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Abstract 

Background The effect of microbes on their human host is often mediated through changes in metabolite 
concentrations. As such, multiple tools have been proposed to predict metabolite concentrations from micro-
bial taxa frequencies. Such tools typically fail to capture the dependence of the microbiome-metabolite relation 
on the environment.

Results We propose to treat the microbiome-metabolome relation as the equilibrium of a complex interac-
tion and to relate the host condition to a latent representation of the interaction between the log concentration 
of the metabolome and the log frequencies of the microbiome. We develop LOCATE (Latent variables Of miCrobiome 
And meTabolites rElations), a machine learning tool to predict the metabolite concentration from the microbiome 
composition and produce a latent representation of the interaction. This representation is then used to predict 
the host condition. 

LOCATE’s accuracy in predicting the metabolome is higher than all current predictors. The metabolite concentration 
prediction accuracy significantly decreases cross datasets, and cross conditions, especially in 16S data. 

LOCATE’s latent representation predicts the host condition better than either the microbiome or the metabolome. 
This representation is strongly correlated with host demographics. A significant improvement in accuracy (0.793 vs. 
0.724 average accuracy) is obtained even with a small number of metabolite samples ( ∼ 50).

Conclusion These results suggest that a latent representation of the microbiome-metabolome interaction leads 
to a better association with the host condition than any of the two separated or the simple combination of the two.

Introduction
The human gut microbial composition is associated with 
multiple aspects of human health [1–6]. The microbiome 
is associated with human health, either directly through 
the effect of microbes on disease [7–10], or indirectly 
through interaction with different systems of the human 

host [9–13]. However, the most extensive interaction 
with the host is through metabolite consumption and 
production [14–17] with short-chain fatty acids (SCFAs, 
see Supplementary material Acronym Table S6) such 
as butyrate, acetate, and propionate, the end product of 
gut microbiome fermentation, being some of the most 
studied metabolites [16, 18]. SCFAs have been shown 
to have a role in regulating the immune response and 
gut barrier function, gut cell proliferation and differen-
tiation, regulation of gut endocrine functions, and even 
in gut brain axis communication [19, 20]. The relation 
between metabolites and microbes is bi-directional, with 
each affecting the frequency/concentration of the other. 
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However, typically, the prediction was from the micro-
biome to the metabolites [21, 22] and not vice-versa. 
Indeed, metabolites have been shown to be affected by 
heritable, gut microbiome, by lifestyle choices such as 
smoking, or by diet [23].

Both microbiome and metabolome have been associ-
ated with the host condition through either correlations 
or predictions [22], often in conjunction with additional 
meta-data, such as age, gender, or diet [24–31]. Such 
prediction typically requires ML models, including deep 
neural networks (DNNs) and convolutional neural net-
works (CNNs) [28–31]. However, inferring the human 
condition based on either microbiome or metabolome 
separately suffers from several limitations. The limita-
tions of microbiome-based ML include among others 
little knowledge about the interaction between different 
members of the microbial community or with the host, 
and the absence of mechanistic understanding of the 
relation between the microbiome and health or disease 
[32–34]. Microbiome-based ML is also often plagued by 
a low prediction accuracy vs. other sources of informa-
tion, such as metabolites [25–27].

While metabolome studies have become increasingly 
used in characterizing emerging properties of the metab-
olome and in relating metabolomic change to host path-
ological states [35–45], metabolome-based ML also has 
its limitations: (1) high cost; (2) extremely high dimen-
sion of input (i.e., number of different metabolites vs. the 
number of samples), especially in untargeted studies [25]; 
(3) a large number of unknown metabolites that have a 
molecular composition, but no known function [46, 47]; 
(4) large variability of nomenclature and experimental 
protocols among different studies [48, 49].

We here propose that the microbiome-metabolome 
combination can be used to produce a non-linear inter-
mediate latent representation (marked as Z all along the 
manuscript) that is closely associated with the host con-
ditions and can be used to predict them. We then pro-
pose an algorithm to compute this representation and 
show that it simultaneously improves the prediction of 
metabolome (log concentration) from the microbiome 
(log composition) and the prediction of the host condi-
tion. We denote this algorithm as LOCATE (Metabo-
lites prediction by Latent variables Of miCrobiome And 
meTabolites rElations).

To understand this claim, one can contrast simple 
models of microbiome-metabolome relations:

A) Linear model: This model is focused on metabolite 
production. Each microbe produces metabolites, and the 
metabolite concentration is a positive linear combination 
of these microbe productions. The metabolite concentra-
tion can thus be described by a non-negative factoriza-
tion of the microbe frequencies, which would basically 

capture the contribution of each microbe to each metab-
olite studied. Some studies propose qualitative relations, 
where each microbe is associated with high or low values 
of a metabolite [50–52]. Those are mostly based on bio-
logical relations of production and consumption. Other 
studies propose quantitative relations. Some of those are 
reference-based, such as Predicted Relative Metabolomic 
Turnover (PRMT), MIMOSA (Model-based Integration 
of Metabolite Observations and Species Abundances), 
and Mangosteen [53–56], while others are model-based, 
such as MelonnPan [57] (Fig. 1A).

B) Dominant microbes model: An alternative hypoth-
esis would be that given the dominance of a small num-
ber of microbe species composing the vast majority of 
microbes in the gut, the concentration of each metabo-
lite is determined by the most frequent microbe. This 
conceptualization translates into models that relate one 
main microbe (or set of genetically similar microbes) to 
each metabolite (Fig. 1B). While this is not implemented 
in any quantitative model, this is the assumption under-
lying most qualitative arguments suggesting that chang-
ing a dominant microbe would change the metabolite 
concentration.

C)Multiview model: Contrary to the 2 former 
approaches, which assume the microbiome and metabo-
lites interactions are direct and the environment affects 
the situation via the microbiome only [21], this model 
assumes the microbiome and metabolites are both 
affected by the environment. Therefore, the conditions 
of the samples (which determine the environment for 
the microbiome and metabolome) can be estimated from 
the microbiome and metabolites by using multi-omics 
approaches, such as Multiview and IntegratedLearner 
[58, 59]. Despite its multi-faceted approach, this model 
falls short of creating a learnable connection between the 
microbiome and metabolites (Fig. 1C).

D) Latent variables model:  We here follow a model 
where the observed frequencies of microbes and concen-
trations of metabolites represent the steady state of com-
plex bi-directional interactions [22, 23]. In such a case, 
the effect of a microbe on metabolites is not linearly or 
positively correlated with its frequency. Moreover, the 
equilibrium is affected by the environment (e.g., herit-
ability, lifestyle choices, and diet) and differs between 
hosts. While this complicates modeling the relation-
ship between metabolites and microbiome, it produces 
a latent representation of the relation. This representa-
tion can then be directly associated with the environment 
(Fig. 1D). We propose that this approach is indeed better 
than the ones above for predicting the relation between 
microbes, metabolites, and the host condition.

There are also more heuristic ML-based models 
that do not fit clearly into these categories, such as 
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MiMeNet [60], and encoder-decoder-based mod-
els, such as SparseNED [27], mNODE  [61], and the 
model proposed by Khajeh et al. [25] that showed that 
autoencoders of microbiome and metabolome can be 
used for IBD prediction.

