
identified. These enzymatic activities involved in the 
malonate cycle contribute primarily to lipid metabolism.

NADH peroxidase (EC:1.11.1.1) exhibited higher abun-
dance in less-resilient animals, with an LFC value of 
approximately 0.8 for MaxArea and 0.3 for LnVar. This 
enzymatic activity along with Aryl-alcohol dehydrogenase 
(EC:1.1.1.90) belonged to the class of oxide reductase.

Sugar phosphatase (EC:3.1.3.23) involved in various 
metabolic pathways showed higher abundance in less-
resilient animals, followed by UDP-N-acetylglucosamine 
kinase (EC:2.7.1.176).

Enzymatic activities more abundant in more resil-
ient animals included those involved in the pathways 
of Maleate isomerase (EC:5.2.1.1), as well as 1-amino-
cyclopropane-1-carboxylate deaminase (EC:3.5.99.7), 
both associated with cysteine and methionine metabo-
lism. These enzymatic activities exhibited LFC values of 
approximately −0.4 for MaxArea and −0.25 for LnVar.

Finally, Sulfoacetaldehyde dehydrogenase (acylating) 
(EC:1.2.1.81) showed a positive LFC and was exclusively 
present in LnVar, whereas Sulfopropanediol 3-dehydroge-
nase (EC:1.1.1.308) was observed only when considering 
MaxArea as a resilience indicator.

In the subsequent phase of our investigation, we 
extended those analyses (i.e., α-diversity, PERMANOVA 
and DA) by categorizing the resilience measures into 
three distinct groups: highly resilient groups  (H), lowly 
resilient groups (L), and a middle group (M) acting as the 
control. This categorization was performed to amplify the 
differences observed at the extremes of the distribution 
of resilience phenotypes. By binning the resilience meas-
ures into these classes, we aimed to enhance the resolu-
tion and capture more pronounced distinctions between 
animals with high and low resilience. We defined the H 
animals as those exhibiting phenotypic values below 
the 5th percentile of the remaining animals within 
their respective breeds. Conversely, the L animals were 
defined as those with values exceeding the 95th percen-
tile threshold of their breed group. Animals falling within 
the range of 47.5 to 52.5% percentiles of each breed were 
classified as the M, which served as the control group in 
our analyses. Performing this procedure within breed 
allowed to balance the design by breeds, alleviating dif-
ferences among them. Since the Room factor was not 

used for defining the allocation to the resilience classes, 
we acknowledge a potential pitfall in this selection. How-
ever, the breed effect resulted as being more impactful on 
microbial composition than room (Supplementary Mate-
rial 2).

Consistent with our previous PERMANOVA analy-
sis, we observed significant variations in microbiota 
composition among the different classes derived from 
all resilience indicators (see Supplementary Material 5). 
Interestingly, when comparing the M to either the L or H 
using PERMANOVA, we found that there were no sig-
nificant differences when transitioning from the M to the 
H for all resilience indicators. However, when transition-
ing from the M to the L group, significant differences in 
microbiota composition were observed for Lag1, LnVar, 
and MaxArea (P < 0.001). This suggests that the changes 
in microbiota composition may be more pronounced in 
animals with lower resilience compared to the more resil-
ient ones, and the relationship between resilience and 
microbial composition might be non-linear.

The analysis of α-diversity further confirms the 
observed trends. Figure  7 shows that significant differ-
ences in α-diversity (P < 0.001) were observed among 
resilience classes. Notably, these differences were 
observed solely when transitioning from M or H classes 
to the L class. To simplify the presentation, only the 
Shannon index for α-diversity was reported in Figure 7, 
while the results for the inverse Simpson index can be 
found in Supplementary Material 6.

These findings align with the results obtained when 
resilience was considered as a continuous covariate, indi-
cating that lower α-diversity is associated with lower 
resilience in animals.

The DA analysis was also performed using class-based 
expression of different resilience indicators instead of lin-
ear variables. The results overlapped with the previous 
findings, both for individual ASVs and KEGG pathways, 
see Supplementary Material 7. Interestingly, the observed 
differential abundance of ASVs was primarily driven by 
comparisons between the less-resilient animals and the 
control groups, rather than comparisons between the 
more resilient animals and the control group. For exam-
ple, in Figure 8, it is possible to observe that that no sig-
nificant ASVs were identified when comparing the H and 
M groups over MaxArea.

We conducted a similar analysis to explore differ-
ences in the abundance of amplicon sequence variants 
among various classes of the four resilience indicators. 
The results were consistent with the previous analysis 
when resilience was considered as a linear variable. These 
analyses provided additional insights: the observed dif-
ferential abundance of ASVs was primarily driven by 
comparisons between the less-resilient animals and the 
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control groups, rather than comparisons between the 
more resilient animals and the control group. In fact, no 
significant ASVs were identified when comparing the H 
and M groups.

After identifying the connection and understanding 
the biological basis between gut microbiome composi-
tion and resilience, our next objective was to quantify 
the extent to which the microbiome contributes to the 
regulation of resilience. We aimed to determine the pro-
portion of phenotypic variance in resilience that can be 

attributed to the microbial composition, which is com-
monly referred to as “microbiability”  (m2) [29].

To address the influence of both environmental condi-
tions and genetic background on resilience, we incorpo-
rated them into our analysis. Environmental conditions 
were accounted for by including the combination of the 
room and pen as a factor in the model. Additionally, 
the genetic background was considered by incorporat-
ing a sire effect in the model. While our primary focus 
was to quantify the impact of microbiota composition on 

Fig. 7 Shannon alpha diversity was assessed for the four resilience indicator were lag of 1 day of residual (A) natural logarithm of residual variance 
(B) area under the curve for periods with largest consecutive negative errors (C) and sum of residual’s local minima (D). The x-axis represents 
the resilience classes: lower (L), medium (M, as the control group), and higher (H). Above the plot, the P-values of the Kolmogorov-Smirnov test 
between the classes are reported above the boxplot. The shape of the point represents different breed within each class
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resilience, we also provide a brief overview of the influ-
ence of these other factors on resilience.

The percentage contribution of each factor to the 
overall variance in the analysis is depicted in Figure  9. 
Microbiota compositions explained a similar amount of 
variance for all resilience indicators, ranging from 10% 
for Lag1 and MaxArea to 11% for LnVar and SumMin. 

