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Abstract 

Background The final step in the anaerobic decomposition of biopolymers is methanogenesis. Rice field soils are 
a major anthropogenic source of methane, with straw commonly used as a fertilizer in rice farming. Here, we aimed 
to decipher the structural and functional responses of the methanogenic community to rice straw addition dur-
ing an extended anoxic incubation (120 days) of Philippine paddy soil. The research combined process measure-
ments, quantitative real-time PCR and RT-PCR of particular biomarkers (16S rRNA, mcrA), and meta-omics (environ-
mental genomics and transcriptomics).

Results The analysis methods collectively revealed two major bacterial and methanogenic activity phases: early 
(days 7 to 21) and late (days 28 to 60) community responses, separated by a significant transient decline in microbial 
gene and transcript abundances and  CH4 production rate. The two methanogenic activity phases corresponded 
to the greatest rRNA and mRNA abundances of the Methanosarcinaceae but differed in the methanogenic pathways 
expressed. While three genetically distinct Methanosarcina populations contributed to acetoclastic methanogenesis 
during the early activity phase, the late activity phase was defined by methylotrophic methanogenesis performed 
by a single Methanosarcina genomospecies. Closely related to Methanosarcina sp. MSH10X1, mapping of environmen-
tal transcripts onto metagenome-assembled genomes (MAGs) and population-specific reference genomes revealed 
this genomospecies as the key player in acetoclastic and methylotrophic methanogenesis. The anaerobic food web 
was driven by a complex bacterial community, with Geobacteraceae and Peptococcaceae being putative candidates 
for a functional interplay with Methanosarcina. Members of the Methanocellaceae were the key players in hydrog-
enotrophic methanogenesis, while the acetoclastic activity of Methanotrichaceae members was detectable only dur-
ing the very late community response.

Conclusions The predominant but time-shifted expression of acetoclastic and methylotrophic methanogen-
esis by a single Methanosarcina genomospecies represents a novel finding that expands our hitherto knowledge 
of the methanogenic pathways being highly expressed in paddy soils.
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Background
Methane is the second most important anthropogenic 
greenhouse gas in terms of climate forcing, after carbon 
dioxide  (CO2). It contributes to about 15% of the global 
anthropogenic greenhouse gases emitted yearly when 
assuming a greenhouse warming potential (GWP) of 25 
times  CO2 over 100 years (IPCC, 2007). Indeed, the  CH4 
emissions to the atmosphere continue to increase, with 
the last 3 years (2020 to 2022) having the highest annual 
global increase since 1983 [1].

Microbial methanogenesis by anaerobic methanogens 
is the largest biogenic source of atmospheric methane 
 (CH4) [2]. In particular, water-logged rice paddies con-
tribute approximately 25% to the total annual  CH4 budget 
in the atmosphere [3], making them a critical source of 
anthropogenic  CH4 emissions into Earth’s atmosphere. 
The present-day estimates of the annual emission rate 
from water-logged rice paddies range between 20 and 
100 Tg/year [4].

Straw is one of the most abundant stocks of renew-
able biomass from crop production and one of the major 
organic carbon sources added to paddy soils as fertilizer. 
Rice straw, as a lignocellulosic biomass, is comprised 
of cellulose (32–37%), hemicellulose (29–37%), lignin 
(5–15%), and pectin (2–3%). The straw components 
serve as substrates for a complex microbial community 
that finally degrades the biopolymers to  CO2 and  CH4 
[5–8]. In consequence, the anaerobic decomposition of 
rice straw [9] ultimately enhances  CH4 production and 
emission [10]. The methanogenic degradation of rice 
straw involves the activity of a complex microbial food 
web consisting of various functional guilds, including 
hydrolytic, fermenting, and syntrophic bacteria, as well 
as methanogenic archaea. This microbial consortium 
fulfills a cascade of anaerobic degradation steps that 
involve polymer hydrolysis, fermentation, syntrophic 
conversion of fatty acids, homoacetogenesis, and metha-
nogenesis [8, 11, 12].

Historically, three methanogenic pathways have been 
recognized to contribute to  CH4 production (substrates 
in parenthesis): acetoclastic (acetate), hydrogenotrophic 
 (H2 and  CO2), and methylotrophic (methanol and other 
methylated compounds) methanogenesis (Fig. S1). Ace-
toclastic and hydrogenotrophic methanogenesis have 
been shown to dominate  CH4 production at a ratio of 2:1 
in rice paddies [13, 14]. The analysis of Italian rice field 
soil concluded that methylotrophic methanogenesis plays 
only a minor role in rice paddy soils [15].

Numerous studies have been conducted to under-
stand organic matter decomposition and  CH4 produc-
tion in rice field soils [16–18]. In particular, paddy soil 
slurries amended with rice straw have been frequently 
used over the last two decades to investigate the meta-
bolic processes involved in the anaerobic degradation 
of plant polymers [6, 7, 19–21]. Over recent years, this 
research has primarily been done on two geographically 
distinct paddy soils sampled in Italy and the Philip-
pines [16, 19, 22–24]. The methanogenic communities 
in these two soils differ in composition and response to 
straw amendments [25, 26].

Studies on the Italian paddy soil already involved 
systems-level analyses of the methanogenic commu-
nity dynamics on both rRNA (structure) and mRNA 
(function) levels, but only for the early stage of rice 
straw degradation [12]. By contrast, the research on the 
methanogenic community in Philippine rice field soil 
is limited to the analysis of total DNA using primarily 
PCR-based amplicon sequencing of particular biomark-
ers. However, this methodological approach can only 
address specific aspects of community potential and 
provides information neither on the active microbial 
groups nor their functional gene expression at the time 
of sampling [23, 24, 26, 27].

This prompted us to apply a multi-methods approach 
to disentangle the compositional and functional dynam-
ics of the methanogenic community in Philippine rice 
field soil over an incubation period of 120 days. Anoxic 
paddy soil slurries amended with rice straw were used as 
a model system. Given the previous results on paddy soil 
microbial communities from various geographically dis-
tinct areas [16, 19, 28], we expected to detect a dominant 
expression of acetoclastic and hydrogenotrophic metha-
nogenesis by a complex methanogen community.

Central to our research was the combination of metab-
olite measurements and metatranscriptomic analysis of 
total RNA, thereby enabling us to simultaneously unravel 
changes in the structure (rRNA) and function (mRNA) 
of the methanogenic community. In addition, we applied 
quantitative PCR (qPCR), reverse transcription quantita-
tive PCR (RT-qPCR) of biomarkers (16S rRNA, mcrA), 
and targeted metagenomics to assemble draft genomes 
of key methanogens (Fig. S2). The observed commu-
nity dynamics led us to divide the long-term incubation 
period into three successional phases defined as the early 
phase (days 3 to 21), the intermediate phase (days 21 to 
28), and the late phase (days 28 to 120).
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Materials and methods
Sample collection and experimental design
Soil was obtained from the International Rice Research 
Institute (IRRI) in Los Banos, Republic of the Philip-
pines. The Philippine-IRRI is located about 66 km south 
of Manila (14° 09′ 45″ N, 121° 15′ 35″ E, 21 m a.s.l.) 
[29, 30]. The main physicochemical characteristics of the 
Philippine rice field soil were previously described [23, 
30–32]. Soil processing followed a standard procedure, 
including mechanical crushing, storage of the air-dried 
soil at room temperature, sieving (< 2 mm) before its 
immediate use, and preparation of straw-amended slur-
ries [33–35].

Briefly, soil slurries were set up in 125-ml pressure bot-
tles by thoroughly mixing 40 g dry soil, 0.5 g rice straw (1 
cm pieces), and 50 ml of deionized and autoclaved water. 
This amount of rice straw has been commonly used in 
paddy soil slurry studies [6, 12, 20, 36]. It corresponds to 
37.5 t  ha−1, which is about three times higher than under 
field conditions [37]. The bottles were sealed with butyl 
rubber stoppers and flushed with  N2 for 15 min to estab-
lish anoxic conditions. The slurries were then incubated 
at 30 °C for up to 120 days.

Destructive sampling was performed after 3, 7, 11, 14, 
21, 28, 35, 60, and 120 days of incubation, with three rep-
licate slurries per time point. Slurry material was sam-
pled from each replicate, promptly shock-frozen using 
liquid nitrogen, and then stored for molecular analysis at 
− 80 °C. Pore water samples were taken and kept at −20 
℃ until metabolite analysis. The experimental design is 
displayed in Fig. S2.