Related work
The current analysis has two main stages: First, the 
prediction of the metabolite concentration from the 
microbe frequencies and the resulting latent represen-
tation; second, the prediction of the host condition is 
based on this representation. Multiple models were 
proposed for both stages (for a summary see Supple-
mentary material Table S1).

Linear models
Different approaches have been proposed in recent years 
to link the microbiome composition with metabolomic 
data. One strategy relies on the creation of a connec-
tion network linking a given gene/amplicon sequence 
variant (ASV)/taxon to pathways and compounds in 
a database. These linkages are used to infer molecular 
compound identities from the genetic composition of 
the microbial community. Most methods are descriptive 
[62–70]. However, there are some quantitative methods. 
Such methods include predicted relative metabolomic 
turnover (PRMT) to predict metabolites from a coastal 
marine metagenomics dataset, showing a clear correla-
tion between the predicted metabolites and environmen-
tal factors [53]. MIMOSA was later developed to predict 

Fig. 1 Different approaches to microbiome-metabolites relations. A The linear approach assumes each microbe produces some metabolites, 
and the metabolite concentration is a positive linear combination of the microbe concentration. The environmental/host effect if any 
is only through the microbiome (gray). B The dominant microbes approach assumes that given the dominance of a small number of microbe 
species composing the vast majority of microbes in the gut, the concentration of each metabolite is determined by the most frequent microbes 
(gray). C Multiview assumes the environment directly affects the metabolites and microbiome separately (gray). D The latent variables approach 
assumes that the microbiome and metabolome represent the steady state of a bi-directional interaction. In such a case, the equilibrium can differ 
between hosts. However, it may be represented by some combined latent representation (blue). In all plots, microbiome taxa are symbolized 
by bacteria icons of various sizes, reflecting their frequencies. “Mic.” denotes the microbiome, and “Met.” stands for metabolites. The arrows denote 
interactions, with arrow thickness indicating the strength of the interaction and the arrow direction indicating the direction of the interaction
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metabolic potential in a given microbial community and 
to identify the microbial taxa most associated with the 
synthesis/consumption of key metabolites [54, 55]. Both 
methods rely on a reaction network and are limited to the 
KEGG database. A similar method to predict metabo-
lites directly is Mangosteen, a metabolome prediction 
pipeline dependent upon relationships between KEGG/
BioCyc reactions and the molecular compounds directly 
associated with those reactions [56]. All the above meth-
ods are reference-based, and as such rely heavily on the 
completeness and accuracy of the database query. Melon-
nPan uses ML to predict metabolomic potential scores, 
which represent the relative capacity of the community 
in a given sample to generate or deplete each metabolite. 
MelonnPan has good accuracy on a specific IBD dataset 
[57].

Different ML‑based models
Similar to MelonnPan, MiMeNet is an MLPNN (multiple-
layer perceptron neural network) model that is composed 
of multiple fully connected hidden layers. They further 
define well-predicted metabolites [60]. Various meth-
ods adopt the encoder-decoder paradigm, for example, 
SparseNED—a sparse one-layer neural encoder-decoder 
network predicts metabolite abundances from microbe 
abundances [27] and Khajeh et  al. multi-task autoen-
coder to extract the latent profiles from the combined 
microbiome and metabolome data for IBD prediction 
[25]. A more intricate example is mNODE (metabolomic 
profile predictor using neural ordinary differential equa-
tions) [61] which is a deep learning method that com-
bines explicit layers with implicit layers where the states 
of hidden layers are described by ODEs.

Most current methods are database-specific and can-
not be trained on one cohort and tested on another 
cohort. In other words, they are not transferable. There 
was a single attempt to perform cross-predictability 
between datasets in [71] by a random forest regression 
model. Unfortunately, their success was limited to spe-
cific metabolites in specific pairs of datasets.

Prediction of host condition based on combination 
of metabolome and microbiome
A distinctive perspective is to use the combined micro-
biome-metabolome to predict the host condition. Such 
an approach is adopted by the Multiview model [58], 
wherein the microbiome and metabolites are treated as 
distinct perspectives of the host condition (assumed to 
be the environment affecting the microbiome and metab-
olome). Multiview uses “Cooperative Learning,” which 
combines the standard squared-error loss with an “agree-
ment” penalty to encourage the predictions from differ-
ent data views (microbiome and metabolites) to agree. 

Another novel approach is the IntegratedLearner [59], 
which applies Bayesian ensemble methods to consolidate 
predictions by harnessing information across multiple 
longitudinal and cross-sectional omics data layers.

Results
Relation between microbiome and metabolites 
is not linear and is dominated by a few taxa
We first tested the linear model. In this model, the rela-
tion between metabolites and microbiome is often 
described through a consumption/production net-
work [50–52, 72, 73]. Such networks are based on three 
assumptions: (A) Each microbe may consume more than 
one metabolite or produce different metabolites, and 
therefore such a network is required. (B) Production and 
consumption rates are not frequency dependent. As such, 
one could assume the concentration of the metabolites 
would depend on a linear combination of their produc-
tion and consumption by a variety of different microbes. 
This assumption may fail following non-linear experi-
mental response curves for both microbes and metabo-
lites [74–76] or non-linear consumption/production. (C) 
The relation production and consumption rate are not 
affected by external factors or other bacteria [77, 78].

To test the first assumption, we performed an NMF 
(non-negative matrix factorization) decomposition (see 
the “Methods” section) of the metabolite non-negative 
concentrations (relative normalized) over the microbial 
relative frequencies of 10 paired microbiome-metabo-
lome datasets (5 16S rRNA gene sequencing-based and 5 
WGS datasets (see the “Methods” section)). Surprisingly, 
in most cases (94.9%), a single microbe was associated 
with more than 80% of the production of a single metabo-
lite, as measured by the NMF coefficient values.

To test that such a skewed effect is not a direct result of 
the microbiome and metabolome distributions, we com-
pared the real model to the relative contribution of the 
coefficients of a random parallel model whose microbes 
are shuffled (Fig.  2A, B, the expectations are in black 
(real) and gray (shuffled) for the averages of all coef-
ficients’ relative contributions of all metabolites in the 
He dataset, see Supplementary material  Fig.  S8) as well 
as significantly higher coefficient relative contributions 
expectations for each metabolite (p-value < 0.05) for all 
datasets (Fig.  2C, D). As such, the concept of a metab-
olite-microbe interaction network (linear approach) may 
fail, and instead, a direct relation between a dominant 
microbe and a metabolite should be considered (Fig. 2A–
D). Thus, the dominant microbe described above is more 
consistent with the observed interaction than the linear 
approach.