The highest posterior density intervals  (HPD95) of  m2 
were reported in Part B of Figure  9. For the first three 
indicators, the  HPD95 intervals ranged from 0.04 to 0.16, 
while a wider  HPD95 interval of 0.04 to 0.19 was observed 
for SumMin. Across all resilience indicators, the genetic 
background of the animals accounted for approximately 
5–6% of the phenotypic variance. However, the influence 

Fig. 8 Heatmap illustrating the absolute value of the log fold change (LFC) abundances for the significantly abundant amplicon sequence variants 
(ASVs), with the indicators of natural logarithm of residual variance (LnVar) and area under the curve for periods with consecutive negative errors 
(MaxArea). The ASVs are grouped based on the genera to which they belong. The x-axis represents the LFC when comparing the resilient animal 
class with control groups (lfc_L), and the higher resilient animals class with control groups (lfc_H)
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Fig. 9 A Barplot representing the proportion of the phenotypic variance of the four phenotypes explained by the nested effect of sire (S) in red, 
microbiome (M) in yellow, pen (PEN) in light blue, and the residual error in grey (E). The four indicators are lag of one day of residual (Lag1), natural 
logarithm of residual variance (LnVar), area under the curve for periods with the largest consecutive negative errors (MaxArea), and sum of residual’s 
local minima (SumMin). B Violin plot of the posterior density distributions for the microbiability parameter (as the proportion of variance explained 
by the microbial effect), corresponding to the four resilience indicators mentioned above. The red dot represents the median of each posterior 
density distribution. The red line represents the  HPD95 interval, which provides a measure of the uncertainty associated with the microbiability 
estimate
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of the environment varied depending on the specific 
indicator. For Lag1 and SumMin, the Pen explained 
approximately 14 to 20% of the total phenotypic variance. 
In the case of MaxArea and LnVar, the environment con-
tributed significantly more, accounting for approximately 
half of the total phenotypic variance. Specifically, the 
environment explained 37% of the phenotypic variance 
for MaxArea and 47% for LnVar.

Finally, we evaluated the discriminative capability 
of the microbiological data across the different classes 
of resilience indicators, we conducted a Partial Least 
Squares-Discriminant Analysis (PLS-DA). This analysis is 
of practical significance as it allows us to utilize micro-
biome composition as a potential biomarker for distin-
guishing and predicting animals based on their resilience 
levels.

Overall, our findings align with previous observations. 
The PLS-DA analysis demonstrated significant P-values 
(P < 0.05) for all resilience indicators, except SumMin 
(P=0.293), when assessing the ability to discriminate less-
resilient animals. However, there were no significant dif-
ferences in the discriminative ability when comparing the 
medium or high resilience classes.

The results of the analysis, illustrated in Figure  10A, 
revealed distinct clustering patterns for the H and L 
resilience classes in relation to the LnVar and MaxArea 
indicators. This suggests a clear differentiation between 
animals with high and low resilience levels. However, 
for SumMin, the separation between the classes was less 
pronounced, and no clear differentiation was observed 
for SumMin. Furthermore, the control class M did not 
exhibit complete separation and appeared to be posi-
tioned between the high and low classes in terms of 
LnVar and MaxArea. A stronger, but still not significant, 
separation was observed between the control class and 
the high and low classes in the case of Lag1.

Additionally, individuals of different breeds were 
equally distributed among the different resilience classes, 
indicating the absence of breed-specific patterns of 
resilience.

The Receiver Operating Characteristic (ROC) plot 
(Fig. 10B) reinforces our earlier observations, underscor-
ing the heightened efficacy of microbiome composition 
in discerning distinct resilience classes. This effect was 
particularly prominent, especially for MaxArea and Sum-
Min. This trend was further accentuated when Partial 
Least Squares-Discriminant Analysis (PLS-DA) was per-
formed within specific breeds (refer to Supplementary 
Material 8). Moreover, the confusion matrix further sup-
ported (Fig. 10C) these findings, with a higher number of 
correctly identified instances in the low resilience group 
across all indicators. The values presented in Table  2 
support the previous statement. With the exception of 

SumMin, the other resilience indicators demonstrated 
significant ability to discriminate low resilience animals. 
This was particularly evident for LnVar and MaxArea, 
which had P-values of <0.001. Lag1 showed a P-value of 
0.01, along with AUC values of 0.726, 0.826, and 0.891 
for Lag1, LnVar, and MaxArea, respectively. However, the 
AUC for discriminating the low-class using SumMin was 
0.555.

Interestingly, despite the P-values for classifying the M 
and H classes being close to significance at 0.05 and 0.08, 
respectively, SumMin was the only indicator in which the 
microbiome exhibited superior ability to discriminate 
between the M and H classes compared to the L class. 
This finding suggests a negative correlation between 
SumMin and the other indicators. Consequently, higher 
values of H resilience could potentially indicate the con-
trary, i.e., lower overall resilience in this context.

Lag1 was the only indicator in which microbiome could 
significantly discriminate the M and H classes, while in 
LnVar microbiome significantly discriminated the H class 
from the others with a P-value of 0.011. When consider-
ing the AUC for discriminating all categories, LnVar had 
the highest value of 0.726, followed by Lag1 and MaxArea 
with values of 0.693 and 0.691, respectively. Lag1 had the 
lowest AUC value of 0.617.

In summary, we can conclude that all indicators of 
microbiome composition were effective in discriminat-
ing low resilience animals from the rest of the population, 
except for SumMin, for which higher values represent 
higher animal resilience. Among these indicators, Max-
Area supported the best performance, while LnVar exhib-
ited the best overall classification performance in terms 
of microbiome composition.

Discussion
Our study yielded four notable findings. Firstly, we suc-
cessfully identified reliable indicators of resilience by 
analyzing variation in daily feed intake in pigs. Secondly, 
we discovered a strong relationship between microbial 
composition and resilience. Moreover, we identified spe-
cific ASVs and KEGG pathways that are in association 
with inflammatory response and linked to resilience. 
Thirdly, our results suggest that differences in microbi-
ome composition are primarily observed in animals with 
lower resilience. Lastly, our study suggests that micro-
bial composition has the potential to serve as a depend-
able biomarker for distinguishing individuals with lower 
resilience.