Metabolite measurements
Concentrations of acetate, propionate, and butyrate in 
the liquid sample of the soil slurries were measured by 
HPLC equipped with an ion-exclusion column (Aminex 
HPX-87-H, BioRad, München, Germany) and coupled to 
a UV–Vis detector (Sykam, Fürstenfeldbruck, Germany) 
[38]. In addition, gas samples were taken from the same 
set of slurries for process measurements. A GC-8A gas 
chromatograph (Shimadzu, Duisburg, Germany) con-
taining a Haysep Q column was used to measure  CH4 
and  CO2. Data were analyzed with PeakSimple software 
(SRI Instruments, Bad Honnef, Germany) and calculated 
by linear regression [12, 36, 39].

DNA and RNA extraction
Total DNA was extracted from soil slurries using the 
DNeasy® PowerLyzer® PowerSoil kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions. 
Agarose gel (1%) electrophoresis and fluorometry were 
used to check for the integrity and quantity of each DNA 
extract. Fluorometric measurements were done on a 

Qubit 2.0 Fluorometer using the Qubit dsDNA BR Assay 
Kit (Thermo Fisher Scientific, MA, USA).

The RNeasy® PowerSoil Total RNA Kit (QIAGEN, 
Hilden, Germany) was used for the extraction of total 
RNA. The extraction procedure followed the manufac-
turer’s instructions. The RNA extracts were treated with 
DNase I (Ambion, Austin, USA) and purified using the 
RNA Clean and Concentrator kit (Zymo Research, CA, 
USA). The integrity of purified RNA was assessed using 
the  ExperionTM RNA HighSens Analysis Kit (Bio-Rad, 
CA, USA), while the yield was determined with the 
 QubitTM RNA HS Assay Kit (Thermo Fisher Scientific, 
MA, USA).

Quantitative PCR (qPCR) and reverse transcription qPCR 
(RT‑qRCR)
Primer sets and temperature profiles for quantitation 
of bacterial 16S rRNA and mcrA genes (qPCR) and 
their transcripts (RT-qPCR) are shown in Table S1. The 
mcrA gene is a standard biomarker to detect and quan-
tify methanogens in environmental samples [36, 39, 40]. 
In RT-qPCR, randomly reverse-transcribed RNA was 
generated using the GoScript Reverse Transcription Sys-
tem (Promega, Mannheim, Germany) according to the 
manusfacturer’s instructions. The standard curve for 
quantifying bacterial 16S rRNA genes and transcripts 
was constructed using the genomic DNA of Escherichia 
coli (calibration range from 10 to  109 copies). The stand-
ard curve for quantifying mcrA genes and transcripts 
was constructed using a mcrA fragment cloned into the 
pGEM®-T Easy plasmid (Promega, WI, USA) (calibration 
range from 10 to  108 copies) [39]. The mcrA fragment 
used for cloning was obtained from the genomic DNA of 
Methanosarcina barkeri [41]. The qPCR reactions were 
carried out on an iCycler Real-Time PCR Detection Sys-
tem (CFX  ConnectTM, Bio-Rad). The PCR efficiency was 
at least 85% (R2 > 0.98). The presence of unspecific prod-
ucts was checked by melt curve analysis.

Illumina library preparation and sequencing
Libraries for sequencing were prepared for both 
metatranscriptomic (cDNA) and metagenomic (total 
DNA) analysis.

Metatranscriptomics
Twenty-seven RNA samples (three replicate slurries × 9 
time points) were subjected to cDNA library preparation 
using the NEBNext® Ultra II Directional RNA Library 
Prep Kit for Illumina® (New England Biolabs, USA). The 
cDNA library synthesis procedure strictly followed the 
manufacturer’s instructions. cDNA integrity and yield 
were checked on a Bio-Rad analyzer using the  ExperionTM 
DNA 12K Analysis Kit (Bio-Rad). The 27 cDNA libraries 



Page 4 of 18Li et al. Microbiome           (2024) 12:39 

were sequenced (RNA-Seq) on the NovaSeq 6000 plat-
form in paired-end mode (2×150 bp) by Novogene 
Genomics Service (Novogene Co., Ltd., UK).

Metagenomics
DNA extracts from the triplicate slurries of a given time 
point were mixed in equal amounts before metagenomic 
library construction. A total of three metagenomic librar-
ies (one each for three incubation periods: 21, 28, and 35 
days) were constructed using the TruSeq DNA Library 
Prep Kit according to the manufacturer’s instructions 
(Illumina). The metagenomic libraries were sequenced 
on an Illumina HiSeq-2500 platform in paired-end mode 
(2×250 bp) at the Max Planck Genome Centre Cologne, 
Germany.

Computational analysis of metatranscriptomic datasets
Pre‑processing
The quality filtration of raw reads was performed using 
Trimmomatic [42]. Default settings were applied with the 
exception that the minimum sequence length was set at 
100 bp. Quality control of the filtered reads was visual-
ized using FastQC. Analysis of 16S rRNA and putative 
mRNA reads was carried out using a bioinformatic pipe-
line reported previously [12]. Briefly, reads mapping to 
rRNA and non-coding RNA were filtered by SortMeRNA 
2.0 against SILVA (release 128) [43] and RFAM reference 
databases [44], respectively. The remaining reads were 
considered putative mRNA. The sequencing statistics are 
shown in Table S2.

Analysis of 16S rRNA
Upon extraction from the metatranscriptome, the rRNA-
derived reads were assembled to near full-length 16S 
rRNA sequences over 40 iterations using EMIRGE with 
the SILVA 132 SSU rRNA database [45]. This assembly 
approach was done separately for the 27 rRNA sequence 
datasets. The assemblies were grouped into population-
specific 16S rRNA sequence types using an identity 
cutoff of 97% [46, 47]. Taxonomic assignment was per-
formed using BLASTN implemented in DIAMOND 
(v0.9.25), applying an e-value cutoff of 1e−5 for the data-
base searches against the SILVA 132 SSU rRNA database. 
The output file by DIAMOND was further processed in 
MEGAN6 Ultimate Edition v6.20 (Computomics, Tübin-
gen, Germany) for a more detailed taxonomic classifica-
tion [48]. The abundance of each assembled 16S rRNA 
sequence type was estimated  using BBMap v38.62 [49]. 
All nearly full-length 16S rRNA sequences (> 1200 bp), 
which were affiliated with the family Methanosarci-
naceae, were extracted for phylogenetic comparison. 
The sequence alignment was done using MUSCLE [50] 

and manually refined. A neighbor-joining tree was con-
structed in MEGAX using 500 bootstrap replications 
[51]. Reference sequences were downloaded from the 
Genomic Taxonomic Database (GTDB) (https:// gtdb. 
ecoge nomic. org/). The neighbor-joining tree was visual-
ized by iTOL (https:// itol. embl. de/) [52]. The sequenc-
ing statistics of near-full-length 16S rRNA sequences are 
shown in Table S3.

Analysis of mRNA
Trinity (v2.2.0) was used for de novo metatranscriptome 
assembly [53]. Total mRNA reads from all 27 cDNA 
libraries were pooled into one transcriptomic dataset for 
subsequent contig assembly using Trinity scripts [54]. A 
total of 472,280 quality-checked contigs were obtained. 
The mRNA reads of each cDNA library were individu-
ally mapped back onto the contigs using Bowtie [55]. An 
FPKM matrix of mRNA reads mapped onto a particu-
lar contig was produced for all relevant contigs using 
RSEM [56] within Trinity (v2.2.0). Taxonomic assign-
ment and functional annotation of the mRNA contigs 
were done using BLASTX implemented in DIAMOND 
(v0.9.25) [57], applying an e value cutoff of 1e−5 for data-
base searches against NCBI’s non-redundant (nr) protein 
database. mRNA contigs encoding putative laccases and 
multicopper oxidases were identified by searches against 
LccED (Laccase and Multicopper Oxidase Engineering 
Database; [58]). To investigate the gene expression of par-
ticular metabolic pathways, related mRNA contigs were 
extracted using MEGAN6 Ultimate Edition [12, 48]. The 
mRNA sequencing statistics are shown in Table S4.