If we follow the dominant microbes approach, one 
could presume that the dominant microbes would be the 
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Fig. 2 The relation between the microbiome and the metabolites is not linear and is dominated by a few taxa. A, B Histograms of the coefficients 
of the NMF model which relates metabolite concentrations and the microbiome frequencies (real in dark purple) and of a random model 
with the microbes shuffled before the prediction (light purple) of the metabolite C2H4O2 (A) and C4H5N3O (B). The black line represents 
the expectation of the real data, and the gray line represents the expectation of the shuffled data. The coefficients of the real model are 
higher than the coefficients of the shuffled model. Similar results are observed for all the other metabolites as well. C, D Swarm plots of all 
the expectations of the relative contribution of the coefficients of each metabolite for all the 16S rRNA gene-based (C) and the WGS datasets 
(D). The expectations of the real models are represented in dark purple dots, while the expectations of the shuffled models are in light dots. Bar 
plots represent the median of each group. A two-sided t-test was applied between the two models for each dataset. In all the datasets apart 
from Jacob, the expectations of the real model are significantly higher (p-value < 0.05) than the expectations of the shuffled model. The stars 
represent the p-values, such that *p-value ≤ 0.05 , **p-value ≤ 0.01 , ***p-value ≤ 0.001 . E, F Bar plots of the frequency of the microbes associated 
with the 10 highest coefficients in the NMF models of C5H11NO2S (E) and C4H7NO4 (F). There are no consistent patterns. For most metabolites, 
the most frequent order is not the best predictor. G Scatter plot of the coefficients in the log NMF model of the taxa with the highest coefficients vs. 
the logged frequency of the same taxa, with no clear correlation between them
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very frequent ones. However, this is not the case. In the 
10 most dominant taxa per metabolite (with the highest 
coefficients), when computing their frequency over the 
population, rare taxa are often dominant (Fig. 2E, F), the 
SCC between the microbe’s NMF coefficient and their 
fraction in the population is typically null −0.05 (Fig. 2G). 
To summarize, neither the linear nor the frequent domi-
nant microbes approach seems to be consistent with the 
observations. Consequently, we propose to use a non-
linear model relating the log microbe frequencies and the 
log metabolite concentrations (Fig.  2E–G), instead of a 
linear model or single dominant microbes models.

Latent representation of a microbiome (LOCATE) can be 
used to predict metabolites in each dataset separately 
better than all existing methods
Given the frequent contribution of a single yet varying 
microbe to each metabolite’s concentration, we tested 
whether a relation between the log of the microbe com-
position and the log of the metabolite concentration 
would produce a better prediction (further referred to 
as the “Log network” model). The Log network model 
assumes that a matrix A connects the logged microbiome 
frequencies Mi to the logged metabolites concentrations, 
Me (similar to Fig.  3A, step B). To find this matrix and 
avoid an over-fit, we apply a singular value decomposition 
(SVD) and a low-rank approximation (similar to Fig. 3A, 
step C) on its result (prediction results of this variant can 
be found at Supplementary material Fig. S6B). The result-
ing low-rank approximated matrix A∗ (Fig 3A, step C) is 
multiplied by the log microbe frequencies to produce the 
concentration of the metabolites (Fig. 3A, step D).

A representation of the log of each metabolite as a 
linear combination of the log of the microbial taxa fre-
quency would imply a purely multiplicative relation 
between microbes and metabolites. While this pro-
duces a significantly (p-value < 0.05 ) more accurate 
prediction than the linear relation (for 16S Fig.  3B–F 

light blue vs. light gray and for WGS Fig. 3G and Sup-
plementary material Fig. S1A–E), it is also a non-real-
istic assumption. In order to produce a more realistic 
model, we propose to translate the log microbiome into 
an intermediate representation through a neural net-
work (latent variables approach) (Fig. 3A, step A), and 
then relate this representation to the log metabolome 
assuming a linear relation. We denote this model 
LOCATE—Latent variables Of miCrobiome And 
meTabolites rElations (see the “Methods” section for 
details). Formally, a latent representation of the micro-
biome (Z) is computed by a fully connected network 
(FCN) (Fig. 3A, step A). Then, a similar solution to the 
Log network model is applied to the intermediate rep-
resentation of the microbiome (Z) to translate Z into 
the logged metabolites, (Me) (Fig.  3A, steps B–D). Z 
will then be further used to predict the host condition. 
Note that this entire model is trained at once. Thus, Z is 
inherently trained to represent the relation between the 
microbiome and the metabolome.

To evaluate LOCATE, we measured the SCC between 
the real and predicted metabolites over 5 different 16S 
rRNA gene sequence-based datasets with 11 phenotypes 
and 5 different WGS datasets with 5 phenotypes (see 
Table S2). We compared the results to existing state-of-
the-art models, such as MelonnPan, MimeNet, Spars-
eNED, and mNODE as well as to a Linear network and a 
Log network model. LOCATE significantly outperforms 
the state-of-the-art models (p-value < 0.001) on each 
dataset separately (for 16S Fig. 3B–E and for WGS Sup-
plementary material Fig. S1A–E) and on the average of all 
the datasets and all the metabolites (for 16S Fig. 3F and 
for WGS Fig.  3G). LOCATE also significantly outper-
forms the Linear and Log-log models (for 16S Fig. 3B–F 
blue and gray colors, for WGS Supplementary mate-
rial  Figs. S1A–E and  3G). To summarize, modeling the 
metabolites and microbiome relations via an interme-
diate latent representation is better than all the existing 

(See figure on next page.)
Fig. 3 LOCATE can be used to predict metabolites in each dataset separately better than all existing methods. A A schematic figure of LOCATE’s 
training. Pairs of the preprocessed microbiome (Mi, in pink) and metabolites data (Me, in yellow) are the input of LOCATE. The preprocessed 
microbiome data is projected to a representation (Z) with a lower dimension than the microbiome using a fully connected neural network 
(step A). Then, Z is used to predict the metabolites of the training set. LOCATE finds a microbiome-metabolites relations matrix A, such 
that A = z−1

∗Me (step B). A is then passed through an SVD with low-rank approximation to prevent an overfit ( A∗ , step C) and then is multiplied 
by Z to get the predicted metabolites (step D). This entire process is trained at once. B–E Comparison between LOCATE and all state-of-the-art 
metabolites prediction models over the different 16S datasets He (B), Poyet (C), Jacob (D), and Direct Plus (E) for the swarm plots on the rest 
datasets (Supplementary material Fig. S1). Each point represents the SCC of a single metabolite in the dataset. In MelonnPan, there are fewer 
points since it predicts only the “well-predicted” metabolites as defined in the original paper [57]. Furthermore, when all the SCCs are 0, 
the model fails in the prediction of this dataset. A two-sided t-test was applied between the SCCs of the different models. LOCATE is significantly 
better with p− value < 0.0001 . The stars represent the p-values, such that * p− value ≤ 0.05 , **p− value ≤ 0.01 , ***p− value ≤ 0.001 , 
****p− value ≤ 0.0001 . F–G Average SCCs over all metabolites and all the datasets per model, the 16S averages (F) and the WGS averages (G). The 
black error bars represent the standard errors over all metabolites and all the datasets
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Fig. 3 (See legend on previous page.)
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methods of interaction networks or direct predictions 
and combined learning.