In our investigation, we focused on the relationship 
between feed consumption variability and animals’ resil-
ience. Our findings align with previous studies conducted 
in mice, which have shown that abnormal feed consump-
tion, particularly reductions, can be attributed to various 
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negative and traumatic events [16]. These events encom-
pass psychological states influenced by environmental 
factors [30] or genetic factors [31], as well as physiological 
conditions such as tumors [32] and microbial infections 

[33]. Therefore, fluctuations in feed consumption can 
serve as indicators of these underlying factors.

In this study, we captured these fluctuations accu-
rately, by continuously monitoring and recording of 

Fig. 10 A A two-dimensional Partial Least Square-Discriminant Analysis (PLS-DA) score plot was constructed using three classes of resilience 
(lower (L) in yellow, medium (M) in light blue as the control group, and higher (H) in grey). The plot represents the distribution of the samples 
based on the first two components in the model. Each point’s shape changes according to the breed to which the animal belongs. PLS-DA 
was performed for the four indicators that are lag of 1 day of residual (Lag1), natural logarithm of residual variance (LnVar), area under the curve 
for periods with the largest consecutive negative errors (MaxArea), and sum of residual’s local minima (SumMin). B Receiver operating characteristic 
(ROC) analysis was performed to discriminate between the three classes of resilience mentioned above (L,M,H) for the four indicator of resilience 
mentioned above (Lag1, LnVar, MaxArea, and SumMin). C Confusion matrix depicting the performance of Lag1, LnVar, MaxArea, and SumMin 
in predicting the resilience classes (L,M,H). The x-axis represents the categories of true values, while the y-axis represents the categories of predicted 
values
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feed consumption. This allowed prompt identification of 
variations thus improving the precision of event identi-
fication and assessment of animals’ response capabilities 
[34]. However, not all indicators examined in this study 
proved effective in capturing the fluctuation or variability 
in feed consumption. Among the indicators considered, 
LnVar and MaxArea emerged as successful indicators. 
While LnVar has been previously acknowledged as a suit-
able indicator, particularly in the livestock sector [35–37], 
the suitability of MaxArea as an indicator had not been 
previously explored.

Notably, we observed a modest antagonistic correlation 
between the two indicators (LnVar and MaxArea) and the 
percentage of muscle. This observation strengthens our 
hypothesis that animals displaying higher variability in 
feeding behavior tend to have lower resilience. The per-
centage of muscle was utilized as a surrogate measure 
for a ’wellness’ trait, as animals in better health gener-
ally exhibit a higher muscle mass relative to their body 
weight [38]. This finding provides additional support for 
the notion that animals with greater fluctuation in feed 

consumption may have compromised overall health and 
resilience.

Previous research has emphasized the difficulties in 
identifying a specific indicator of animal resilience in the 
absence of deliberate stress-inducing experiments, such 
as natural disease challenges [13, 39]. However, a note-
worthy study by [40], which focused on divergent selec-
tion for variability in rabbit litter size, challenges this 
notion. Subsequent investigations on this particular pop-
ulation, employing genomic analysis [19] and metabolic 
profiling [21], unveiled a link between this variability and 
a more comprehensive notion of animal resilience. These 
findings align with later studies that also observed asso-
ciations between genomic profiles and resilience, even in 
the absence of intentional stress induction, as in our cur-
rent study [35, 41].

The primary objective of this study was to explore the 
correlation between gut microbial composition and the 
resilience phenotype. Prior research has already estab-
lished the link between gut microbiome composition 
and diverse phenotypic expressions [42], including traits 
related to livestock production [43]. The microbiome 
acts as an intermediary layer between genetics [44] and 
environmental factors [45]. This intricate relationship, 
coupled with the dynamic response of the microbiome 
to external stimuli [46], positions it as a valuable tool for 
enhancing our understanding of complex traits, such as 
resilience [42].

Consequently, recent investigations have prioritized 
unraveling the association between the microbiome and 
resilience. Studies have examined resilience in various 
contexts, encompassing the resistance of coral to climate 
changes [47, 48], the practical implications of microbi-
ome engineering in plants [21], and the role of microbial 
composition in thermal stress adaptations across differ-
ent animal species, including tadpoles [49], Drosophila 
[50], and mice [51]. However, within the domain of live-
stock, only one study conducted by Casto-Rebollo et al. 
in 2023 in rabbits has explored the relationship between 
the microbiome and resilience [22]. In contrast with such 
study [28], which investigated changes in microbiome 
composition resulting from shifted selection for resil-
ience and viewed the microbiome as an intermediary 
layer between host genetics and phenotypic expression, 
our study took a distinct approach. Our objective was to 
elucidate the relationship between microbiome compo-
sition and resilience, considering both genetic and envi-
ronmental factors as driving forces for these variations. 
Despite these differences, there are notable similarities 
that have emerged between the studies. Both studies have 
highlighted the capacity of microbial composition to dif-
ferentiate between resilient and less-resilient animals, as 
well as the involvement of KEGG pathways associated 

Table 2 Performance of the Partial Least Squares-Discriminant 
Analysis (PLS-DA). The table provides the classification results for 
the four resilience phenotypes: lag of 1 day of residual (Lag1), 
natural logarithm of residual variance (LnVar), area under the 
curve for periods with the largest consecutive negative errors 
(MaxArea), and sum of residual’s local minima (SumMin). The 
“Class” column represents the classification of animal groups 
within each indicator, indicating low resilience (L), high resilience 
(H), and medium resilience (M). The “AUC Class” column displays 
the area under the curve (AUC) values for distinguishing each 
class of resilience. “Incidence” shows the proportion of records 
in corresponding resilience class. For each class, the table 
reports the number of positive events (animals belonging to 
that class) and negative events (animals not belonging to that 
class). “P-values” column indicates the significance level of the 
classification. The “Overall AUC” column represents the AUC 
performance in discriminating all classes combined

Indicator Class AUC class Incidence P-values AUC all classes

Lag1 L 0.726 0.325 0.010 0.693

M 0.682 0.375 0.028

H 0.672 0.300 0.044

LnVar L 0.826 0.325 >0.001 0.726

M 0.629 0.375 0.091

H 0.729 0.300 0.011

MaxArea L 0.891 0.325 >0.001 0.691

M 0.637 0.375 0.078

H 0.544 0.300 0.336

SumMin L 0.555 0.325 0.293 0.617

M 0.658 0.375 0.050

H 0.639 0.300 0.086
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with the inflammatory system in the context of resilience. 
However, our study also revealed significant discrepan-
cies in terms of α-diversity and β-diversity measures, 
which were not observed in the aforementioned studies. 
These disparities could be attributed to several factors, 
including variations in sample size, the specific focus of 
the studies, and the narrow time window between micro-
biome collection and resilience assessment employed in 
our investigation. These factors likely contributed to the 
divergent findings between our study and the previous 
research.