The identification of mRNA contigs encoding carbo-
hydrate-active enzymes (CAZymes) was achieved by 
searches against the dbCAN database using BLASTX 
implemented in DIAMOND (v0.9.25) and applying the 
default e value cutoff of 1e−3. Functional CAZyme mod-
ules involved in the degradation of cellulose, xylan, chi-
tin, and other hemicelluloses were defined by grouping 
related enzymatic functions based on their enzyme com-
mission numbers. A mapping file for functional annota-
tion was created using all available entries in dbCAN. 
The mapping file was stored as an indexed SQLite data-
base and queried using a custom Python script. The 
resulting annotations are based on matching dbCAN top 
hits for mRNA contigs queried against the mapping file 
and defined CAZyme modules. The functional annota-
tion of CAZyme-affiliated mRNA contigs to CAZyme 
functional modules was achieved using custom Python 
scripts described by Peng et al. (http:// github. com/ wegne 
rce/ peng_ et_ al_ 2018.) [12]. Their taxonomic assignment 
was done using BLASTX implemented in DIAMOND 
(v0.9.25) against the NCBI nr protein database.

https://gtdb.ecogenomic.org/
https://gtdb.ecogenomic.org/
https://itol.embl.de/
http://github.com/wegnerce/peng_et_al_2018
http://github.com/wegnerce/peng_et_al_2018
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Computational analysis of metagenomic datasets
Assembly and binning
Raw reads were quality-filtered using Trimmomatic v0.38 
[42]. Upon quality filtration, the three metagenomes 
recovered from slurries after an incubation period of 
21, 28, and 35 days were combined for the assembly of 
contigs. Metagenomic assembly and binning were done 
using the MetaWRAP pipeline [59]. The quality-filtered 
reads were first assembled to larger contigs using metaS-
PAdes v3.13.0 [60]. Metagenomic binning was performed 
with MetaBAT v2.12.1 [61] and MaxBin v2.2.5 [62], using 
contigs longer than 1000 bp. Completeness and con-
tamination of metagenome-assembled genomes (MAGs) 
were assessed by CheckM v1.0.17 [63]. The sequencing 
statistics are shown in Table S5.

Genome annotation
Open reading frames (ORFs) in each MAG were identi-
fied using Prokka v1.14.5 [64]. The ORFs were then que-
ried against the nr protein database using DIAMOND 
(v0.9.25) with an e value of 1e−5 [57]. Functional annota-
tion was performed based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database using the lowest 
common ancestor (LCA) algorithm in MEGAN6 Ulti-
mate Edition v6.20 [48]. FastANI was used to calculate 
genome average nucleotide identity (ANI) values [65]. 
Whole-genome sequences were visualized and compared 
using CGView software [66].

Transcript mapping onto Methanosarcina MAGs
To determine how strongly particular methanogenic 
pathways and key pathway genes were expressed by dif-
ferent Methanosarcina populations, forward and reverse 
reads of the mRNA sequences were pooled and mapped 
onto the MAGs using BBMap v38.62 pipeline (minimum 
sequence identity set to 0.97) [46, 47, 49]. Competitive 
mapping of the mRNA reads was done using BBSplit in 
BBMap v38.62 [49]. Each metatranscriptome replicate of 
a given sampling time point (days 3, 7, 11, 14, 21, 28, 35, 
60, and 120) was mapped separately onto a mix of Metha-
nosarcina genomes including M. fluorescens (Group I), 
strain MSH10X1 (Group II), M. barkeri (Group III), and 
M. horonobensis (Group IV), and it was determined to 
which genome the metatranscriptomes of a given incuba-
tion time point match best. The relative mapping efficien-
cies were calculated based on the normalized number of 
mRNA reads that were competitively mapped onto each 
Methanosarcina reference genome.

Phylogenetic analysis
CheckM (v1.0.17) was used to predict the 16S rRNA 
genes in the MAGs and for their taxonomic assignment 
[63]. Subsequently, a genus-level 16S rRNA gene tree for 

Methanosarcina spp. was constructed in MEGAX using 
the neighbor-joining algorithm and 500 bootstrap repli-
cations. Reference sequences were extracted from Meth-
anosarcina genomes downloaded from GTDB.

Statistical analysis
All means ± standard errors (SE) are based on the ana-
lytical results of three independent replicate slur-
ries (metabolite measurements, qPCR, RT-qPCR, and 
metatranscriptomic community dynamics on rRNA and 
mRNA levels). Significant differences in the qPCR and 
RT-qPCR measurements across the nine incubation time 
points were determined using one-way ANOVA. The 
resulting P values were corrected for multiple tests using 
the Benjamini-Hochberg false discovery rate method 
(PFDR < 0.05) [67]. In metatranscriptomic analysis, the 
relative abundance values calculated  for taxon-specific 
16S rRNA and mRNA contigs (domain and family level), 
and for mRNA contigs assigned to particular KEGG cat-
egories (functional gene expression analysis), were nor-
malized to transcripts per kilobase million (TPM). This 
was done to normalize for varying sequencing depths. 
Tukey’s honest squared difference test (Tukey HSD) 
in STAMP was used to determine whether the taxon-
specific rRNA/mRNA abundances and the expression 
of particular functional categories significantly differed 
across the 120-day incubation period (significant with 
p < 0.05) [68]. The DESeq2 package v1.24.0 in R (v3.6.1) 
was used to further test for significant differences in 
taxon-specific rRNA abundance and the mRNA abun-
dance of key pathway genes between two sampling time 
points [69]. In particular, it was tested whether the taxon-
specific rRNA abundance on a particular sampling time 
point significantly differed from the initial abundance 
at the first sampling (day 3) or vice versa whether the 
taxon-specific rRNA abundance at day 3 significantly dif-
fered from those of all other sampling time points. The 
same analysis approach was applied to the mRNA abun-
dance of key pathway genes. All P values generated with 
STAMP or DESeq2 were corrected for multiple testing 
using the Benjamini-Hochberg method to control the 
false discovery rate (FDR) with PFDR < 0.05.

Results
Metabolite turnover
Metabolite measurements in the straw-amended slur-
ries were made over the 120-day incubation period. 
Acetate transiently accumulated and reached its peak 
concentration (10.57 mM) at day 7. Thereafter, the 
acetate concentration decreased within 7 days to 1.42 
mM on day 14 and then showed a steady state between 
production and consumption, ranging from 0.83 to 1.30 
mM until day 120 (Fig. 1a). Concurrently, the butyrate 
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concentration peaked on day 7 (2.88 mM) and then 
decreased to low but detectable steady-state levels 
(0.08 to 0.18 mM) (Fig.  1b). Propionate accumulated 
from day 3 (0.57 mM) onwards, with a peak concentra-
tion on day 14 (1.68 mM). Subsequently, its concentra-
tion decreased towards day 35 (0.65 mM), and then, 
propionate exhibited a steady state at low but clearly 
detectable levels (0.35 mM) (Fig.  1c). First  CH4 pro-
duction was detectable around day 3 (2.5 kPa), while 
its headspace concentration increased significantly 
towards day 21 (62.15 kPa). Then, the  CH4 production 
rate was decreased between days 21 and 28 (Fig.  1d), 
but increased again from days 28 to 35. The greatest 
net  CH4 production rate was observed between days 

11 and 21, concomitantly to the decline of acetate and 
butyrate to low steady-state concentrations, and in part 
to the net consumption of propionate (Fig. 1d).

qPCR and RT‑qPCR
Genes and transcripts of bacterial 16S rRNA and metha-
nogenic mcrA were quantified over the 120-day incu-
bation period (Fig.  2, Tables S6, S7, S8, S9). Changes 
in the copy numbers of bacterial 16S rRNA genes and 
transcripts (Fig.  2a, c) and mcrA genes and transcripts 
(Fig.  2b, d) showed an M-like up and down over incu-
bation time. The copy numbers of bacterial 16S rRNA 
genes and transcripts peaked first on day 21 (1.2 ×  1010 
genes vs. 4.8 ×  1011 transcripts  g-1 dry soil) and again on 

Fig. 1 Measurement of intermediates and methane in the paddy soil slurries over the 120-day incubation period at 30 °C. Intermediate turnover 
of acetate a, butyrate b, and propionate c, and methane production d. The inserts show the near-steady-state concentrations of acetate 
for the incubation period 14 to 120 days a, butyrate for the incubation period 11 to 120 days b, and propionate for the incubation period 35 to 120 
days (c) in high-resolution. Data are means ± SE (n = 3)
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day 35 (1.2 ×  1010 genes vs. 4.2 ×  1011 transcripts  g-1 dry 
soil), with an intermediate decrease on day 28 (5.7 ×  109 
16S rRNA genes vs. 2.7 ×  1011 transcripts  g-1 dry soil) 
(Fig. 2a,c).