Microbiome‑metabolite relations are dataset specific
Given the high accuracy of LOCATE, we used it to test 
whether the relation between microbiome and metabo-
lome is conserved between conditions and datasets, or 
whether it is affected by the experimental procedure and 
host conditions. To test for dataset dependence, we first 
checked the association between metabolome and micro-
biome on the samples directly on the measured concen-
tration. Given the importance of SCFA, we focused on 
those. The SCCs between the existing SCFA in the cohort 
and each microbe were calculated, and significant SCCs 
(p-value < 0.05 ) were considered. There are 141 differ-
ent microbe-metabolites common pairs over the 5 WGS 
datasets. The microbial SCFA relations are indeed con-
sistent over different datasets, with minor exceptions in 
several pairs especially in the WANG and MARS data-
sets (Fig. 4A). However, the consistency in microbes and 
metabolites relations is not universally conserved for all 
metabolites. Repeating the same computations for all 
metabolites over 4 WGS datasets of gastric problems 
ERAWIJANTARI, FRANZOSA, MARS, and YACHIDA, 
4 types of pairs emerge (Fig. 4B). Most pairs are inconsist-
ent among datasets, especially the positive correlations 
(the first bright gray cluster). Some are totally inconsist-
ent (the second darker gray cluster). There are consist-
ently negatively correlated pairs (the third darker gray 

cluster), and inconsistent pairs that tend to be negatively 
correlated (the last darkest cluster). Given the discrep-
ancy in most pairs, we assume the microbe-metabolite 
relations are associated with external features. An even 
more extreme inconsistency can be seen when com-
paring the data sets of the 16S (Fig.  4C). Note that this 
analysis is applied at the order level of the microbiome 
to ensure a large enough intersect between the microbes 
present in different datasets (Supplementary material 
Fig. S2), which is extremely low (Supplementary mate-
rial Figs. S2A and S3A–D). To further test the consistency 
between datasets, we analyzed each metabolite-microbe 
pair appearing in at least two datasets and computed 
the average SCC between each microbe-metabolite pair 
among all datasets containing the pair. The distribution 
of results is very narrow, around zero (−0.003 +/− 0.08 
(Fig. S3I)), suggesting that there is practically no pair with 
consistent positive or negative correlation. Furthermore, 
when comparing the raw correlations with the relations 
that are reported in the literature [50], there are many 
contradictions (Fig. S3J). For an example of the inconsist-
ent correlations across datasets and differing literature, 
see [50] (Fig. 4C). The same phenomenon appears when 
comparing the weights of the Log network coefficient 
matrix of different datasets (Supplementary material Fig. 
S3K). Note that the correlations are at the univariate level 
(a single microbe vs. a single metabolite), while the coef-
ficients are the results of a multivariate analysis.

Fig. 4 Microbiome-metabolite relations are dataset-specific. A Heatmap of significant SCCs between microbes and SCFA over different WGS 
datasets (ERAWIJANTARI, FRANZOSA, MARS, WANG, YACHIDA). Each row represents a microbe-metabolite pair and each column represents 
a different dataset. Red/blue colors represent negative/positive correlations. Many relations seem quite consistent. However, practically none 
of them is consistent over all datasets. B Heatmap of significant SCCs between all common microbes and metabolites over different gastric 
problems WGS datasets (ERAWIJANTARI, FRANZOSA, MARS, YACHIDA). Similar to A, each row represents a microbe-metabolite pair and each 
column represents a different dataset. A and B share the same color bar. The rows and columns are clustered. There are 4 different clusters 
of microbe-metabolite pairs. The first most light gray one consists of inconsistent pairs that tend to be positively related, the second darker 
gray cluster consists of equally inconsistent pairs, the third darker gray cluster consists of negatively correlated consistent pairs, and the last 
darkest cluster consists of inconsistent pairs that tend to be negative. The pair’s names in each cluster can be found in Supplementary 
material Table S5. C Heatmap of SCC between microbes and metabolites over different datasets (He, Kim, and Jacob) vs. the relations that are 
reported in the literature. The relations vary between different datasets and do not preserve the known relations from the literature. D The core 
microbiome. There are about 20 orders which are common to most of the datasets. These orders are also the most frequent taxa in the population 
of the cohorts. The x-axis represents the fraction of the population in the order that exists in each cohort. If the order appears in all the populations 
of all the cohorts, it sums to 10. The y-axis represents the different orders. Each color represents a cohort. E Swarm plot of LOCATE’s predicted 
metabolites SCCs in the cross-times test over the Direct Plus cohort. The dark blue points represent the SCCs of the prediction within a time 
point, referred to as “Internal,” where only one time point was used for the training and the testing, by the 10 CV approach. The light blue points 
represent the SCCs of the prediction between time points, where LOCATE is trained on one-time point (T0) and is tested on another one (T6). 
There is a decrease in the accuracy of the between-time points prediction. The stars follow the previous figure. For similar results on other time 
steps, see Supplementary material Fig. S4A–C. F–H Swarm plots of all of the cross-datasets predictions between couples of datasets on the shared 
metabolites and microbes, He-Direct Plus (F), He-Kim (G), He-Jacob (H); for similar results on the other pairs, see Supplementary material Fig. 
S4D–F. Each model is applied twice. First, it is trained on the intersection of the microbiome and metabolites of the pair but predicts on an internal 
test of the same dataset, “in-learning” (the dark points, referred to as “model-in”), then each model is trained on one dataset and is tested 
on the other dataset, “ex-learning” (the light points, referred to as “model-ex”). Training on one dataset and testing on another drastically decreases 
the performance of all the models, including LOCATE. However, LOCATE is still the significantly best model in most of the comparisons

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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To further test for dataset dependence, we applied 
cross-dataset learning, where all models are trained on 
one cohort and are tested on another cohort, or a cross-
condition prediction, where the models are trained on 
one condition in the dataset and tested on another in the 
same dataset. To ensure that the results are not induced 
by the technical details of a specific model, we repeated 
the analysis for multiple models. When applying the 
cross-datasets analysis, one may encounter a techni-
cal limitation. At the order level, most of the orders are 
unique to a specific dataset with 17% shared orders on 
average between 3 datasets (Supplementary material 
Fig. S3A–D). The intersection between datasets is even 
lower at finer taxonomy levels (Supplementary material 
Fig. S2A vs. B). The overlap between pairs is higher in the 
WGS pairs than in the 16S pairs, especially at the species 
level. Surprisingly, the intersection between the 16S and 
WGS is lower than the intersection within the 16S pairs. 
A quite similar situation happens in the metabolites. The 
average fraction of shared metabolites between the 3 
datasets is 0.0114 (for the intersection of specific triads, 
see Supplementary material Fig. S3E–H). However, there 
is a core microbiome of about 20 orders which appears in 
high amounts in most of the datasets (Fig. 4D).

To apply cross-dataset learning, one could use the 
microbiome common orders, defined as the core micro-
biome (Fig. 4D), and predict only the shared metabolites. 
Two kinds of learning were evaluated. The first is referred 
to as “in”-learning and is based solely on the core micro-
biome in a given dataset. The second is referred to as 
“ex”-learning is applied to the core microbiome between 
datasets (i.e., only microbes present in high frequency 
in both datasets). In the “ex”-learning setup, the train-
ing is on one dataset and the testing on the other. The 
metabolite concentration prediction’s accuracy in the 
“in”-learning is similar to the prediction using the entire 
microbiome (Fig.  3 vs. Fig.  4F–H “in”). However, in the 
“ex”-learning, the metabolite concentration prediction’s 
accuracy over all the models is much lower (Fig.  4F–H 
“in” vs. “ex”).