In terms of α-diversity, our findings revealed a notable 
decrease in microbial richness among animals with lower 
resilience, particularly within the subset of less-resilient 
individuals. This decline suggests two potential inter-
pretations. Firstly, microbial richness within the com-
position may function as a reservoir to counteract and 
respond to external events [52]. Secondly, the reduction 
in α-diversity could be indicative of an unhealthy state 
in the animals, such as bacterial infection [53], reflecting 
their limited restorative capacity.

Moreover, our study identified a strong and significant 
association between β-diversity, assessed using PER-
MANOVA, and resilience. This outcome underscores 
the clear connection between microbial composition and 
resilience, providing further evidence for the relationship 
between microbial compositions and complex traits such 
as resilience.

Moreover, intriguing findings were obtained through 
different differential abundance (DA) analyses. Par-
ticularly, the ANCOM-BC analysis identified ampli-
con sequence variants (ASVs) with significantly distinct 
abundances. Of particular interest was the observation of 
higher abundances of ASVs affiliated with the Lactobacil-
lus genus in animals exhibiting lower resilience. At first 
glance, this finding may seem contradictory, given the 
well-documented beneficial effects of various Lactoba-
cillus strains on swine, including enhanced productivity 
[54, 55] and improved immune function [56].

To explain this observation, several hypotheses can be 
considered. One possibility is that the identified ASVs 
represent specific strains of Lactobacillus that pos-
sess potential pathogenic properties [57]. However, it is 
important to note that this hypothesis remains specula-
tive and requires further investigation. Another plausible 
explanation is that Lactobacillus, being an enterotype 
bacterium in swine [58, 59], may encounter reduced 
competition from other bacterial species in animals with 
lower resilience, leading to its higher abundance.

Alternatively, the increased abundance of Lactobacillus 
in animals with lower resilience may be associated with 
the promotion of cytokine production [60], resulting in 
an inflammatory response [61] aimed at preventing and 

combating infections. Therefore, the higher abundance 
of Lactobacillus in such animals could potentially serve 
as a biomarker for ongoing inflammatory processes [62], 
indicating the organism’s efforts to counteract negative 
events.

Among the genera that exhibited greater abundance 
in more resilient animals, Ruminococcaceae-UCG-014 
stood out as the most prominent. Extensive studies 
on mice have consistently demonstrated the beneficial 
effects of Ruminococcaceae-UCG-014 on gut health. Bac-
teria belonging to this genus have been shown to signifi-
cantly increase the production of short-chain fatty acids 
(SCFAs), such as acetate and propionate, which play criti-
cal roles in improving gut health, regulating cytokine lev-
els, and modulating the gut microbial community [63].

Furthermore, it has been observed that supplemen-
tation with the amino acid Glycine (Gly) promotes the 
growth of both Ruminococcaceae-UCG-014 and Rumi-
nococcaceae-UCG-03 (found more abundant among 
resilient animals in this study), leading to enhanced intes-
tinal healing in mice [64]. In addition, studies on pig diets 
have also demonstrated that supplementing with Gly 
amino acids can increase the abundance of Mitsuokella 
and Prevotella_9 (two other genera more abundant in 
more resilient animals), leading to increased produc-
tion of SCFAs, including lactate, acetate, and propion-
ate [65]. Additionally, our study identified Oscillospira as 
more abundant in resilient animals. This finding aligns 
with recent research suggesting that Oscillospira func-
tions as a “next-generation probiotic” capable of produc-
ing SCFAs, particularly butyrate, which is known for its 
important role in promoting gut health [66].

The ANCOM-BC analysis performed on KEGG path-
ways supports our findings from the preceding section. 
We identified a notable increase in the prevalence of 
NADH peroxidase in animals exhibiting lower resil-
ience, landing support to our initial hypothesis that the 
heightened abundance of Lactobacillus in less-resilient 
animals might be linked to an inflammatory status in the 
animal. Indeed, NADH peroxidase plays a critical role 
in eliminating potentially harmful hydrogen and reduc-
ing oxidative stress, which can arise as a result of dis-
ease conditions [67]. Therefore, the elevated abundance 
of NADH peroxidase, particularly in Lactobacillus, may 
indicate the organism’s endeavors to combat such condi-
tions. This interpretation is supported by previous stud-
ies reporting the presence of NADH as an indicator of 
infection within 1–24 h [68].

Aryl-alcohol dehydrogenase, another pathway more 
abundant in less-resilient animals, belongs to the oxi-
doreductase family, similar to NADH peroxidase. Based 
on its involvement in a wide range of biological pro-
cesses (https:// www. brenda- enzym es. org), this suggests 

https://www.brenda-enzymes.org
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that aryl-alcohol dehydrogenase may also play a role in 
mitigating oxidative stress, similar to NADH peroxidase. 
However, further investigation is needed to fully under-
stand the specific roles and implications of aryl-alcohol 
dehydrogenase in resilience.

Sugar phosphatase was also found to be more abundant 
in animals with lower resilience. This enzyme catalyzes 
the production of sugar from sugar phosphate. One pos-
sible explanation for its presence in less-resilient animals 
is its role as a source of energy for T-cells, i.e., important 
types of white blood cells of the immune system [51]. 
Normally, T-cells exhibit low metabolic activity and rely 
on fatty acid oxidation for energy. However, when T-cells 
are activated, they undergo rapid proliferation and dif-
ferentiation into effector T-cells, requiring increased 
glucose metabolism and glycolysis [69]. Therefore, the 
higher abundance of sugar phosphatase in less-resilient 
animals may be a consequence of disease conditions, 
similar to what identifies for NADH and Lactobacillus.