Likewise, the copy numbers of mcrA genes and tran-
scripts peaked first on day 21 (2.9 ×  109 mcrA genes vs. 
9.2 ×  1010 transcripts  g-1 dry soil) and again on day 35 
(3.4 ×  109 mcrA genes vs. 6.5 ×  1010 transcripts  g-1 dry 
soil), with an intermediate decrease on day 28 (1.3 × 
 109 mcrA genes vs. 3.8 ×  1010 transcripts  g-1 dry soil) 
(Fig. 2b, d).

After day 35, the gene and transcript copy numbers of 
both bacterial 16S rRNA and mcrA strongly decreased 
towards day 120 (Fig. 2).

The bacterial metatranscriptome (16S rRNA, mRNA)
Taxon‑specific dynamics
The family-level population dynamics varied over incu-
bation time (Figs. 3 and S3, Tables S10 and S11). At the 
rRNA level, the relative abundance of Geobacteraceae 

peaked between days 7 and 11 (Fig.  3a). Thereafter, the 
abundance of Clostridiaceae and Peptococcaceae peaked 
at day 21, while Lachnospiraceae showed the maximum 
abundance on day 28 (Fig. 3a,c). In the late phase (days 35 
to 120), Heliobacteriaceae and Anaerolineaceae showed 
increased rRNA abundances and were, together with 
Geobacteraceae, the predominant bacterial populations 
(Fig. 3a,c).

Like on the 16S rRNA level, the mRNA abundance of 
the Geobacteraceae peaked on day 7, covering 22% of 
total community-wide mRNA and 36% of total bacte-
rial mRNA. This was followed by a rapid abundance 
decline towards day 21 and another increase thereafter 
(Figs. 3b and S4). The Peptococcaceae reached their peak 
mRNA abundance on day 21 (Fig. 3d). Likewise, Clostri-
diaceae (day 21) and Lachnospiraceae (day 28) showed 
peak mRNA abundances consistent with those observed 
on the rRNA level. The Acidobacteriaceae and Anaero-
lineaceae displayed higher mRNA abundances in the 
late phase (days 35 to 120) than in the early phase (days 

Fig. 2 Copy number quantification of bacterial 16S rRNA and methanogenic mcrA genes (qPCR) and their transcripts (RT-qPCR) in Philippine paddy 
soil slurries over the 120-day incubation period. Copy numbers of bacterial 16S rRNA genes (a) and transcripts (c) per gram of dry paddy soil. Copy 
numbers of mcrA genes (b) and transcripts (d) per gram of dry paddy soil. Data are means ± SE (n = 3). Differences between two incubation time 
points were determined using one-way ANOVA (PFDR < 0.05). The exact copy numbers per gram of dry paddy soil are shown in Tables S6, S7 (genes) 
and S8, S9 (transcripts)
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3 to 21) (Fig. 3d). In addition, putative syntrophic popu-
lations, such as Peptococcaceae and Heliobacteriaceae, 
reached a second peak abundance during the late phase 
(Fig. 3b, d).

Carbohydrate‑active enzymes (CAZymes)
A total of 13,632 mRNA contigs were annotated to 
encode CAZymes involved in degrading cellulose (e.g., 
cellulases, cellulose-1,4-beta-cellobiosidase), xylan (e.g., 
endo-1,4-beta-xylanase), other hemicelluloses (e.g., 
alpha- and beta-glactosidase), and chitin (chitinases) (Fig. 
S5a and Table S12). The majority of CAZyme transcripts 
were taxonomically assigned to Firmicutes, Proteobacte-
ria, and Actinobacteria. Except for chitinases, CAZyme 
transcripts affiliated with Firmicutes steadily decreased 
in abundance with incubation time, while those affili-
ated with Planctomycetes increased. The abundance of 
CAZyme transcripts affiliated with Proteobacteria varied 
over incubation time. The abundance of CAZyme tran-
scripts affiliated with Actinobacteria was particularly 

high during the final incubation period (day 120), except 
for CAZyme transcripts involved in degrading other 
hemicellulases (Fig. S5b and Table S12).

The methanogen metatranscriptome (16S rRNA, mRNA)
Methanosarcinaceae, Methanocellaceae, and Metha-
notrichaceae were the prevailing methanogenic families 
throughout the complete incubation period (Fig.  4a, b; 
Tables S10 and S11). The Methanosarcinaceae was the 
dominant methanogen group, showing two-peak abun-
dance dynamics. The family-level rRNA and mRNA 
abundances peaked first around days 11 and 14, then 
decreased until day 28, but increased thereafter again 
and reached a second activity peak between days 35 and 
60. The Methanocellaceae were first detectable on day 
11. Following the peak abundance on day 21, the rela-
tive rRNA and mRNA abundances steadily decreased 
towards day 120. Significant transcript levels of the Meth-
anotrichaceae were only detectable on mRNA level dur-
ing the late phase, with the peak abundance at day 120.

Fig. 3 Relative abundance changes of dominant bacterial families (> 2%) on rRNA (a, c) and mRNA (b, d) levels, respectively. The percentage 
abundances are given in relation to total bacterial 16S rRNA and mRNA, respectively. Data are means ± SE (n = 3). Asterisks * (PFDR≤0.05), ** 
(PFDR≤0.01), and *** (PFDR≤0.001) indicate significant differences. Asterisks shown aside from the taxonomic names indicate that in STAMP, 
the relative rRNA or mRNA abundances significantly changed through the whole incubation period. Asterisks directly shown in the plots indicate 
that in DESeq2, the rRNA or mRNA abundance in that particular sampling time point significantly differed from the original abundance at the first 
sampling (day 3) or vice versa that the relative rRNA or mRNA abundance at day 3 (Symbiobacteriaceae) significantly differed from all other sampling 
time points. Significance values (PFDR) are only indicated on rRNA and mRNA levels for the taxon-specific abundance peak. The complete set of PFDR 
values obtained by DESeq2 analysis for all sampling time points is shown in Tables S10 (rRNA) and S11 (mRNA)
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Defining the dominant Methanosarcina populations
The assembled near-full-length 16S rRNA sequences 
grouped into four distinct Methanosarcina populations 
(Groups I to IV) (Fig.  5a). These differed in their abun-
dance dynamics (Fig.  5b). The Group II population was 
most closely related to Methanosarcina sp. MSH10X1 
and predominant throughout slurry incubation. Metha-
nosarcina Group IV was the second most abundant 
population and closely affiliated with M. horanabensis. 
The Group II and Group IV populations showed oppo-
site 16S rRNA abundance dynamics, with both Group 
II minimum abundance and Group IV maximum abun-
dance at day 11 (51% [Group II] versus 34% [Group IV] of 
total Methanosarcina 16S rRNA) (Fig. 5b). The Methano-
sarcina Group I and Group III populations displayed low 
but relatively stable transcript abundances (collectively 
< 20% of total Methanosarcina 16S rRNA) throughout 
slurry incubation (Fig. 5b).

Mapping‑independent expression analysis of methanogenic 
pathways
The collective mRNA abundance of major methanogen-
esis pathways (Fig. 6a and Table S13) and the transcript 
abundance of particular pathway marker genes (Fig.  6b 
and Tables S13, S14) varied with incubation time. Ace-
toclastic methanogenesis was the dominant methane 
production pathway with the greatest transcript abun-
dance in the early phase (36.4% of total mRNA assigned 
to KEGG level 3 category “methane metabolism”). This 
involved the peak transcript abundance of the follow-
ing pathway marker genes: cdhAB, cdhCDE, ack, and pta 
(Fig.  6b). The changes in their relative expression level 

agreed well with the overall mRNA  abundance dynam-
ics of the Methanosarcinaceae  during the early phase 
(Figs.  4b, 6  a-c). Transcripts of genes (acs) indicative of 
Methanotrichaceae-driven acetoclastic methanogenesis 
steadily increased in relative abundance during the late 
phase. Their peak abundance occurred on day 120, at 
which the relative expression level of genes indicative of 
Methanosarcinaceae-driven acetoclastic methanogenesis 
had significantly declined (Figs. 4b and 6b, c).

Members of the Methanocellaceae were the prevail-
ing  H2/CO2-utilizing methanogens, with genes encod-
ing hydrogenotrophic methanogenesis (fwd, ftr, mch, 
mtd, mer) being most expressed by this family-level 
group (Fig. 6b, c). Their gene expression dynamics agreed 
well with the overall mRNA abundance dynamics of the 
Methanocellaceae (Figs. 4b and 6a, b).