The same decrease is observed in the Log network 
without the intermediate representation of LOCATE 
(Supplementary material Fig. S4G). Note that even in 
the cross-dataset predictions, LOCATE significantly out-
performs the existing state-of-the-art models in most of 
the pairs both in the “in”-learning and the “ex”-learning 
(Fig.  4F–H, for other pairs Supplementary material Fig. 
S4D–F). The same decrease in accuracy is observed even 
in a given dataset with the same sequencing, the same 
machines, and the same cohort’s participants in differ-
ent time points (T0 vs. T6) of the Direct Plus experiment 
(Fig.  4E, for other time points Supplementary material 
S4 A-C). The decrease in accuracy in the “ex”-learning 

of the cross-datasets analysis may result from a “context” 
dependent relation between the microbiome and metab-
olites. We propose to use this dependence to predict the 
host condition.

Internal representation is associated with dataset features
To test for a relation between the latent representation 
(Z) and demographic and health aspects of the hosts, 
such as their age, sex, etc., a canonical correlation analy-
sis (CCA) was applied to relate either the microbiome or 
the metabolites or the latent representation to the avail-
able host characteristics. Then, the SCC was calculated 
between the first component of the CCA of each pair. 
The highest SCCs are obtained in the pairs of the repre-
sentation vector and metadata with p < 0.001 in most of 
the comparisons (for 16S Fig. 5A and for WGS Fig. 6A). 
Further, the weights of the analysis of the first and second 
components are plotted. Quite consistently the weights 
of the age and sex are dominant (for 16S Fig. 5B–D and 
for WGS Fig. 6B–D).

Internal representation improves host condition prediction 
compared with microbiome or metabolome separately 
or their combination
The stronger association of Z with demographics than 
either microbiome or metabolome by themselves may 
suggest that it can be a better predictor of host condition 
of interest in different experiments. To test for that, we 
compared the host condition prediction accuracy of dif-
ferent outcomes from binary conditions such as healthy 
vs. ill (e.g., IBD in the Jacob and FRANZOSA datasets, 
IBS in the MARS dataset, CRC in the ERAWIJANTARI 
and YACHIDA dataset, fatty liver, LI, in the Direct Plus 
dataset, and ERSD in the WANG dataset, infants diet 
(breast-feeding vs. formula) in the He dataset) to con-
tinuous conditions, such as age in the Poyet dataset and 
amounts of fats DSC, SSC, and VAT at different time 
points of the experiment in the Direct Plus dataset.

The prediction of cohort outcomes from LOCATE’s 
internal representation has a higher AUC/SCC for 
binary/continuous predictions than the microbiome-
based predictions and most of the times also of the 
metabolites (Fig.  5E, F for 16S and Fig.  6E for WGS). 
For the microbiome-based predictions, we applied both 
logistic regression on the order level and iMic, which 
is the state-of-the-art in microbiome predictions on the 
species level. The LOCATE model is applied to both 
the microbiome of the order level and the species level, 
without significant differences between them. A logistic 
regression model is applied to LOCATE’s internal rep-
resentations to predict the outcomes. The LOCATE’s 
representations are significantly more accurate (in most 
of the datasets and tasks apart from the Direct Plus, LI) 
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Fig. 5 Internal representation improves outcome prediction compared with microbiome and metabolites and is associated with dataset 
features. A Average SCC between the CCA outputs of the microbiome and metadata (pink), the metabolites and metadata (yellow), and LOCATE’s 
representation and the metadata (blue). A one-sided t-test is applied between the models. The stars follow the previous figures. B–D Weights 
of the CCA between LOCATE’s representations and the metadata on its two first components on He (B), Jacob (C), and Poyet (D). When the variable 
is categorical, all the weights are stacked together in different colors (for the categorical information, see Supplementary material Table S7). The 
first component values are in blue colors and the second component values are in green. E, F Bar plots of average AUC (E) and the average SCC 
(F) of the predicted outcomes over different datasets and different tasks. The pink colors represent the different microbiome-based models. 
The light pink represents an iMic model trained on the microbiome data only (referred to as “Mic. iMic”). The dark pink represents an iMic model 
trained on the microbiome and the metadata together (referred to as “Mic., meta iMic”). The yellow colors represent the metabolites-based 
models. The light yellow represents a logistic regression (LR) model in E or a Ridge model in F trained only on the metabolites (referred to as “Met. 
LR”) and the dark yellow represents an iMic model trained on both the metabolites and microbiome (referred to as “Mic., Met. iMic”). The blue 
colors represent the models based on LOCATE. The lightest light blue represents the Log network (referred to as “Log-log LR”). The intermediate 
blue represents a model trained on LOCATE’s representation (referred to as “Z LOCATE LR”), while the darkest blue represents a model trained 
on both LOCATE’s representation and the metadata (referred to as “Z LOCATE, meta LR”). The standard errors between the 10 cross-validations 
are in black. A one-sided t-test was applied between the models. The p-values < 0.001 in all the comparisons apart from Kim and some of the LI 
tasks. G–I Effect of a decreasing number of metabolites for LOCATE’s representation on the condition predictions in He (G), Jacob (H), and Poyet 
(I). The x-axis represents the number of pairs of microbiome and metabolites used for the training of LOCATE; the y-axis represents the difference 
between the average AUC (over 10 runs) of the predicted outcome based on LOCATE’s representation and the average AUC (over 10 runs) 
of the predicted outcome based on the microbiome only. In most of the datasets, 50 metabolites are enough for LOCATE’s representation to be 
better than the microbiome. The pink line represents the zero value, and the dashed yellow line represents the metabolites’ contribution (of all 
samples) to the microbiome. When LOCATE is better the point is above the pink line. J, K Bar plots of average AUC (J) and the average SCC (K) 
of the predicted outcomes over different datasets and different tasks. The orange color represents the Multiview model’s results. The red colors 
represent the IntegratedLearner different models. The pink-red color represents an IntegratedLearner variant of microbiome only, the orange-red 
color represents an IntegratedLearner variant of metabolites only, the red color represents an IntegratedLearner variant of stacked, and the dark 
red color represents an  IntegratedLearner variant of concatenated. The blue color represents LOCATE. The standard errors between the 10 
cross-validations are in black. A one-sided t-test was applied between the models. The p-values < 0.001 in all the comparisons apart from the LI task, 
Poyet, and VAT18. All the results of A, E, F, J, and K are reported as an average of 10 runs on an external test set
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with p-value < 0.001 better than using only the micro-
biome or only the metabolites as predictive features.

One may propose that Z is basically equivalent to 
demographic or additional data available in the dif-
ferent datasets, and as such is not useful beyond this 
demographic data. To test that this is not the case, we 
predicted the condition using a combination of Z and 
demographic data. The combination of Z and the addi-
tional data available for each data set (see Supplemen-
tary material Table S4) has higher accuracy than either 
by themselves or from the microbiome with the addi-
tional data (for 16S Fig. 5E, F and for WGS Fig. 6E). To 
summarize, we have shown that the latent representa-
tion Z is associated with the demographic properties 
of the host but adds more information to it about the 
condition than either the microbiome or metabolome.