Furthermore, we identified three out of seven main 
KEGG pathways involved in malonate metabolism that 
were more abundant in animals with lower resilience. 
Although clear evidence is lacking, experimental stud-
ies conducted on mice have demonstrated that malonate 
injections can impair the mouse’s defense against infec-
tion [70]. One hypothesis suggests that the utilization of 
malonate by Pseudomonas aeruginosa affects quorum 
sensing and virulence and promotes the formation of 
mineralized biofilm-like structures [71].

Among the KEGG pathways that were more abundant 
in resilient animals, we identified 1-aminocyclopropane-
1-carboxylate deaminase as one of the most prominent 
pathways. Interestingly, while the beneficial role of this 
pathway in plant resilience has been well-established 
[72], no previous studies have identified its significance in 
animal resilience.

Another pathway that showed higher abundance in 
resilient animals was the maleate isomerase. Previous 
studies have suggested the potential benefits of maleate 
isomerase in overcoming challenges during the post-
weaning period in pigs [73], as it involved in the metabo-
lism of precursor acids such as citric acid, formic acid, 
fumaric acid, lactic acid, or propionic acid.

Our findings, partially in line with a previous study 
[74], initially reveal distinct patterns in swine deemed 
less “resistant” to social stress, showing diminished per-
formance and reduced feed consumption. Additionally, 
the study highlights that resilient animals exhibit a higher 
abundance of genera linked to short-chain fatty acid 
(SCFA) production, such as Prevotella and Mitsuokella. 
However, differences emerged between our study and the 
aforementioned one regarding the genera identified in 
less-resilient animals. In our investigation, Lactobacillus 

was more prevalent, whereas others [74] observed ele-
vated levels of Clostridium and Campylobacter. These 
variations may be attributed to differences in the experi-
mental designs of the two studies.

In our study, the simultaneous measurement of resil-
ience and microbiota revealed that less-resilient animals 
are actively combating infections or diseases, with Lacto-
bacillus playing a crucial role. Conversely, in the earlier 
study, microbiota samples were collected post-stress, 
resulting in an increased abundance of specific genera. 
Nonetheless, our study did identify significant differences 
in alpha diversity between the stress and control groups.

In addition to investigating the relationship between 
the microbiome and resilience, our study aimed to quan-
tify the contribution of microbial composition to resil-
ience by calculating the proportion of overall indicator’s 
variance attributable to the microbiome. Recently, micro-
biability has emerged as a parameter that allows us to 
quantify the extent to which variation in host-measurable 
variables can be ascribed to the gut microbiota in agri-
cultural animal species [29]. Assessing the percentage of 
resilience variation explained by the microbiome is cru-
cial as no previous studies, to the best of our knowledge, 
have quantified the impact of the microbiome on com-
plex features like resilience. Furthermore, if microbial 
composition demonstrates a significant impact on con-
trolling resilience, it could potentially pave the way for 
utilizing the microbiome as a tool for improved predic-
tion and selection of resilience [26, 28]. This is particu-
larly relevant for complex traits like resilience, which are 
characterized by low heritability and controlled by mul-
tiple genes, posing challenges in terms of selection [75].

Our study provides evidence for the significant role 
of microbiome composition in explaining the variation 
observed in resilience. Specifically, we found that the 
microbiome accounts for more than 10% of the total vari-
ance in resilience. Although the magnitude of the micro-
biome’s influence  (m2) on resilience may appear lower 
compared to studies investigating other traits such as 
feed efficiency, fat/muscle deposition, and feed behavior 
(which typically range from 10 to 30%) [25, 76, 77], it is 
important to consider the context of resilience as a trait 
with inherently low heritability (5–10%). Thus, the micro-
biome represents a substantial and meaningful source of 
variation for resilience. It should be kept in mind, though, 
that our analysis considered the microbial component 
independent from sire (genetic) and pen (environmen-
tal) effects, which was forced by the data structure. This 
should be addressed in further studies, since the com-
ponents should not be considered as independent, both 
conceptually and practically.

Finally, when we employed the entire microbial com-
position, we were able to identify animals accurately 
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with lower resilience. When considering the most reli-
able resilience indicators, LnVar and MaxArea, our 
results were consistent with a previous study conducted 
by Casto-Rebollo et al. [20]. While low resilience animals 
were identifiable leveraging their microbial composition, 
PLS-DA analysis was not able to distinguish more resil-
ient animals from those with average resilience, aligning 
with our earlier findings that did not reveal significant 
differences in microbial compositions between these 
two groups. Interestingly, despite the known influence of 
breed on microbial compositions [78], we did not know if 
there were any breed-related interference in discriminat-
ing resilience in PLS-DA. Observing the results of the 
PLS-DA was possible to observe that all the breeds was 
balanced across the resilience classes, suggesting that 
the link between microbial composition and resilience is 
not strongly influenced by breed. These findings carry 
practical implications, as the microbiome can serve as a 
cost-effective tool for monitoring the health status of ani-
mals and their ability to respond to adverse events, thus 
reflecting their resilience [79].

Material and methods
Data
Animals and feed data
The data used for this study come from the performance 
test station owned by Smithfield Premium Genetics 
(Rose Hill, NC, USA). The station housed part of the 
nucleus herd and was maintained under biosecurity con-
ditions, suitable for a breeding herd. The animals could 
not be deemed free from any infectious disease despite 
these measures. Data were generated between May and 
December 2017. Animal in the trial belonged to three 
swine breeds: DR boars (N = 190), LR boars (N = 221), 
and LW boars (N = 204). These animals were the off-
spring of 27, 27, and 44 sires, respectively, and were 
crossed with 119, 153, and 158 dams for the DR, LR, and 
LW breeds.

During the growth trial, the pigs were provided with 
standardized pelleted feed and received standard vaccina-
tions and medications. The trial took place on a nucleus 
farm consisting of eight rooms, where the animals were 
housed in separate groups according to their breed. On 
average, each group contained 11.3 ± 1.3 animals, each 
group was allocated in a different physical pen and there 
were eight pens per room. Full-sibs and paternal half-
sibs were allocated into different pens and rooms, so that 
the sire and pen effects were not confounded. This was 
ensured at every round of pen allocation, since this data 
was used for comparing sires’ offspring and making selec-
tion decisions. To monitor feed consumption, each group 
was equipped with a single-space Feed Intake Recording 
Equipment (FIRE) feeder from Osborne Industries, Inc. 