In addition, transcripts of genes (mtaA, mtaBC, mtbA, 
mtbBC, mtmBC, mttBC) indicative of methylotrophic 
methanogenesis were detected, with mtaBC exhibiting 
the greatest transcript abundance throughout slurry incu-
bation. The relative abundance of transcripts involved in 
methylotrophic methanogenesis increased from day 3 
onwards and reached the first peak abundance (5.8% of 
total mRNA assigned to KEGG level 3 category “methane 
metabolism”) on day 14, but then decreased towards day 
21 (2.1%). Thereafter, the relative transcript level of meth-
ylotrophic methanogenesis increased again and reached 
a second peak (3.4% of total mRNA assigned to KEGG 
level 3 category “methane metabolism”) around day 60 
(Fig.  6a,  b). This two-peak (14 and 60 days) abundance 
pattern of mRNA encoding methylotrophic methano-
genesis agreed well with the overall abundance dynamics 

Fig. 4 Relative abundance changes of the dominant methanogenic families (> 2%) on rRNA (a) and mRNA (b) levels, respectively. Their percentage 
abundances are given in relation to total archaeal 16S rRNA and mRNA, respectively. Data are means ± SE (n = 3). Asterisks * (PFDR≤0.05), ** 
(PFDR≤0.01), and *** (PFDR≤0.001) indicate significant differences. Asterisks shown aside from the taxonomic names indicate that in STAMP, 
the relative rRNA or mRNA abundances significantly changed through the whole incubation period. Asterisks directly shown in the plots indicate 
that in DESeq2, the rRNA or mRNA abundance in that particular sampling time point significantly differed from the original abundance at the first 
sampling (day 3). Significance values (PFDR) are only indicated on rRNA and mRNA levels for the taxon-specific abundance peak. The complete set 
of PFDR values obtained by DESeq2 analysis for all sampling time points is shown in Tables S10 (rRNA) and S11 (mRNA)
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of Methanosarcina-affiliated rRNA (Fig.  4a) and mRNA 
(Fig. 4b), in both early and late phases. Indeed, the taxo-
nomic assignment of the transcripts involved in methy-
lotrophic methanogenesis showed that they were entirely 
expressed by the Methanosarcinaceae (Fig. 6c).

Gene expression of methanogenic pathways 
by Methanosarcina Group II
Methanosarcina MAGs
Metagenomic sequencing yielded 54,672,109 reads after 
quality control (Table S5). The assembly of quality-filtered 
reads generated 781,362 contigs greater than 1000 bp 
and 21,770 contigs greater than 5000 bp. This resulted in 
three medium-quality Methanosarcina MAGs, ranging in 
completeness from 62 to 82.5% (Table S5). One each was 
obtained from slurry material sampled after 21, 28, and 
35 days of incubation. The three MAGs shared high aver-
age nucleotide identity (ANI) values (> 95%). Compared 
to Methanosarcina genomes in GTDB, the three MAGs 
shared the greatest ANI values with Methanosarcina 
sp. MSH10X1 (> 85%) (Fig. S6a). In addition, the three 
MAGs shared high nucleotide sequence identities of their 
mcrA genes (98%). When compared to Methanosarcina 

reference genomes, the three MAGs also shared the great-
est mcrA nucleotide sequence identity values with Metha-
nosarcina sp. MSH10X1 (> 94%) (Fig. S6b). The inclusion 
of a near full-length 16S rRNA gene sequence (1400 nt) 
from MAG_21 in the Methanosarcina 16S rRNA tree 
confirmed that the three MAGs belong to Methanosar-
cina Group II and are most closely related to Methanosar-
cina sp. MSH10X1 (Fig. S7). Their predicted genome size 
(3.42 Mbp) was highly similar to that of strain MSH10X1 
(3.56 Mbp) (Fig. S8). Comparative genomics revealed 
that the three MAGs share the majority of functionally 
annotated genes with the reference genomes of Methano-
sarcina Groups I to IV (922 common genes), while they 
encode 141 unique genes (Fig. S9 and Table S15). A syn-
teny analysis showed that the organization of the mtaABC 
genes encoding methanol:CoM methyltransferase/metha-
nol corrinoid protein displays in the three Methanosar-
cina MAGs a higher similarity to that in Methanosarcina 
sp. MSH10X1 than to their organization in the other 
reference genomes (Fig. S10). The three Methanosarcina 
MAGs and the genome of strain MSH10X1 contained five 
gene copies of mtaA and three gene copies of mtaBC (Fig. 
S10 and Table S16).

Fig. 5 Phylogenetic tree of the four Methanosarcina populations detected in the paddy soil slurries (a) and their relative abundance dynamics 
over incubation time (b). a The neighbor-joining tree was constructed based on near full-length 16S rRNA sequences (> 1200 bp) assembled 
by EMIRGE from the metatranscriptomic datasets (415 sequences) and reference sequences extracted from Methanosarcina genomes in GTDB. 
b The relative abundance dynamics of the four distinct Methanosarcina populations (Groups I to IV) were inferred from the assembled 16S rRNA 
sequences. Data are means ± SE (n = 3)
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Mapping‑dependent gene expression analysis
KEGG-annotated transcripts were mapped onto the 
three MAGs (Figs. 7a and S11). On KEGG level 2, tran-
scripts involved in energy metabolism showed the great-
est mapping efficiency (54% to 86% of total mapped 
mRNA) throughout slurry incubation, while transcripts 
encoding the translational apparatus were mapped with 
high frequency (30–32% of total mapped mRNA), par-
ticularly during the first week of slurry incubation (Fig. 
S11a and Table S17). On KEGG level 3, transcripts 
involved in methane metabolism were dominantly 
mapped (51 to 80% of total mapped mRNA) onto the 
MAGs throughout slurry incubation (Fig. S11b and 
Table S18). On KEGG level 4, transcripts involved in 

acetoclastic methanogenesis and methylotrophic metha-
nogenesis were mapped with high frequency (Fig. 7a and 
Table S19). Overall, the transcript mapping frequency of 
the methylotrophic pathway (5.1–7.2% of total mapped 
mRNA) was lower than that of the acetoclastic pathway 
(7.5–12.4% of total mapped mRNA). Among total metha-
nogen mRNA, mtaABC transcripts showed the greatest 
mapping frequency (Fig. 7a).

Competitive transcript mapping onto the four reference 
genomes
Competitive mapping of metatranscriptomic mRNA 
reads onto the composite reference genomes of Methano-
sarcina Groups I to IV revealed that the vast majority of 

Fig. 6 Relative mRNA abundance dynamics of individual methanogenic pathways over incubation time a, transcript dynamics of related key 
pathway genes b, and taxonomic assignment of the transcripts c. A list of the full gene names is shown in Table S14. The relative abundance values 
are given in relation to total mRNA affiliated to the KEGG level 3 category “methane metabolism”. The relative expression levels were calculated 
based on TPM values. Data are means ± SE (n = 3). Asterisks * (PFDR≤0.05), ** (PFDR≤0.01), and *** (PFDR≤0.001) indicate significant differences. 
Asterisks shown aside from the gene names indicate that in STAMP, the relative mRNA abundance significantly changed through the whole 
incubation period. Asterisks directly shown in the heatmap (b) indicate that in DESeq2, the mRNA abundance in that particular sampling time 
point significantly differed from the original abundance at the first sampling (day 3) or vice versa that the relative mRNA abundance (ack) at day 3 
significantly differed from all other sampling time points. Significance values (PFDR) are only indicated for the peak transcript abundance(s) of each 
key pathway gene. c The percentage of acs transcripts affiliated with Methanocellaceae (acetate assimilation) was 68.1% on day 120, while those 
affiliated with Methanotrichaceae (acetoclastic methanogenesis) contributed 31.9%. The complete set of PFDR values obtained in DESeq2 analysis 
for all sampling time points is shown in Table S13
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transcripts involved in acetoclastic and methylotrophic 
methanogenesis were mapped onto the genome of Meth-
anosarcina sp. MSH10X1 (Group II). The only exception 
was metatranscriptomic reads obtained from the paddy 
soil slurries after 7-day incubation. On that day, a certain 
number of transcripts involved in acetoclastic methano-
genesis were also mapped onto the genomes of Metha-
nosarcina flavescens (Group I) and Methanosarcina 
horonobensis (Group IV) (Fig. 7b and Table S20).