Moreover, predicting the host condition based on 
the intermediate representation (that consists of the 
microbiome-metabolome interactions) is better (apart 
from LI in the 16S) than predicting the condition from 
the predicted metabolites of the Log network model 
(Fig.  5E, F) as well as from the combined microbiome 

and metabolites model (apart from YACHIDA in the 
WGS, Fig. 6E).

Often, given the cost difference between metabolome 
profiling and microbiome sequencing, one aims experi-
mentally to measure the metabolite concentrations on a 
sub-group of the samples. Given the fact that once the 
model is trained, Z is only computed using the microbi-
ome, one may propose to measure metabolites and train 
the model on a partial set of samples, and then com-
pute Z for all the microbiome samples. To test for such 
a hybrid sampling method, we computed the minimal 
number of samples required for training LOCATE’s rep-
resentation, such that the prediction accuracy would be 
higher than the one of the microbiome on the test set. For 
most datasets, using 50 metabolite samples and above for 
the training is enough to improve the overall accuracy 
(for 16S Fig. 5G–I and for WGS Fig. 6F–H). Note that the 
improvement in condition prediction presumes a relation 
between the metabolites and the condition. Therefore, it 
is recommended to first check for this relation through 
the metabolite reconstruction accuracy, and only then to 
apply LOCATE to predict a condition.

Fig. 6 Internal representation improves outcome prediction compared with the microbiome and when possible also metabolites and is associated 
with datasets features—on WGS datasets. This figure follows the structure of the previous figure, but for WGS. The datasets used are ERAWIJANTARI, 
FRANZOSA, MARS, WANG, and YACHIDA for subplot A and for subplot E. In subplots B–H, we used ERAWIJANTARI, FRANZOSA, and the WANG 
datasets, with the same analysis in Fig. 5B–H. For the categorical variables of B–D, see Supplementary material Table S8. I This subplot follows Fig. 5J 
just on WGS datasets. The datasets used are ERAWIJANTARI, FRANZOSA, MARS, WANG, and YACHIDA
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To get a more holistic comparison, we also compared 
LOCATE’s results to other multi-omics approaches, such 
as Multiview and IntegratedLearner both on 16S cohorts 
and WGS cohorts. LOCATE significantly outperforms 
the state-of-the-art multiview approaches (for 16S Fig. 5J, 
K and for WGS Fig. 6I).

Discussion
Two different tasks are often performed when combining 
microbiome and metabolome studies. The first is to pre-
dict the metabolome from the microbiome (the opposite 
is rarely done to the best of our knowledge, apart from 
a single work of predicting the gut microbiome alpha 
diversity from the metabolites compositions [79]), and 
the second is to combine both metabolome and micro-
biome to predict a phenotype of the host or any other 
property of each host [25]. The first was typically done by 
a linear or non-linear translation of the microbiome into 
some or all of the metabolites (sometimes only a subset 
of the metabolites in the sample are predicted), assuming 
that the microbiome determines the metabolite concen-
tration. The second task is typically performed by com-
bining the two types of data and performing a prediction 
of the target condition.

Here we propose that the first task should be treated 
through the creation of a latent representation (Z) of 
the microbiome and metabolome, using LOCATE. This 
representation is host and condition-specific. A similar 
concept, with a different mathematical approach, has 
been previously proposed [71, 80]. This representation is 
associated with the sample context which can be the age, 
gender, dietary habits, or health condition of the host. 
We then show that Z is strongly associated with the host 
demographic, diet, and other features. Finally, we show 
that it better predicts the host properties than either the 
microbiome or metabolome. As such it serves to com-
bine the two tasks above. The main difference between 
this approach and most existing combinations of micro-
biome and metabolome to predict condition [25, 58, 59] 
is that instead of combining the two, we propose to find 
intermediate variables between the two and use those to 
predict the condition. We denote this representation Z all 
along and the algorithm producing it LOCATE.

By combining the solution on the above two tasks, 
LOCATE is less sensitive to the limitations of condition 
prediction by either microbiome or metabolome. It is 
more directly associated with host properties as meas-
ured by a CCA to measure host properties than either 
microbiome or metabolome. A crucial aspect of LOCATE 
is that it provides a low dimensional representation of the 
host (10 dimensions in the current analysis). Such a low 
dimension makes the representation amenable to easy 
manipulation with no need for detailed knowledge of 

either microbes or metabolomes (for untargeted metabo-
lites contribution to the precision of condition prediction 
from microbiome-metabolome combinations compared 
to the prediction based only on classified metabolites, see 
Supplementary material Fig. S7).

At the practical level, we show that it is enough even 
for experiments with a large number of samples to meas-
ure less than 100 metabolome samples. Those can then 
be integrated with the microbiome using LOCATE, and 
the internal representation of all other samples can be 
computed from the microbiome via LOCATE. As such, 
it can serve as a viable solution for large cohorts at a rea-
sonable cost. This solution is applicable to both 16S and 
WGS.

The obvious caveat of LOCATE is that it does not pro-
vide a measure that can be directly compared between 
experiments. As such, its use is limited (as are all cur-
rent microbiome-metabolome combinations) to a given 
experimental setup. The development of a cross-platform 
latent variable host representation that could merge 
16S and WGS would require domain-invariant machine 
learning algorithms. A classical solution would be the 
combination of LOCATE with an adversary classifier that 
should fail to distinguish between experiment [81, 82]. 
Such a system could in theory distill the representation 
relevant to the host biology from the ones related to the 
experimental procedure. We have tested such possible 
systems. However, they seem to require more and larger 
experiments than are currently available.

Beyond its application as a prediction tool for metab-
olite and host conditions, LOCATE can also be used to 
define a distance between samples since it provides an 
internal low-dimension latent representation. Such a dis-
tance can be used among many others for visualization 
through a PCoA projection to 2 or 3 dimensions. It can 
be used for sample clustering and anomaly detection. The 
analysis of the statistical properties of this distance would 
require more datasets than currently used and is left to 
further studies.

LOCATE is available as a GIT at https:// github. com/ 
oshri tshto ssel/ LOCATE and as a PyPI at https:// pypi. org/ 
proje ct/ LOCATE- model/. All the datasets used are from 
published cohorts, see Supplementary material Table S2. 
All the raw microbiome and metabolome data are avail-
able as supplementary tables, apart from the tables of the 
Direct Plus dataset. This dataset belongs to Prof. Iris Shai 
and can be acquired by direct contact with this group.

Conclusions
The association of microbes with metabolites is treated 
oversimplistically as a direct relation of microbes con-
suming a metabolite increasing in its presence, and 
similarly the concentration of metabolites produced by 

https://github.com/oshritshtossel/LOCATE
https://github.com/oshritshtossel/LOCATE
https://pypi.org/project/LOCATE-model/
https://pypi.org/project/LOCATE-model/
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a microbe increasing in its presence. We have shown 
that a much more complex relation should be consid-
ered, where the metabolites and microbes produce a 
condition-dependent equilibrium. On the one hand, one 
cannot simply predict the change in a microbe through 
a change of the metabolites. On the other hand, this equi-
librium allows for a precise prediction of the condition 
based on the combined metabolite and microbes of a set 
of samples. Interestingly, even with a small number of 
metabolites, a latent representation of the environment 
can be produced from the relation between microbes and 
metabolites. This representation can then be used with 
large microbiome samples to predict with high accuracy 
disease states or other conditions associated with the 
gut-metabolome.