(Osborne, KS, USA). The FIRE feeder recorded the feed 
consumption of pigs for each visit to the feeder, capturing 
the pig’s identifier and its weight. Feed consumption was 
the raw measure used to calculate the resilience indica-
tors in this study.

Microbial composition
Fecal samples were taken at the beginning, end and mid-
time of the trial as described in [25, 80], DNA extrac-
tion was performed on rectal swabs using the method 
described in detail by Lu et al. [81]. For sequencing, the 
V4 region (515-806) of the 16S rRNA gene was ampli-
fied in a phased and bi-directional manner to gener-
ate indexed libraries suitable for Illumina sequencing, 
following the previously described protocol [81]. The 
sequencing process was carried out at the DNA Sequenc-
ing Innovation Lab, located at the Center for Genome 
Sciences and Systems Biology at Washington University 
in St. Louis (USA).

The raw sequence data generated by the Illumina plat-
form were converted into read files using MiSeq Reporter. 
To merge pairs of V4 16S rRNA gene sequences, FLASH 
v1.2.11 [82] was employed, requiring a minimum overlap 
of 100 base pairs and a maximum of 250 base pairs for 
confident overlap. The resulting sequences were oriented 
in the forward direction, and any primer sequences were 
trimmed, allowing for up to 1 mismatch during primer 
matching.

The sequences were imported into Quantitative 
Insights Into Microbial Ecology (QIIME2 version 
2017.12, https:// qiime2. org/) for demultiplexing. The 
construction of an amplicon sequence variant (ASV) fea-
ture table was performed using the Divisive Amplicon 
Denoising Algorithm  2 (DADA2) [83] with default set-
tings, without truncation or length filtering (--p-trunc-
len 0). ASVs present in only one sample were removed 
from the feature table.

Furthermore, taxonomic information was annotated 
using the Ribosomal Data- base Project (RDP) Classi-
fier (v2.4) based on the SILVA reference database (v132) 
[84] and applied to predict taxonomic assignments for 
each ASV sequence, using a confidence cutoff of 0.8. 
The results were exported for further analysis in the R 
environment [85]. Second-level and third-level ontol-
ogy pathways of the Kyoto Encyclopedia of Genes and 
Genomes [86] predictions were obtained using the PIC-
RUSt2. Software [87].

Variability as resilience indicator
From single visit to daily data
To estimate different indicators of animal resilience, we 
utilized daily feed consumption (FCD) as the phenotype. 
FCD was determined by summing the feed consumption 

https://qiime2.org/
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for each visit occurred over a 24-h period. Prior to con-
verting the individual visit data into daily data, we 
applied a data cleaning procedure based on the method 
developed by Casey et al. [88], which was adapted to suit 
our specific data requirements reported on Supplemen-
tary Material 9.

We analyzed the data collected during the time period 
of 99 to 140 days, which was referred to as the “mid-
period” in the study by He et  al. [25]. Briefly, feeding 
records were categorized into three periods (P1: 73 ± 3 
to 98 days of age; P2: 99 to 140 days of age; P3: 141 to 163 
± 6 days of age), corresponding to the three time points 
of rectal swab collection (T1: 73 ± 3 days of age; T2: 
123 ± 4 days of age; T3: 158 ± 4 days of age). The break-
points at 98 and 140 days of age demarcate the midpoints 
between T1 and T2 and between T2 and T3 of rectal 
swab collection.

The microbiota samples were specifically collected at 
an average age of 123 ± 4 days. Focusing on this specific 
time window allowed us to mitigate any potential influ-
ence of the time elapsed between the collection of the 
phenotype data and the microbiota data, ensuring a more 
accurate assessment of the association between the two.

After incorporating the FCD data, we conducted a sub-
sequent round of data editing. This iterative editing pro-
cess involved removing animals with fewer than 10 FCD 
observations and those with more than 3 consecutive 
days of missing FCD data. The final dataset comprised 
528 animals (DR: N=153, LR: N=193, LW: N=182) with 
an average of 41.4±1.2, daily record per each animal. 
For a comprehensive understanding of the data-editing 
procedure, please refer to Supplementary Material 9 for 
detailed information.

From daily data to resilience indicator
The resilience indicators were determined based on the 
variability of their daily feed consumption (FCD) infor-
mation. The rationale for this approach is that animals 
with greater variability in their daily feed intake may 
exhibit challenges in maintaining a stable physiological 
status [89].

To ensure the accuracy and reliability of our analysis, 
we took into consideration the potential influence of ran-
dom daily fluctuations, commonly referred to as “white 
noise” (i.e., random fluctuation). In order to mitigate this 
effect, we applied a moving median approach with a win-
dow size of 5 days. This method was implemented using a 
custom R script.

Furthermore, we recognized that the larger variance in 
FCD could potentially be influenced by the daily increase 
in feed consumption due to the animals’ growth. To 
address this concern, we calculated the resilience indi-
cator based on within-animal residuals. This involved 

subtracting the moving median FCD values from the 
values predicted using linear regression of FCD on age. 
A positive residual indicated that an animal’s feed con-
sumption was higher than the expected consumption for 
that period, while a negative residual indicated the oppo-
site. This approach allowed us to account for the influ-
ence of growth-related changes in feed consumption and 
focus on deviations from the expected trend.

From the residuals, we derived various indicators of 
animal resilience. However, it is important to note that 
there is no universally accepted indicator of animal resil-
ience [90]. Therefore, we defined four different resilience 
indicators, each capturing a distinct aspect of “variability.”

One of these indicators is the autocorrelation with lag 
of 1 day (Lag1), which describes the level of dependence 
between an individual’s daily feed consumption data. 
We hypothesize that higher Lag1 values indicate greater 
independence between daily feed consumption data, 
which is therefore associated with increased variability 
[91].

Another indicator is based on the classical estimation 
of variance, calculated by calculating the variance of 
individual moving median FCD data (adjusted by age, as 
explained above). Since variance estimates are not nor-
mally distributed, we normalize it using the natural loga-
rithm. That indicator was defined as LnVar [91].

The third indicator is based on the concept that a sig-
nificant portion of the variance in feed consumption 
can be attributed to negative periods, which indicate a 
decline in feed consumption. These negative periods can 
be influenced by external factors such as illness or dis-
ease. To define this phenotype, we calculated the area 
under the curve for periods with consecutive negative 
errors using the definite integral. Among all individuals, 
we consider the area with the largest value as the third 
phenotype, which we refer to as MaxArea. As for LnVar, 
we transformed it using the natural logarithm.