Discussion
Our study revealed successional dynamics of distinct 
methanogen populations over the 120-day incubation 
period. This was closely linked to changes in the expres-
sion level of major methanogenesis pathways, which will 
be discussed in greater detail in the following text. A dis-
cussion on the dynamics of the bacterial community is 
made in supplementary text (Additional File 3).

Linking metabolite turnover with methanogen dynamics
Typical intermediates (i.e., acetate, propionate, butyrate) 
of the methanogenic food web transiently accumulated 

Fig. 7 a Relative abundance of pathway-specific mRNA and transcripts of key pathway genes in relation to total mRNA that could be mapped 
onto the Methanosarcina MAGs. A list of the full gene names is shown in Table S14. Mapping onto the MAGs was conducted for each mRNA dataset 
retrieved in triplicate from the same incubation time point (days 21, 28, and 35). The small dots indicate the mapping efficiency of each mRNA 
replicate dataset, while the large dot represents the mapping efficiency averaged across all three mRNA replicate datasets of a given sampling time 
point. The complete set of PFDR values obtained in DESeq2 analysis for all sampling time points is shown in Table S19. b Relative transcript dynamics 
of acetoclastic and methylotrophic methanogen pathways inferred from the competitive transcript mapping across the mix of Methanosarcina 
Group I to IV reference genomes. The relative mapping efficiencies were calculated based on TPM values. Data are means ± SE (n = 3). The 
mapping statistics are shown in Table S20
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and were then rapidly consumed. Acetate is the most 
abundant intermediate during the anaerobic organic 
matter breakdown [19, 70]. Generally, it is the direct 
substrate for acetoclastic methanogens, including Meth-
anosarcinaceae and Methanotrichaceae [70–72]. The 
transient accumulation of acetate with highest peak con-
centration on day 7 followed by its fast methanogenic 
consumption was closely linked to the increase in both 
the activity (defined by increased mRNA abundance) of 
Methanosarcinaceae (days 7 to 14, Fig. 4b) and the  CH4 
production rate (days 11-21, Fig.  1d). Thereafter, the 
decline in Methanosarcinaceae’s activity (days 14 to 28, 
Fig. 4b) corresponded well to a transient decrease in  CH4 
production (days 21 to 28, Fig. 1d).

Propionate and butyrate are the next important inter-
mediates of organic matter conversion under anoxic 
conditions [73]. Acetate,  H2, and  CO2 generated by the 
syntrophic conversion of propionate and butyrate can 
feed acetoclastic and hydrogenotrophic methanogens. 
The  oxidation of propionate (G0’ = +76 kJ/mol) and 
butyrate  (G0’ = +48,3 kJ/mol) is highly endergonic under 
standard conditions but can be accomplished by syntro-
phy with an  H2-utilizing methanogen, which maintains 
a low  H2 partial pressure [74]. The rapid consumption 
of butyrate between days 7 and 11 (Fig. 1b) corresponds 
well to the initial activity increase of  H2-utilizing Metha-
nocellaceae (Fig. 4b). The net consumption of propionate 
from day 14 towards day 28 indicates that in addition to 
butyrate, propionate fueled acetoclastic methanogenesis 
(Fig. 1c).

Composition and activity dynamics of the methanogenic 
community
Our study identified three successional phases defined by 
two activity peaks separated by an intermittent decrease 
of methanogenic activity (Fig. 4). Methanogenic archaea 
obtain energy for growth by converting C1 and C2 com-
pounds, including  CO2, formate, acetate, ethanol, meth-
anol, and other methylated compounds, to methane 
[75–77]. Thus, the succession of methanogen guilds is 
due to changes in available substrates and their utiliza-
tion for energy conservation. Methanosarcinaceae were 
the first methanogens to be stimulated in response to 
substrates (acetate) released by the anaerobic degrada-
tion of rice straw and may be considered early- or rapid-
responding methanogens (Figs.  1a and 4b). With the 
ongoing anaerobic degradation of complex carbon, the 
activity of Methanocellaceae as intermediate responders 
was stimulated, primarily due to their role as syntrophic 
methanogen partners in the bacterial conversion of pro-
pionate to acetate,  H2, and  CO2 (Figs. 1c and 4b) [78–81].

Methanosarcinaceae and Methanotrichaceae are 
an excellent example of how two family-level groups 

compete for the same substrate. Methanosarcinaceae 
prevailed in acetoclastic methanogenesis at the high 
acetate concentrations during the early phase, but after 
acetate declined to a very low level, the late-responding 
Methanotrichaceae significantly increased in competi-
tiveness and acetoclastic activity (Figs.  1a and 4b). The 
abundance dynamics of total mRNA affiliated to either 
Methanosarcinaceae or Methanotrichaceae agreed well 
with changes in the relative expression level of their 
pathway genes indicative of acetoclastic methanogen-
esis (Figs. 4b and 6b, c). With a higher maximum rate of 
acetate utilization and maximum growth rate (Y * k), a 
higher half-saturation coefficient (KS), and a higher yield 
coefficient compared with Methanotrichaceae, elevated 
acetate concentrations are favorable for growth and activ-
ity of Methanosarcinaceae. By contrast, members of the 
Methanotrichaceae are superior at low acetate concentra-
tions due to the investment of energy to activate acetate, 
thereby leading to a lower k and KS [82–84]. Hence, our 
results are consistent with the concept that both sub-
strate availability and substrate concentration (threshold 
concept) are key factors controlling the structure and 
function of methanogenic communities.

A transient activity decline around day 28 was observed 
in the absolute abundance of biomarkers, including both 
genes and transcripts of bacterial 16S rRNA and metha-
nogenic mcrA (Fig. 2). This activity decline was also well 
evidenced by changes in the metatranscriptomic abun-
dance of methanogen rRNA and mRNA (Fig. 4). Previous 
research has shown that over the first 4 weeks of straw 
decomposition, labile polymers are much faster hydro-
lytically released than recalcitrant compounds; with 
the latter having a longer residence time [70, 85]. The 
anaerobic decomposition of labile straw components, 
such as pectin and xylan, primarily occurs by a bacterial 
food web attached to rice straw [6, 36]. Exhaustion of the 
labile straw components leads not only to a change in the 
microbial colonization of rice straw but also to a transient 
decline in methanogenic precursors. In particular, hydro-
lytic and fermentative bacteria are increasingly detached 
from rice straw and released into the soil [6, 36]. In con-
sequence, the transition from degrading the labile straw 
components to decomposing recalcitrant C compounds 
presumably leads to an overall decline in community 
activity around day 28 until critical sizes of functionally 
active populations and methanogenic precursor pools are 
re-established, thereby leading to a second activity peak 
during the late phase.

Characterization of dominant Methanosarcina populations
The intra-family analysis of Methanosarcinaceae identi-
fied four distinct populations, with the Group II popu-
lation prevailing over the complete 120-day incubation 
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period (Fig.  5). This implies the same methanogen 
population with close affiliation to Methanosarcina sp. 
MSH10X1 dominated Methanosarcinaceae during the 
early and late activity phases (Figs.  4 and 5). An ANI 
value of 95% is considered species demarcation [65]. 
Thus, our three Methanosarcina MAGs recovered from 
slurry samples incubated for 21, 28, and 35 days presum-
ably belong to the same species. Moreover, the high ANI 
value found between the three Methanosarcina MAGs 
and Methanosarcina sp. MSH10X1 (around 85%) suggests 
that the MAGs and strain MSH10X1 represent differ-
ent but closely related species of the Group II population. 
(Fig. S6a). Phylogenetic analysis of the 16S rRNA gene 
located on the Methanosarcina MAG-21 and representa-
tive full-length 16S rRNA sequences assembled from our 
metatranscriptomic datasets further substantiate that 
the three Methanosarcina MAGs are closely affiliated to 
Methanosarcina sp. MSH10X1. This provides additional 
evidence for the dominant role of the Methanosarcina 
Group II population in the slurry incubations (Fig. S7).

Expression of methanogenic pathways by Methanosarcina 
spp.
Previous paddy soil studies have demonstrated that 
acetoclastic methanogenesis is the major methane 
production pathway operated by members of the Meth-
anosarcinaceae [16, 19, 28]. Indeed, we observed a high 
expression level of key genes (ack, pta, and cdhA-E) 
related to acetoclastic methanogenesis by Methanosar-
cina populations. The expression of ack and pta reached 
their peak abundance in the early phase, while their tran-
scripts were detected only on a low level in the late phase. 
Obviously, acetoclastic methanogenesis was the major 
pathway operated by Methanosarcina spp. in the early 
phase (Fig.  6). The competitive mapping results further 
confirmed the major role of acetoclastic methanogenesis 
in Methanosarcina populations (including Groups I, II, 
and IV) during the early phase (Fig. 7b).