Methods
In order to facilitate the understanding of the more 
mathematical and ML-oriented terms in the text, we pro-
vide a short description of the main ML terms used in the 
manuscript in Supplementary material.

Datasets
We analyzed data from multiple published studies of the 
human gut microbiome and metabolome. We focused on 
studies that included at least 90 individuals, following the 
rules proposed by Borenstein’s gut microbiome-metabo-
lome dataset collection [80], for which both the micro-
biome and the metabolome were profiled from fecal 
samples. We used five 16S rRNA gene sequencing paired 
datasets and five whole genome shotgun sequencing 
(WGS) paired datasets. For more details on each cohort, 
see Supplementary material Table S2.

16S rRNA gene sequencing‑based paired datasets
Direct Plus Longitudinal samples of fecal microbiome 
and metabolites (over 18 months) of 294 participants 
with abdominal obesity/dyslipidemia into healthy dietary 
guidelines (HDG), MED, and green-MED weight-loss diet 
groups, all accompanied by physical activity [83]. The out-
comes we studied here were deep subcutaneous (DSC), 
superficial subcutaneous (SSC), visceral adipose tissue 
(VAT), and fatty liver. During this analysis, we used only 
the microbiome and metabolites from the first time point 
(T0) and the last time point (T18) separately for each par-
ticipant.

He Microbiome and metabolites from infants over sev-
eral time points during the first year of life, either breast-
fed, formula-fed, or experimental formula fed. [84]

Jacob IBD patients, 21 Crohn’s disease (CD) and ulcera-
tive colitis (UC) probands younger than the age of 18 were 

recruited from the Pediatric IBD Center at the Cedars-
Sinai Medical Center and their first-degree relatives of 
patients with IBD. We analyzed both their microbiome 
and their metabolites of them [85].

Kim Fecal microbiome and metabolites of patients with 
advanced colorectal adenomas, colorectal cancer, and 
controls [86].

Poyet Longitudinal samples from healthy donors to the 
Broad Institute-OpenBiome Microbiome Library (BIO-
ML) [87].

WGS paired datasets
ERAWIJANTARI GASTRIC CANCER 2020 Fecal and 
metabolites of patients who underwent colonoscopy, half 
of whom with a history of gastrectomy for gastric cancer 
and no signs of gastric cancer recurrence [88]. This data-
set is referred to as ERAWIJANTARI.

FRANZOSA IBD 2019 Fecal microbiome and metabo-
lites of IBD patients and controls (PRISM cohort + A vali-
dation cohort) [89]. This dataset is referred to as FRAN-
ZOSA.

MARS IBS 2020 Longitudinal samples fecal microbiome 
and metabolites (over 6 months) from patients with irrita-
ble bowel syndrome (IBS) and controls [90]. This dataset 
is referred to as MARS.

WANG ESRD 2020 Fecal microbiome and metabolites 
of adults with end-stage renal disease (ESRD) and con-
trols [91]. This dataset is referred to as WANG.

YACHIDA CRC 2019 Fecal microbiome and metabo-
lites of patients who underwent colonoscopy, with find-
ings from normal to stage 4 colorectal cancer [92]. This 
dataset is referred to as YACHIDA.

Microbiome preprocessing
For LOCATE, microbial data was pre-processed using 
the MIPMLP pipeline [93]. We merged the ASVs either 
to the order (to gain maximal intersection between pairs 
Supplementary material Fig. S2) or to the species taxo-
nomic level by the Sub-PCA method (detailed below), 
but similar results are obtained at the other taxonomy 
levels as well (data not shown). Then, we applied log nor-
malization (detailed below) on the merged ASVs. We fur-
ther normalized each taxon such that its average will be 0 
and its variance will be 1 (z-score). Notably, we examined 
variations of the LOCATE model with no z-scoring for 
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the microbial data, yet for clarity, we present outcomes 
from the highest accuracy variant (additional variant 
results are available in Supplementary material Fig. S6).

For the other algorithms (SparseNED, MelonnPan, 
mNODE, and MiMeNet), we followed the preprocessing 
that was reported in the relevant papers [27, 57, 60, 61]. 
For the pre-analyses of Fig. 2, the ASVs were merged to 
the order level by the mean method (detailed below), and 
a relative normalization (detailed below) was applied (to 
keep the values positive).

Sub-PCA merging in MIPMLP: A taxonomic level (e.g., 
species) is set. All the ASVs consistent with this taxon-
omy are grouped. A PCA is performed on this group. The 
components which explain more than half of the vari-
ance are added to the new input table. This merging was 
applied for LOCATE.

Mean merging in MIPMLP: A level of taxonomy (e.g., 
species) is set. All the ASVS consistent with this taxon-
omy are grouped by averaging them. This merging was 
applied to the NMF and to the analyses of Fig. 2.

Relative normalization in MIPMLP: To normalize each 
taxon through its relative frequency

we normalized the relative abundance of each taxon j in 
sample i by its relative abundance across all n samples. 
This was applied only to the NMF model and to the anal-
yses of Fig. 2.

Log normalization in MIPMLP:  We logged (10 base) 
c-wise, according to the following formula:

where ǫ is a minimal value (= 0.1) to prevent log of zero 
values. This was applied for LOCATE.

Metabolite preprocessing
For LOCATE, all metabolic samples were first normal-
ized to relative frequencies, such that the metabolites of 
each sample would sum to 1. Then, those were log-nor-
malized and further z-scored, such that the average value 
of each metabolite would be 0 and its variance would be 
1. Again for the other algorithms, we followed the pre-
processing that was reported in the relevant papers [27, 
57, 60, 61]. For the analyses of Fig.  2, only relative nor-
malization was applied.

Matrix factorization methods
We used a Non-Negative Matrix Factorization (NMF) 
that finds two non-negative matrices (W, H) whose 
product approximates the non-negative matrix Me. This 
factorization can be used for example for dimensional 

(1)xi,j =
xi,j
n
k=1 xk ,j

,

(2)xi,j → log(xi,j + ǫ),

reduction, source separation, or topic extraction. In our 
case, we assumed Metrain is the non-negative metabolites 
matrix of the training, and we express it as a product of 
the training microbiome matrix ( Mitrain ) and another 
relations matrix (A). Then, we used the training relations 
matrix to predict the metabolite values from the micro-
bial abundances. We used the NMF decomposition of 
sklearn version 0.24 [94] with its default parameters apart 
from the L1 regularization that was fine-tuned and set 
to 10. The initialization matrix was initialized randomly 
with numbers between 0 to 1. We checked different ini-
tializations and they did not affect the convergence of the 
algorithm.