Finally, the fourth indicator is based on the notion 
that “variability” arises from continuous fluctuations in 
feed consumption following a similar approach of Putz 
et  al. [13]. This is quantified by calculating the sum of 
local minima, where each local minimum represents 
a point in the feed consumption data that is lower than 
all of its neighboring points. We refer to this indicator as 
SumMin.

Association between microbial composition and resilience
The primary objective was to investigate the relation-
ship between microbial composition and resilience. We 
approached this investigation by considering resilience 
as both a linear or categorical indicator. To analyze this 
relationship, we employed various analytical techniques, 
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including PERMANOVA, α-diversity analysis, and differ-
ent abundance analysis (DA).

Resilience as linear indicator
Permutational multivariate analysis of variance (PER-
MANOVA) was employed to investigate whether vari-
ation in microbiota composition was associated with 
changes in resilience indicator.

The PERMANOVA analysis was performed by consid-
ering microbiota composition as the dependent variable 
and each resilience indicator as a (covariate) independ-
ent variable. For each analysis, each resilience indicator 
was considered separately. Additionally, in each analy-
sis the effects of room (with 8 levels) and breed (with 3 
levels) were included in the analysis to account for their 
potential influence. While for what regarding micro-
bial composition, we filtered the animals that has total 
count lower than 700, resulting a total of 502 animals 
(DR: N=145; LR: N =187; LW: N =170). Additionally, 
ASVs with a prevalence rate less than 0.05 were removed, 
resulting a total of 1.074 ASVs. Then ASV was trans-
formed by the centered log-ratio transformation using 
the Tjazi package [92], where missing zero values were 
imputed using the "const" approach defined in [93]. That 
transformed ASV data was then used to compute the 
Euclidean distance using the "dist" R base function [85], 
representing the dissimilarity between samples and that 
was used as a dependent variable in the PERMANOVA 
analysis. The PERMANOVA analysis was conducted 
using the "adonis" function in the vegan package [94], 
with 1000 permutations.

Additionally, to examine the relationship between 
resilience and diversity in gut microbiota composition, 
we computed α-diversity for all animals (n=528) and all 
ASV (n=4595) of the microbiota without applying any 
filters. The α-diversity was calculated using inverse Simp-
son’s index and Shannon’s index calculated by using the 
“microbiome” R packages [95]. Observations deviat-
ing beyond 1.5 times the interquartile range above third 
quantile or below first quantile were classified as outli-
ers and removed for subsequent analysis. To assess the 
significant influence of microbial composition diversity 
on resilience, P-values were calculated for the slopes of 
regressions between each resilience indicator and two 
α-diversity measures. Considering α-diversity as the 
dependent variable, each distinct resilience trait was 
treated as an independent variable. To further validate 
the influence of α-diversity on resilience, a linear regres-
sion was conducted, additionally accounting for the 
effects of room and breed, as outlined in Supplementary 
Figure  10. This analysis was performed using the "lm" 
function in R [85].

Furthermore, we were also interested to identify spe-
cific ASVs that exhibited significant differences in abun-
dance between animals with different levels of resilience. 
Similarly to the previous analysis, we included only ani-
mals with a minimum total count of 700 (n=502), but 
no filter was applied to individual ASVs. The Analysis 
of Compositions of Microbiotas with Bias Correction 
(ANCOM-BC) [96] was utilized for this purpose, as 
microbiota data is compositionally natured and can be 
influenced by sampling and sequencing depth. ANCOM-
BC addresses this challenge by accurately estimating and 
eliminating the bias introduced by differences in sam-
pling fractions in the observed counts. The methodology 
utilizes relative abundances to infer absolute abundances 
while controlling the false discovery rate and addressing 
excess as zero counts. Similarly, for the PERMANOVA 
analysis, we considered each of the four phenotypes as a 
linear covariate, and breed and room as cross-classified 
effects. Due to the granularity of the microbiota compo-
sitions, no agglomeration was performed, and DA was 
considered at the ASV level. ASVs that exceeded the 
threshold of 0.05 P-values corrected by Bonferroni test 
were considered significant.

To examine the DA of various enzymatic activities (or 
KEGG pathways), we also employed ANCOM-BC. In 
this analysis, we utilized the KEGG-enriched pathways 
obtained as described in the “Bioinformatic analysis” sec-
tion instead of single ASV. A total of 2026 KEGG path-
ways were identified. The analysis was conducted using 
the same criteria employed before. Each enzyme activ-
ity was treated as an independent variable, and we only 
included animals that met the cleaning parameter from 
the previous analysis, specifically animals with a total 
count of microbiota higher than 700.

Resilience as categorical indicator
As mentioned earlier, we also transformed the four resil-
ience indicators into categorical variables. This modi-
fication allowed us to assess the non-linearity of the 
relationship between microbiota and resilience.

The definition of resilience classes in our study fol-
lowed a specific procedure. Resilient animals were identi-
fied as those whose values for the target phenotype and 
breed were below the 5th percentile, indicating a higher 
level of resilience. Conversely, non-resilient animals were 
characterized by values exceeding the 95th percentile, 
indicating a lower level of resilience. Control groups were 
comprised of animals whose resilience indicators fell 
within the 47.5th and 52.5th percentiles, representing an 
intermediate level of resilience.

This classification was performed using the "ntile" func-
tion from the dplyr package [97]. Approximately 30–40 
animals per breed were included, and the distribution of 
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each resilience class within each group is presented in the 
Supplementary Material 11.

PERMANOVA analysis was performed followed a sim-
ilar procedure as before, but this time we focused on test-
ing the significance of these measures in relation to the 
resilience class, rather than as a linear indicator. In this 
analysis, PERMANOVA was conducted by considering 
all classes of resilience, as well as comparing the medium 
class with high resilience indicators and the low resilience 
class with the medium class (control group). In addition, 
α-diversity analysis was conducted using the same crite-
ria as mentioned before. Here we assess different micro-
bial richness of class by using the P-values which were 
computed using the Kolmogorov-Smirnov test [98].