However, we also detected the expression of key genes 
encoding methylotrophic methanogenesis (mta, mtb, 
mtm, and mtt), but in particular transcripts of mtaBC 
(accounting for 0.8 to 5.2% of total mRNA affiliated to 
the KEGG level 3 category “methane metabolism”). The 
enzyme methyltransferase/methanol corrinoid protein 
encoded by mtaBC is a specific biomarker for methanol-
dependent methanogenesis (Fig.  6b). The transcripts 
involved in methylotrophic methanogenesis were affiliated 
with Methanosarcinaceae. While their greatest expres-
sion level agreed largely with the two activity peaks of 
Methanosarcinaceae, the first peak abundance of methy-
lotrophic mRNA showed a time shift relative to the peak 
transcript abundance of acetoclastic methanogenesis in 
the early phase (Figs. 7b and 4b). Thus, it is reasonable to 

conclude that Methanosarcinaceae produce  CH4 via aceto-
clastic and methylotrophic methanogenesis in the Philip-
pine paddy soil under anoxic conditions. The competitive 
mapping approach resulted in the mapping of nearly all 
methylotrophic mRNA to the Group II representatives, 
thereby implying that Methanosarcina Group II was the 
major player in methylotrophic methanogenesis (Fig. 7b). 
Detection of the genes encoding methylotrophic metha-
nogenesis on the three Methanosarcina MAGs further 
substantiates this conclusion (Fig. 7a). Actually, Methano-
sarcina strain MSH10X1 prefers methanol and trimeth-
ylamine as substrates over acetate,  H2/CO2, and other 
methylated compounds [86]. The utilization of methanol 
and trimethylamine resulted in the greatest methane yield 
produced by strain MSH10X1. This pure-culture-based 
finding agrees well with our result that Methanosarcina 
Group II is most competitive under conditions favoring 
methylotrophic methanogenesis. The expression dynam-
ics of the acetoclastic and methylotrophic pathways by 
the Group II population strongly differed over the 120-
day incubation period, thereby providing evidence that 
they were differentially regulated in response to major 
changes in substrate availability (Figs. 6 and 7b). In addi-
tion to methanol released during pectin degradation, 
certain amounts of methanol released during the decom-
position of xylan [87, 88] and lignin [89–91] may have fed 
methylotrophic methanogenesis. Recalcitrant lignin may 
have been the primary source of methanol for methy-
lotrophic methanogenesis during the second expression 
peak around incubation day 60. Here, it is noteworthy 
that compared to other major rice farming areas (China, 
Italy), the Philippine rice field soil is particularly rich in 
humic acids [32]. The anaerobic decomposition of lignin 
and the release of methanol requires the activity of bacte-
rial laccases-like enzymes that anaerobically depolymer-
ize lignin into smaller polymer units to which the enzyme 
pool of the anaerobic bacteria can get access to decom-
pose them into monomers [90, 91]. Among the bacterial 
community, members of the Geobacteraceae are the most 
promising candidates for being involved in the anaerobic 
lignin degradation. These bacteria showed not only the 
expression of putative laccase genes but also their great-
est relative expression level during the later phase (days 28 
and 35) (Table S21). Thus, a functional interplay may have 
occurred between members of the Geobacteraceae and the 
Methanosarcina Group II population, a view that is fur-
ther supported by the correspondence of their abundance 
dynamics on both rRNA and mRNA levels (compare 
Figs. 3 and 4; and see Additional File 3 for further details). 
Another putative candidate for being involved in the deg-
radation of recalcitrant lignin may be members of the Pep-
tococcaceae, given the reasonable correspondence of their 
rRNA and mRNA peak abundances with the expression 
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peaks of methylotrophic methanogenesis. The Peptococ-
caceae have been identified as putative aromatic ring-
cleavage bacteria in rice field soil under lignin-degrading 
methanogenic conditions [92].

Final remarks
Understanding the sources and controls of microbial 
methane production and the response mechanisms of 
methanogenic communities in rice field soils is critical 
for modeling predictions of global methane emissions. 
Metatranscriptomics, coupled in part with metagenom-
ics, provided us with detailed insights into the role and 
dynamics of key functional guilds participating in the 
methanogenic organic matter breakdown in Philippine 
paddy soil. A particular Methanosarcina population 
closely related to strain MSH10X1 dominated the metha-
nogen community over the complete incubation period. 
This species-level population showed a significant suc-
cessional change in the methanogenic pathways operated 
during the incubation period, with acetoclastic metha-
nogenesis being highly active during the very early phase 
(around day 7) and methylotrophic methanogenesis 
being active during the later stages involving two inde-
pendent expression peaks after an incubation period of 
14 and 60 days. Collectively, our research findings expand 
our hitherto knowledge of the methanogenic pathways 
being active in paddy soils and show that methylotrophy 
is a predominant methanogenesis pathway in certain rice 
field soils.

Supplementary Information
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org/ 10. 1186/ s40168- 023- 01739-z.

Additional file 1: Fig. S1. Schematic diagram of the methanogenic food 
web and the three major methanogenesis (acetoclastic, hydrogeno-
trophic, and methylotrophic) pathways. A list of the full enzyme names is 
shown in Table S14. Fig. S2. Schematic presentation of the experimental 
design to investigate the methanogenic community dynamics in Philip-
pine paddy soil. The slurries were incubated under anoxic conditions at 30 
°C for 120 days. The research combined metabolite measurements  (CH4, 
acetate, propionate, and butyrate), quantitative real-time PCR and RT-PCR 
of particular biomarkers (16S rRNA, mcrA), and meta-omics (environmental 
genomics and transcriptomics). Fig. S3. Metatranscriptomic abundance 
dynamics of bacterial and archaeal 16S rRNA (a) and mRNA (b) (cutoff 
> 2%) analyzed on family level over the 120-day incubation period. 
Taxonomic assignment of assembled 16S rRNA reads was performed 
using BLASTN algorithm implemented in DIAMOND against SILVA 132 
SSU database with 0.90 sequence identity. Taxonomic assignment of 
mRNA reads was performed using BLASTX algorithm implemented in 
DIAMOND against NR database with 0.93 sequence identity. The relative 
abundance values are given in relation to total bacterial and archaeal 
metatranscriptomic 16S rRNA and mRNA. Fig. S4. Transcript dynamics of 
genes affiliated to the family Geobacteraceae and involved in either the 
synthesis of c-type cytochromes (a) or the KEGG category ‘cell motility’ (b). 
The relative abundance values are given in relation to total mRNA that 
could be functionally annotated in KEGG and is affiliated to the family 
Geobacteraceae.Fig. S5. Metatranscriptomic expression dynamics of genes 
encoding carbohydrate-active enzymes (CAZymes) that are involved in 