Metabolites prediction by Latent variables Of miCrobiome 
And meTabolites rElations (LOCATE)
To predict the log normalized metabolite concentrations 
(Me, yellow in Fig. 3A) from the log normalized microbi-
ome (Mi, pink in Fig. 3A), we first built an intermediate 
latent representation between the microbiome and the 
metabolites by using a fully connected neural network 
(Z, blue in Fig.  3A, step A). Representation network:  A 
3-layer fully connected neural network FCN was applied 
to the log-normalized microbiome data (different dimen-
sion reduction methods, such as 1D-CNN and deep net-
works, were also tested, Supplementary material Fig. S6C 
and D). An activation function (either of RelU, elU, or 
Tanh) was applied between the layers, and dropout and 
L2 regularization were also applied. The representation 
dimension was set to 10. All the network hyperparam-
eters, except for the representation dimension, were cho-
sen via the Neural Network Intelligence (NNI) platform 
[95] on each dataset separately on an internal validation 
set. The hyperparameters used can be found in Supple-
mentary material Table S3. The loss was a standard MSE 
loss, 1N

∑N
i=1

∑
(Mei − M̂ei)

2 , where N is the number of 
the microbiome and metabolites paired samples and M̂ei 
is the predicted metabolites, and an Adam optimizer was 
used (Fig. 3A, step A).

The output of the neural network was the input of a 
linear predictor of the log metabolite concentration. We 
assumed a microbiome-metabolites relationship matrix 
A (green in Fig. 3A) such that

where Z−1 is the pseudo inverse of Z ( (Zt
· Z)−1

· Zt ), 
since Z does not have to be a squared matrix. The 
pseudo-inverse was computed using the torch.linalg.
lstsq function on Z and Metrain (Fig.  3 step B). To pre-
vent overfitting, we did not use A directly but applied a 
low-rank approximation on A using torch.svd_lowrank 
with its default parameters (Fig.  3 step C). In the infer-
ence step, the low-rank approximated matrix of A∗ (an 

(3)A · Z = Me → A = Z−1
·Metrain,
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approximating matrix with reduced rank) from the train-
ing was used (Fig. 3 step D). It is important to note that 
the neural network’s end-to-end training produces a rep-
resentation (Z) that encodes the combined information 
of both microbiome and metabolites (via the backpropa-
gation), even though its direct connection to metabo-
lites might not be as explicit as that of A. We also tested 
LOCATE without the low-rank approximation (Supple-
mentary material Fig. S6 B).

Host condition prediction
To test which variables best explain the condition of the 
cohorts, we predicted the condition once from the origi-
nal microbiome (Mi) at two different taxonomy levels, 
the order level, and the species level, once from the origi-
nal metabolites (Me) and once from LOCATE’s latent 
microbiome-metabolite representation (Z). For binary 
conditions, a logistic regression model was applied with 
its default parameters, including an L2 regularization 
of 1, of the sklearn library. For continuous conditions, 
a Ridge regression model was applied with its default 
parameters of the sklearn library. Note that no hyper-
parameter tuning was applied. The data was split into a 
training set (80% of the data) and a test set (20% of the 
data), and we reported the results on the test set as an 
average of 10 different splits as described in the “Statis-
tics and evaluation” section. For the microbiome-based 
learning at the species taxonomic level, the microbiome 
was translated into a 2D image, such that each row of 
the image represents another taxonomy level according 
to the cladogram structure. Then, a novel CNN-based 
prediction, iMic[31], was applied for both the regression 
and classification models. For the robustness of condition 
prediction models against overfitting, see Supplementary 
material Fig. S5.

Statistics and evaluation
Spearman correlation coefficient (SCC) and area 
under the receiver operating characteristic (ROC) curve (AUC)
To evaluate the prediction quality of the metabolite 
predictions, we calculated the Spearman correlation 
coefficient (SCC) between the real metabolites and the 
predicted metabolites over two different frameworks: 
within a given dataset—by removing 20% of the data for 
testing, and cross-datasets approach, training the model 
on one dataset and testing it on another.

We further used the SCC to evaluate the condition pre-
diction of the continuous conditions by measuring the 
SCC between the predicted phenotype and the real phe-
notype on the test set. An average of 10 cross-validations 
on the test set was reported.

To evaluate the condition predictions of the binary 
phenotypes, the AUC of each model (microbiome-based, 

metabolites-based, and representation-based) was calcu-
lated on a test set. An average of 10 cross-validations was 
reported on the test.

Representation matrix and metadata relationships
To test the relations between the demographic features 
(e.g., age, gender, etc.) of each cohort and its representa-
tion (Z), we first applied canonical-correlation analysis 
(CCA) [96] between the original microbiome (Mi) input 
and the metadata, the original metabolites (Me) data 
and the metadata and the representation (Z). Then, we 
trained 10 CCA models on each of the training sets (80% 
of the data each) and predicted the CCA for each of the 
10 test sets (20% of the data each) separately. Then, the 
average SCCs (over the 10 models’ partitions) between 
the real CCAs and the predicted ones were computed 
and reported with their standard errors over the 10 
runs. We further predicted the metadata once from the 
microbiome (Mi), once from the metabolites (Me), and 
once from the representation (Z) using a Ridge model. 
The average SCC between the predicted metadata and 
real metadata was computed on the test set. To detect 
the metadata features that are related to the microbi-
ome-metabolites representation (Z), the absolute CCA’s 
weights of the two first components were computed.

Experimental design
Generate a uniform platform for metabolites
Each dataset had a different notation for the metabo-
lites. Consequently, we translated the identity of each 
metabolite to its chemical formula by using the API of 
the following websites Metabolomicsworkbench, and 
KEGG COMPOUND Database [49, 97] as well as by the 
PubChemPy python package https:// github. com/ mcs07/ 
PubCh emPy.

Training and test sets split
Representation learning Within dataset: We divided the 
data with an external test of 20% of the whole data. The 
remaining 80% of the data was used as the training set. We 
repeated the split 10 times, such that the reported results 
were an average of the 10 runs.

Cross-datasets prediction:  First, we merged the data-
set by removing microbes and metabolites that did not 
appear in the intersect of the datasets. Then, each dataset 
was normalized separately. Next, two different types of 
learning were applied: (1) “in”-learning—given one single 
dataset with only its core microbiome and shared metab-
olites, applying learning within the dataset by dividing 
it into a training set (80% of the data), and a testing set 
(20% of the data). (2) “ex”-learning—where one dataset 
was used for training, while the other dataset was used 
for testing.

https://github.com/mcs07/PubChemPy
https://github.com/mcs07/PubChemPy
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Condition predictions:  The data (microbiome and 
condition, or metabolites and condition, or LOCATE’s 
representation,  Z, and condition) was divided into 2 
groups; 80% of the data was used for training and the 
remaining 20% was used for testing. We repeated the 
split 10 times, such that the reported results were an 
average of the 10 runs.

Creating the representation on a varying number of training 
samples
We aimed to determine the optimal sample size for 
pairs of microbiome and metabolite data that would 
yield a robust microbiome-metabolite representation 
through LOCATE, thus enhancing condition prediction 
accuracy. To this end, we conducted an investigation 
involving varying numbers of microbiome-metabo-
lome pairs (for example ranging from 25 to 225 in the 
He dataset), mirroring the common scenario where 
there are fewer metabolite data samples than microbi-
ome samples. This diverse sample range was chosen to 
reflect the typical scope of experiments conducted. Our 
approach involved training the representation network 
of LOCATE, using the specified number of paired sam-
ples. Subsequently, we inferred representations for all 
samples within the cohort, even those lacking metabo-
lite data, leveraging the trained model.
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