DA was conducted using the same procedure as when 
resilience was considered as linear indicator. However, 
in this case, the LFC was computed based on difference 
between resilience classes, with the medium resilience 
group serving as the control class. Specifically, we calcu-
lated the LFC of low resilience animals compared to the 
medium resilience group, as well as the LFC of high resil-
ience animals compared to the medium resilience group. 
Similar to the previous analysis conducted when resil-
ience was treated as a linear indicator, the analysis was 
performed for both at ASVs and KEGG pathways levels.

Microbiability estimation
To assess the influence of the microbiota on four differ-
ent resilience indicators, we employed Bayesian Kernel 
linear regression. This approach allowed us to quantify 
the impact of the microbiota on resilience indicators 
by calculating the ratio between the estimated variance 
attributed to the microbiota and the total variance. This 
ratio, known as microbiability  (m2), provides a measure 
of the microbiota’s contribution to the variation of a tar-
get indicator variable. As mentioned before, that analysis 
was conducted when resilience was considered as linear 
indicators.

In our analysis, we considered the effect of the microbi-
ota by considering the similarity between animals based 
on their microbiota composition using an inner kernel. 
This approach is mathematically equivalent to multiple 
random regression (also known as ridge regression) but 
is computationally more efficient when the number of 
variables is larger than the number of samples [99], as in 
our case.

Before constructing the inner kernel, similar to the 
approach used in the PERMANOVA analysis, we applied 
certain criteria. We only considered animals with a total 
count higher than 700 and ASVs with a prevalence rate 
greater than 0.05, resulting in a dataset of 502 animals 
and 1074 ASVs. The ASVs were then transformed using 
the additive centered log-ratio transformation. Finally, 

the inner kernel was computed as the inner product of 
the scaled ASV matrix.

In accounting for the influence of microbiota (M) on 
resilience, we considered resilience as affected by envi-
ronmental factors (E), signified by the pen (with 61 
levels), the genetic background of the animals (S), repre-
sented by the animal’s sire (84 levels) nested within the 
breed (3 levels), and by random residual environmental 
effects. The sire by pen interaction was not estimated due 
to the design allocating full-sibs and paternal half-sibs to 
different pens. Additionally, we treated M as independ-
ent of the environmental and genetic background of the 
animals. Although we recognize this as an approximation 
[100], this approach enables a quantitative assessment of 
the proportion of variance captured by the microbiome 
that is independent of environmental conditions and 
genetic influences.

To model these effects, we assumed that M, E (environ-
mental effects), S (genetic factors), and residual were nor-
mally distributed with a mean equal to 0 and a variance 
σ
2
M
, σ 2

E
 , σ 2

S
 σ 2

e  respectability. The variance of M was equal 
to the microbiota similarity matrix multiplied by the vari-
ance of the microbiota. We also assumed that the residu-
als were independently and normally distributed and that 
the M S, E, and residual effects were uncorrelated. The 
analysis was conducted using the BGLR R package [101].

The analysis involved running 70,000 iterations with a 
burn-in period of 10,000, and to reduce autocorrelations, 
we considered only 1 out of every 50 samples. We tested 
the convergence of the model using Geweke’s Z criterion 
[102]. The magnitude of the microbiota’s influence on 
resilience was calculated as the median of the posterior 
density distribution of  m2, defined as ( σ 2

M
/sum(σ 2

M
, σ 2

E
 , 

σ
2
S

 σ 2
e )), and the highest posterior density interval at 95% 

probability  (HPD95).

Microbial composition to discriminate between resilient 
and non-resilient individuals
To determine the classification performance of the 
microbiota for different classes of resilience, we con-
ducted PLS-DA. In this analysis, the three classes of 
resilient animals (resilient, non-resilient, and control) for 
each phenotype were treated as the target variable, while 
the centered log-transformed ASV data (with a frequency 
rate > 0.05) served as the feature data (n=1074). The data 
was randomly split into training and test by allocating 
50% of data to each set by maintain equal allocation of 
data for each breed and resilience class.

PLS-DA was performed using the caret R package 
[103].

We trained a PLS-DA model, in two steps. The first step 
consisted in determining the optimal number of compo-
nents through repeated 4-fold cross-validation with 50 
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repeats, with the number of components being chosen 
based on the AUC values obtained. After determining 
the optimal number of components, we performed fea-
ture selection by eliminating variables with lower con-
tributions. Specifically, we removed the features that 
accounted for the lowest 20% of the variable importance, 
as measured by the variable importance in projection 
metric. The iterative process continued until the highest 
AUC value was achieved, indicating the best classification 
performance of the model. To evaluate the discriminant 
ability of the microbial composition, we used metrics 
such as AUC, ROC (receiver operating characteristic), 
and examined the confusion matrix on test populations. 
AUC was calculated both for the ability of the PLS-DA 
model to discriminate each element of the three classes 
and for the overall PLS-DA performance. For calculat-
ing the AUC in a multi-classification framework, we uti-
lized the "multi.ROC" package [104] and the "MLmetrics" 
package [105]. The significance of the discrimination of 
individual classes was assessed using Wilcoxon tests with 
P-values below 0.05, employing the "verification" package 
and the "wilcox.test" function [106].

Conclusion
The current study highlights a sizable link between the 
gut microbiota and resilience in swine. We developed 
an effective procedure to capture and estimate animals’ 
resilience, and linked it to the gut microbial composition. 
Based on our results, among all indicators, LnVar and 
MaxArea were the most effective in capturing the link 
with the microbial composition.

We observed variation in microbiome composition and 
diversity across different levels of resilience. Specifically, 
animals with lower resilience exhibited reduced richness 
in terms of α-diversity. Additionally, we identified specific 
ASVs and KEGG pathways associated with inflammatory 
responses, linked to the host’s efforts to mitigate negative 
events in these animals. Remarkably, these changes in 
the microbiome were primarily observed in animals with 
lower resilience.

With this work we had shown that microbial compo-
sition has the potential to serve as a reliable biomarker 
for distinguishing individuals with lower resilience, pro-
viding a cost-effective indicator of animals’ biological 
status. Moreover, microbiability analysis confirmed the 
active role of the microbiome in controlling resilience, 
offering a means to identify robust animals for achiev-
ing improved outcomes but also to identify animals more 
prone to suffer from stress, suggesting it as a possible 
way to improve animal welfare. As a result, these findings 
provide a foundation for leveraging valuable insights and 
tools from host-microbiota interactions to manage and 
enhance animal well-being and resilience.
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