the breakdown of cellulose, xylan, other hemicelluloses, and chitin (a). 
Changes in the taxonomic composition of the CAZyme transcripts over 
the 120-day incubation period (b). The analysis involved multiple CAZyme 
families of glycosyl hydrolases (GHs) and carbohydrate-binding modules 
(CBMs). These CAZyme families are specified in Additional File 2, Table S12. 
Fig. S6. Average nucleotide identity (ANI) values calculated for the three 
Methanosarcina MAGs (21, 28, 35) and reference genomes downloaded 
from the Genome Taxonomic Database (GTDB) (a). Nucleotide sequence 
identities of the mcrA genes present in the same set of MAGs and 
Methanosarcina reference genomes (b). Fig. S7. Neighbor-joining tree 
showing the relationship between near full-length 16S rRNA sequences 
(> 1200 bp) assembled by EMIRGE from the metatranscriptomic datasets 
(415 sequences) and 16S rRNA gene sequences extracted from the 
complete Methanosarcina reference genomes downloaded from GTDB 
(a). Neighbor-joining tree showing the position of the near full-length 16S 
rRNA gene sequence of MAG_21 (1,400 nt) in relation to the 16S rRNA 
gene sequences extracted from theMethanosarcina reference genomes 
and near full-length 16S rRNA sequences (> 1200 bp) assembled by 
EMIRGE from the metatranscriptomic datasets. Fig. S8. Circular genome 
maps for MAG_35 (a) and the most closely related Methanosarcina 
reference genome (strain MSH10X1) (b). Circles from the outside to the 
inside show the positions of protein-coding sequences (blue), tRNA (red) 
and rRNA genes (green) on the positive (circle 1) and negative (circle 
2) strands. Circle 3 shows the positions of BLAST hits detected through 
BLASTx (with an e-value cut-off of 1e-5) and circle 4 depicts the BLASTx 
results for the reciprocal search against the genome of strain MSH10X1 
(a) and MAG_35 (b). Circles 5 and 6 show GC content and GC skew plot-
ted as the deviation from the genomic average. Fig. S9. Venn diagram 
showing the distribution of functionally annotated genes among the 
three Methanosarcina MAGs (21, 28, 35) and the reference genomes 
of Methanosarcina Group I (M. fluorescens), Group II (strain MSH10X1), 
Group III (M. barkeri), and Group IV (M. horonobensis). The bar columns 
(pink) show the distribution pattern of particular sets of characterized 
genes among the MAGs and Group I to IV reference genomes. The green 
columns indicate the total number of predicted genes in the MAGs and 
Group I to IV reference genomes. The black and grey dots specify presence 
or absence of this particular set of characterized genes in the Methano-
sarcina MAGs and the Group I to Group IV reference genomes. Compara-
tive genomics revealed that the three Methanosarcina MAGs (21, 28, 35) 
share their majority of predicted genes with the reference genomes of 
Methanosarcina Groups I to IV (922 characterized genes in common), 
while they encode 141 unique genes as specified in Table S15 (Additional 
File 2). The unique genes were associated with the following KEGG level 
2 categories: cell wall component biosynthesis, cofactor biosynthesis, 
membrane transport, energy metabolism, cell motility, and genetic 
information processing. All the genes encoding essential enzymes for 
acetoclastic (K00925, K00625, K00192, K00193, K00194, K00195 and K00197), 
hydrogenotrophic (K00200-K00205, K11260, K11261, K00627, K01499, 
K00319 and K00320), and methanol-dependent methanogenesis (K14080, 
K04480 and K14081) were identified on all three Methanosarcina MAGs as 
specified in Table S16 (Additional File 2). Fig. S10. Methanol-dependent 
methanogenesis pathway in the three Methanosarcina MAGs (21, 28, 35) 
and the Methanosarcina Groups I to IV reference genomes. Methanosar-
cina populations produce the MtaABC enzyme complex to catalyze the 
methyl transfer from methanol to CoM to form methyl-CoM (a and b). 
Comparison of the genetic organization of the mta gene cluster between 
the three Methanosarcina MAGs (21, 28, 35) and the Group I to IV reference 
genomes (c). Fig. S11. Relative abundances of mRNA mapped onto the 
three Methanosarcina MAGs (21, 28, 35) and affiliated with particular KEGG 
categories on level 2 (a) and 3 (b). The triplicate metatranscriptomes of a 
given incubation time point were individually mapped onto a particular 
MAG as follows: (i) triplicate metatranscriptomes generated from RNA 
of the sampling days 3, 7, 11, 14, and 21 onto MAG_21; (ii) triplicate 
metatranscriptomes generated from RNA of the sampling day 28 onto 
MAG_28; and (iii) triplicate metatranscriptomes generated from RNA of 
the sampling days 35, 60, and 120 onto MAG_35. The relative mapping 
efficiencies were calculated based on the normalized number of mRNA 
reads that could be mapped onto each ORF of a given Methanosarcina 
MAG. The dot sizes indicate relative mapping efficiencies. 

https://doi.org/10.1186/s40168-023-01739-z
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 Additional file 2: Table S1. Forward and reverse primers used in 
qPCR and RT-qPCR. Table S2. Sequencing statistics of metatranscrip-
tomic datasets. Table S3. Sequencing statistics of near full-length 16S 
rRNA sequences. Table S4. Sequencing statistics of mRNA sequences. 
Table S5. Sequencing statistics of the metagenomic datasets. 
Table S6. Significance analysis for the quantification of bacterial 16S 
rRNA gene copy numbers. Table S7. Significance analysis for the 
quantification of mcrA gene copy numbers. Table S8. Significance 
analysis for the quantification of bacterial 16S rRNA transcripts. Table 
S9. Significance analysis for the quantification of mcrA transcripts. 
Table S10a. Analysis of the taxon-specific abundance on rRNA level, 
using the software STAMP. PFDR values ≤ 0.05 are indicative of signficant 
changes in family-level abundance across the complete 120-day 
incubation period. The resulting p values were corrected (PFDR) for 
multiple testing using the Benjamini-Hochberg method. Table S10b. 
Analysis for incubation time-dependent abundance changes of 
dominant family-level taxa on rRNA level, using the package DESeq2 in 
R. The resulting p values were corrected (PFDR) for multiple testing using 
the Benjamini-Hochberg method. PFDR values ≤ 0.05 are indicative 
of signficant difference in taxon-specific rRNA abundance between 
two particular incubation time points. Table S11a. Analysis of the 
taxon-specific abundance on mRNA level, using the software STAMP. 
The resulting p values were corrected (PFDR) for multiple testing using 
the Benjamini-Hochberg method. PFDR values ≤ 0.05 are indicative of 
signficant changes in family-level abundance across the complete 
120-day incubation period. Table S11b. Analysis for incubation time-
dependent abundance changes of dominant family-level taxa on 
mRNA level, using the package DESeq2 in R.The resulting p values were 
corrected (PFDR) for multiple testing using the Benjamini-Hochberg 
method. PFDR values ≤ 0.05 are indicative of signficant difference in 
taxon-specific mRNA abundance between two particular incubation 
time points. Table S12. List of CAZyme families whose transcripts 
were detected in the metatranscriptomic datasets during the 120-day 
incubation period. Table S13a. Analysis for the mapping-independent 
abundance of genes involved in methanogenesis, using the software 
STAMP. The resulting p values were corrected (PFDR) for multiple testing 
using the Benjamini-Hochberg method. PFDR  values ≤ 0.05 are indica-
tive of significant difference in relative transcript abundance across all 
the incubation times tested. Table S13b. Analysis for the mapping-
independent abundance of genes involved in methanogenesis, using 
the package DESeq2 in R. The resulting p values were corrected (PFDR) 
for multiple testing using the Benjamini-Hochberg method. PFDR values 
≤ 0.05 are indicative of signficant difference in relative transcript 
abundance between two particular incubation time points. Table S14. 
The full name of enzymes involved acetoclastic, hydrogenotrophic, and  
methylotrophic methanogenesis. Table S15. List of KEGG-annotated 
genes detected in the three  Methanosarcina MAGs (21, 28, 35), but not 
in the Methanosarcina Groups I to IV reference genomes. Table S16. 
Copy number of KEGG-annotated genes present in both the three 
Methanosarcina MAGs (21, 28, 35) and the Methanosarcina Groups I 
to IV reference genomes. Table S17. KEGG level 2 analysis of mRNA 
mapped to the three Methanosarcina MAGs (21, 28, 35). The relative 
abundance values (%) are given in relation to total mapped mRNA 
functionally annotated by KEGG. The relative expression levels were 
calculated based on TPM values (means ± SE, n = 3). Table S18. KEGG 
level 3 analysis of mRNA mapped to the three Methanosarcina MAGs 
(21, 28, 35). The relative abundance values (%) are given in relation 
to total mapped mRNA functionally annotated by KEGG. The relative 
expression levels were calculated based on TPM values (means ± SE, 
n = 3). Table S19a. Analysis for the mapping-dependent abundance 
of genes involved in methanogenesis, using the software STAMP. The 
resulting p values were corrected (PFDR) for multiple testing using 
the Benjamini-Hochberg method. PFDR values ≤ 0.05 are indicative of 
significant difference in transcript mapping accross all three MAGs. 
Table S19b. Analysis for the mapping-dependent abundance of 
genes involved in methanogenesis, using the package DESeq2 in R. 
The resulting p values were corrected (PFDR) for multiple testing using 
the Benjamini-Hochberg method. PFDR values ≤ 0.05 are indicative 

of significant difference in transcript mapping between two particular 
incubation time points. Table S20. Statistics of transcript mapping to the 
three MAGs (21, 28, 25) and the Methanosarcina Groups I to IV reference 
genomes. Table S21a. Contigs of putative laccase-like genes (GeoLacc) 
expressed by members of the Geobacteraceae. Table S21b. TPM values 
of putative laccase-like genes (GeoLacc) expressed by members of the 
Geobacteraceae.

 Additional file 3: Supplemental Discussion.
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